FINITELY ADDITIVE MIXTURES OF PROBABILITY MEASURES

Patrizia Berti and Pietro Rigo Universities of Modena Reggio-Emilia and Pavia

> Reasoning under partial knowledge (in honor of Giulianella Coletti) Perugia, december 14-15, 2018

Notation

- D a linear space of real bounded functions on a set Ω
- P a prevision (i.e., a coherent functional) on D
- \mathcal{Q} a collection of previsions on D
- $\Sigma(\mathcal{Q})$ the σ -field over \mathcal{Q} generated by the maps $Q \mapsto Q(f)$ for all $f \in D$
- "f.a.p." stands for "finitely additive probability"

Starting point

Under mild conditions, P is a finitely additive mixture of the elements of Q. In fact, by de Finetti's coherence principle,

• there is a f.a.p. Π on $\Sigma(\mathcal{Q})$ such that

 $P(f) = \int Q(f) \Pi(dQ)$ for each $f \in D$

if and only if

• $P(f) \ge \inf \{Q(f) : Q \in Q\}$ for each $f \in D$

Even if obvious, the previous remark provides some research hints:

- (i) Prove results on finitely additive mixtures of f.a.p.'s, e.g. finitely additive mixtures of extreme points
- (ii) Give alternative proofs to the classical, σ -additive results. Namely, suppose P and each $Q \in Q$ are σ -additive, and you aim to show that P is a σ -additive mixture of Q. Then, a strategy is: first prove P is a finitely additive mixture of Q, and then show that the mixing measure Π is σ -additive
- (iii) Find handy expressions for

 $\inf \left\{ Q(f) : Q \in \mathcal{Q} \right\}$

For instance, when such inf reduces to a Choquet integral ?

Common extensions

Let P_i be a prevision on D_i , where *i* ranges over some index set *I*. A common extension is a prevision *P* on $l^{\infty}(\Omega)$ such that

 $P = P_i$ on D_i for each $i \in I$

Basing on the initial remark of this talk, we characterize the common extensions P satisfying some additional properties, such as

 $P(f) \leq P(g)$ for each $(f,g) \in C$

where C is a given set of pairs of bounded functions

Example

Let μ_1 , μ_2 , μ_3 be f.a.p.'s on the fields \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3

• There is a f.a.p. μ such that

 $\mu = \mu_1$ on \mathcal{F}_1 , $\mu = \mu_2$ on \mathcal{F}_2 and $\mu \ll \mu_3$ on \mathcal{F}_3

if and only if

• $\mu_1(A) \le \mu_2(B)$ whenever $A \in \mathcal{F}_1$, $B \in \mathcal{F}_2$ and $A \cap C \subset B \cap C$

for some $C \in \mathcal{F}_3$ with $\mu_3(C) = 1$

Finitely additive mixtures of extreme points

Let ${\mathcal R}$ be a collection of f.a.p.'s on a field ${\mathcal F}$ and

 $Q = \{ \text{extreme points of } \mathcal{R} \}$

If \mathcal{R} is convex and closed under pointwise convergence, then $P \in \mathcal{R}$ if and only if

 $P(\cdot) = \int Q(\cdot) \Pi(dQ)$ for some f.a.p. Π on $\Sigma(Q)$

Example: Take \mathcal{R} the set of f.a.p.'s Q such that

 $Q \circ \phi^{-1} = Q$ for all $\phi \in \Phi$

where Φ is any set of measurable functions from Ω into itself. Then, any invariant f.a.p. is a finitely additive mixture of extreme invariant f.a.p.'s, without any assumptions on Φ or (Ω, \mathcal{F})

Countably additive mixtures

From now on, P and each $Q \in Q$ are σ -additive probability measures on a σ -field A

Theorem: Suppose $P(\cdot) = \int Q(\cdot) \Pi(dQ)$ for some f.a.p. Π on $\Sigma(Q)$. Then, Π is (unique and) σ -additive provided, for each $A \in \mathcal{A}$, there is an \mathcal{A} -measurable map $h_A : \Omega \to [0, 1]$ such that

 $Q\{\omega : h_A(\omega) = Q(A)\} = 1$ for each $Q \in Q$

Such a theorem applies, in particular, if

 $\mathcal{G} = \{A \in \mathcal{A} : Q(A) \in \{0, 1\} \text{ for each } Q \in \mathcal{Q}\}$

is sufficient for $\ensuremath{\mathcal{Q}}$

Basing on the Theorem, it can be shown that various finitely additive mixtures are actually σ -additive mixtures

As an example, one gets the following version of de Finetti's theorem:

Let (S, \mathcal{E}) be a measurable space and P a σ -additive f.a.p. on $(S^{\infty}, \mathcal{E}^{\infty})$. Let \mathcal{Q} be the class of i.i.d. probability measures on \mathcal{E}^{∞} . Then $P(\cdot) = \int Q(\cdot) \Pi(dQ)$, for some unique σ -additive f.a.p. Π on $\Sigma(\mathcal{Q})$, if and only if

 $P(f) \ge \inf \{Q(f) : Q \in Q\}$ for each simple function f

Note: Contrary to the usual versions of de Finetti's theorem, (S, \mathcal{E}) is arbitrary