A NOTE ON DUALITY THEOREMS IN MASS TRANSPORTATION

Pietro Rigo University of Pavia

CFE-CMStatistics 2018 Pisa, december 14-16, 2018

Notation

- $(\mathcal{X}, \mathcal{F}, \mu)$ and $(\mathcal{Y}, \mathcal{G}, \nu)$ probability spaces
- $c: \mathcal{X} \times \mathcal{Y} \to R$ measurable function such that $f_1 + g_1 \leq c \leq f_2 + g_2$ for some $f_1, f_2 \in L_1(\mu)$ and $g_1, g_2 \in L_1(\nu)$
- $\Gamma(\mu,\nu) = \{ \text{probabilities on } \mathcal{F} \otimes \mathcal{G} \text{ with marginals } \mu \text{ and } \nu \}$
- For $P \in \Gamma(\mu, \nu)$, we write: $P(c) = E_P(c) = \int c \, dP$

In Kantorovich approach to mass transportation, one focus on

 $\alpha(c) = \inf\{P(c) : P \in \Gamma(\mu, \nu)\}$

As in classical linear programming, define also

 $\beta(c) = \sup\{\mu(f) + \nu(g) : f \in L_1(\mu), g \in L_1(\nu), f + g \le c\}$

Since $P(f + g) = \mu(f) + \nu(g)$ for each $P \in \Gamma(\mu, \nu)$, then $\beta(c) \le \alpha(c)$. Thus, a (natural) question is whether

 $\alpha(c) = \beta(c) ?$

Similarly, if

$$\alpha^*(c) = \sup\{P(c) : P \in \Gamma(\mu, \nu)\}$$

$$\beta^*(c) = \inf\{\mu(f) + \nu(g) : f \in L_1(\mu), g \in L_1(\nu), f + g \ge c\}$$

then $\alpha^*(c) \leq \beta^*(c)$ and a question is whether $\alpha^*(c) = \beta^*(c)$?

A duality theorem (for both $\alpha(c)$ and $\alpha^*(c)$) is the assertion that

 $\alpha(c) = \beta(c)$ and $\alpha^*(c) = \beta^*(c)$

Example: Wasserstein distance

Let (\mathcal{X}, d) be a metric space, $\mathcal{Y} = \mathcal{X}$ and c = d. Suppose d measurable with respect to $\mathcal{B}(\mathcal{X}) \otimes \mathcal{B}(\mathcal{X})$ and

 $\int d(x, x_0) \,\mu(dx) + \int d(x, x_0) \,\nu(dx) < \infty \quad \text{for some } x_0 \in \mathcal{X}$

Then, $\alpha(d)$ reduces to the Wasserstein distance while $\beta(d)$ to the Kantorovich-Rubinstein distance:

$$\beta(d) = \sup_{f} |\mu(f) - \nu(f)|$$

where sup is over the 1-Lipschitz functions $f : \mathcal{X} \to R$. Thus,

Wasserstein metric = Kantorovich-Rubinstein metric

if duality holds for c = d

Example: Arveson's problem

Let $H \in \mathcal{F} \otimes \mathcal{G}$. If P(H) = 0 for each $P \in \Gamma(\mu, \nu)$, are there $A \in \mathcal{F}$ and $B \in \mathcal{G}$ such that

 $H \subset (A \times \mathcal{Y}) \cup (\mathcal{X} \times B)$ and $\mu(A) = \nu(B) = 0$?

The answer is **yes** if duality holds for $c = 1_H$

In fact, $\alpha^*(H) = 0$ and it is not hard to see that

 $H \subset (A \times \mathcal{Y}) \cup (\mathcal{X} \times B)$ and $\beta^*(H) = \mu(A) + \nu(B)$

for some $A \in \mathcal{F}$ and $B \in \mathcal{G}$. Thus,

 $\mu(A) + \nu(B) = \beta^*(H) = \alpha^*(H) = 0$

State of the art

To my knowledge, the best duality theorem is due to Ramachandran and Ruschendorf (PTRF, 1995):

 $\alpha(c) = \beta(c)$ and $\alpha^*(c) = \beta^*(c)$ provided (at least) one between μ and ν is **perfect**

Open problem: Prove or disprove that $\alpha(c) = \beta(c)$ and $\alpha^*(c) = \beta^*(c)$ without any assumption

In this talk, unfortunately, I do not solve the above problem. I just give a few duality theorems not requiring perfectness

Perfect and separable probability measures

A probability measure P on a measurable space (Ω, \mathcal{A}) is perfect if, for each measurable $f : \Omega \to R$, there is $B \in \mathcal{B}(R)$ such that

 $B \subset f(\Omega)$ and $P(f \in B) = 1$

Basically, perfectness is a non topological notion of tightness. In fact, if Ω is metric, $\mathcal{A} = \mathcal{B}(\Omega)$ and $\operatorname{card}(\Omega) \leq \operatorname{card}(R)$ then

P perfect \Leftrightarrow P tight \Rightarrow P separable (but **not conversely**)

Here, P separable means P(A) = 1 for some separable $A \in \mathcal{B}(\Omega)$. In particular, if Ω is separable metric, P is trivially separable but may fail to be perfect

Theorem 1: Suppose \mathcal{X} and \mathcal{Y} are metric spaces and (at least) one one between μ and ν is separable. Then, duality holds provided

 $x \mapsto c(x,y)$ and $y \mapsto c(x,y)$ are continuous

Remarks:

- Theorem 1 improves the result by Ramachandran and Ruschendorf provided c has continuous sections and the cardinalities of $\mathcal X$ and $\mathcal Y$ do not exceed the continuum
- By Theorem 1, it is consistent with the usual axioms of set theory (ZFC) that duality holds for every *c* with continuous sections. In fact, it is consistent with ZFC that any Borel probability on any metric space is separable
- By Theorem 1, Wasserstein metric = Kantorovich-Rubinstein metric whenever one between μ and ν is separable

Corollary: If ${\mathcal X}$ and ${\mathcal Y}$ are metric spaces, duality holds provided

- both μ and ν are separable
- c is bounded
- $x \mapsto c(x,y)$ or $y \mapsto c(x,y)$ is continuous

Theorem 2: Duality holds provided, for each $\epsilon > 0$, there is a countable partition $\{A_0, A_1, \ldots\} \subset \mathcal{F}$ of \mathcal{X} such that $\mu(A_0) = 0$ and

$$\sup_{y \in \mathcal{Y}} |c(x,y) - c(z,y)| \leq \epsilon$$
 whenever $x, z \in A_i$ and $i > 0$

Corollary: Let $H = \bigcup_n (A_n \times B_n)$ be a countable union of measurable rectangles. Then, $\alpha^*(H) = \beta^*(H)$. Also, $\alpha(H) = \beta(H)$ (so that duality holds for $c = 1_H$) provided

 $\mu(A_n \text{ infinitely often}) = 0 \text{ or } \nu(B_n \text{ infinitely often}) = 0$

Example: Let $\mathcal{X} = \mathcal{Y}$ and $\mu = \nu$, with \mathcal{X} a metric space and μ separable and diffuse. Let H be a countable union of measurable rectangles. Then, duality holds for $c = 1_{H_1}$ and $c = 1_{H_2}$ where

$$H_1 = H \cap \Delta, \ H_2 = H \cap \Delta^c \text{ and } \Delta = \{(x, x) : x \in \mathcal{X}\}$$