COMPATIBILITY OF CONDITIONAL DISTRIBUTIONS

Patrizia Berti, Emanuela Dreassi, Pietro Rigo

Università di: Modena e Reggio-Emilia, Firenze, Pavia

Pisa, December 7, 2014

THE PROBLEM

Up to technicalities, the problem can be stated as follows

Let X and Y be real random variables. Suppose we are given the (measurable) kernels

$$\alpha = \{ \alpha(x, \cdot) : x \in \mathcal{R} \} \text{ and } \beta = \{ \beta(x, \cdot) : x \in \mathcal{R} \}$$

where $\alpha(x, \cdot)$ and $\beta(x, \cdot)$ are probability measures on \mathcal{R} .

Is there a joint distribution for (X, Y) such that

$$P(Y \in \cdot \mid X = x) = \alpha(x, \cdot)$$
 and $P(X \in \cdot \mid Y = y) = \beta(y, \cdot)$

for almost all $(x, y) \in \mathbb{R}^2$?

MORE GENERALLY

The previous problem is actually a special case of the following Let X_1, \ldots, X_k be real random variables and $Y_j = (X_1, \ldots, X_{j-1}, X_{j+1}, \ldots, X_k), \quad 1 \le j \le k.$

Suppose we are given the (measurable) kernels

$$\alpha_j = \{\alpha_j(y, \cdot) : y \in \mathcal{R}^{k-1}\}$$

where $\alpha_i(y, \cdot)$ is a probability measure on \mathcal{R} .

Is there a joint distribution for (X_1, \ldots, X_k) such that

 $P(X_j \in \cdot \mid Y_j = y) = \alpha_j(y, \cdot)$

for all $1 \leq j \leq k$ and almost all $y \in \mathcal{R}^{k-1}$?

If yes, the kernels $\alpha_1, \ldots, \alpha_k$ are compatible (or consistent).

MOTIVATIONS AND REMARKS

(i) We focus on real random variables for the sake of simplicity. Nothing important changes if each X_j takes values in a measurable space $(\mathcal{X}_j, \mathcal{B}_j)$. Similarly, (X_1, \ldots, X_k) can be replaced by an infinite sequence X_1, X_2, \ldots

(ii) Let C be a collection of probability measures on \mathcal{R}^k . The kernels $\alpha_1, \ldots, \alpha_k$ are C-compatible if they are the conditional distributions induced by some member of C.

(iii) Conceptually, we are just dealing with a **coherence** problem within the Kolmogorovian setting. Indeed, those people familiar with de Finetti's coherence can think of this problem as

Coherence + Disintegrability

Technically, however, the problem is much harder than Finetti's coherence (iv) In some statistical frameworks, such as

Gibbs sampling, Multiple data imputation, Spatial statistics

the conditional distributions of

$$X_j$$
 given $Y_j = (X_1, \dots, X_{j-1}, X_{j+1}, \dots, X_k)$

are needed. Sometimes, such conditional distributions are not derived from a joint distribution for (X_1, \ldots, X_k) . Rather:

One first selects the kernels $\alpha_1, \ldots, \alpha_k$, with each α_j regarded as the conditional distribution of X_j given Y_j , and then checks compatibility of $\alpha_1, \ldots, \alpha_k$.

Note that, if $\alpha_1, \ldots, \alpha_k$ fail to be compatible, any subsequent analysis does not make sense !!!

(v) Compatibility issues also occur in

Statistical mechanics, Machine learning, Bayesian statistics

RESULTS

In BDR (Stochastics, 2013; J. Multivariate Analysis, 2014) compatibility of $\alpha_1, \ldots, \alpha_k$ is characterized under the assumptions that

(i) Each X_j has compact support

or

(ii) Each kernel α_j has a density with respect to some reference measure λ_j , namely $\alpha_j(y, dx) = f_j(x \mid y) \lambda_j(dx)$

Furthermore,

(iii) C-compatibility of $\alpha_1, \ldots, \alpha_k$ is characterized for

 $C = \{ \text{exchangeable laws on } \mathcal{R}^k \}$

 $C = \{ \text{identically distributed laws on } \mathcal{R}^k \}$

We next focus on (iii)

THM1: Let $C = \{ exchangeable laws on <math>\mathcal{R}^k \}$. Suppose

 $\alpha_1 = \ldots = \alpha_k = \alpha$ and $\alpha(y, \cdot) = \alpha[\pi(y), \cdot]$

for all permutations π . Then,

 $\alpha_1, \ldots, \alpha_k$ are compatible $\Leftrightarrow \alpha_1, \ldots, \alpha_k$ are *C*-compatible

THM2: Let $C = \{$ identically distributed laws on $\mathcal{R}^k \}$. Suppose $k = 2; X_1, X_2$ take values in a finite set; α_1 irreducible Then, α_1, α_2 are *C*-compatible if and only if $\alpha_1(x, y) > 0 \Leftrightarrow \alpha_2(y, x) > 0$

 $\prod_{i=1}^{n} \alpha_1(x_{i-1}, x_i) = \prod_{i=1}^{n} \alpha_2(x_i, x_{i-1}) \text{ if } x_n = x_0$

where $\alpha_i(x, y) = \alpha_i(x, \{y\})$. Such characterization easily extends to X_1, X_2 taking values in a countable set

EXAMPLE

Suppose

$$\alpha_1 = \ldots = \alpha_k = \alpha$$
 with $\alpha(y, \cdot) = N(b \overline{y}, 1)$

where $b \in \mathcal{R}$ and $\overline{y} = (1/(k-1)) \sum_{i=1}^{k-1} y_i$ is the sample mean.

By THM1, those values of b which make $\alpha_1, \ldots, \alpha_k$ compatible can be determined. For instance,

For k = 2: α_1, α_2 are compatible $\Leftrightarrow b \in (-1, 1)$

For k = 3: $\alpha_1, \alpha_2, \alpha_3$ are compatible $\Leftrightarrow b \in (-2, 1)$

and so on. Also, for any k, $\alpha_1, \ldots, \alpha_k$ are compatible if and only if they are induced by an exchangeable law on \mathcal{R}^k

EXAMPLE

Suppose k = 2 and X_1, X_2 take values in $Z = \{..., -1, 0, 1, ...\}$

Let α be the kernel of the symmetric random walk on Z:

 $\alpha(i, i-1) = \alpha(i, i+1) = 1/2$

for each $i \in Z$, where $\alpha(i, j) = \alpha(i, \{j\})$.

Are there a kernel β on Z and a joint distribution for (X_1, X_2) such that

 $X_1 \sim X_2$ and

 $P(X_1 = j \mid X_2 = i) = \alpha(i, j), \quad P(X_2 = j \mid X_1 = i) = \beta(i, j)$?

The answer is NO, as a consequence of THM2