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Abstract. Let (Ω,B) be a measurable space, An ⊂ B a sub-σ-field and µn a

random probability measure on (Ω,B), n ≥ 1. In various frameworks, one looks
for a probability P on B such that µn is a regular conditional distribution for P

given An for all n. Conditions for such a P to exist are given. The conditions

are quite simple when (Ω,B) is a compact Hausdorff space equipped with the
Borel or the Baire σ-field (as well as under similar assumptions). Applications

to Gibbs measures and Bayesian statistics are given as well.

1. The problem

Let (Ω,B) be a measurable space and P the collection of all probability measures
on B. For B ∈ B and any map µ : Ω → P, we let µ(B) denote the function on Ω
given by ω 7→ µ(ω)(B). We also let σ(µ) = σ

{
µ(B) : B ∈ B

}
.

Let P ∈ P and A ⊂ B a sub-σ-field. A regular conditional distribution (r.c.d.),
for P given A, is a map µ : Ω→ P such that µ(B) is a version of EP

(
IB | A

)
for all

B ∈ B. For a r.c.d. to exist, it suffices that P is perfect and B countably generated.
This note originates from the following question. Given a sub-σ-field A ⊂ B and

a map µ : Ω → P such that σ(µ) ⊂ A, under what conditions is there P ∈ P such
that µ is a r.c.d. for P given A ? Such a question is easily answered. Once stated,
however, it grows quickly into the following new question. Suppose we are given
{An, µn : n ∈ I}, where An ⊂ B is a sub-σ-field,

µn : Ω→ P is a map such that σ(µn) ⊂ An,
and I = {1, 2, . . .} or I = {1, . . . , k} for some k ≥ 1. Under what conditions is there
P ∈ P such that µn is a r.c.d. for P given An for all n ∈ I ? If such a P exists,
the µn are said to be consistent.

We aim to give conditions for the µn to be consistent; see Theorems 6 and 7.
Throughout, M denotes the (possibly empty) set

M = {P ∈ P : µn is a r.c.d. for P given An for all n ∈ I}.

2. Motivations

Reasonable conditions for consistency, if available, are of potential interest.
As a first (heuristic) example suppose that, for each n ∈ I, expert n declares

his/her opinions on a certain phenomenon conditionally on his/her information An.
This produces a collection of random probability measures µn : Ω → P such that
σ(µn) ⊂ An. In this framework, most literature focus on how to summarize the
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experts’ opinions µn. But a preliminary (and not escapable) question is whether
the µn are consistent. If they are not, some of the µn should be discarded.

Let us turn now to more formal examples.

2.1. Gibbs measures. The consistency problem of Section 1 is classical in sta-
tistical mechanics. The following is from [3]. Let X = (Xi : i ∈ S) be a process,
with state space (E, E), indexed by the countable set S. In order to assess the
probability distribution of X, to be called a Gibbs measure, we proceed as follows.

Let Ω = ES and B = σ(Xi : i ∈ S), where Xi : Ω → E is the i-th canonical
projection. For each finite Λ ⊂ S, we assign a random probability measure γΛ on
(EΛ, EΛ), measurable with respect to σ(Xi : i /∈ Λ). Precisely, γΛ(ω) is a probability
measure on (EΛ, EΛ) for each ω ∈ Ω and σ(γΛ) ⊂ σ(Xi : i /∈ Λ). Here, γΛ is
regarded as the conditional distribution of (Xi : i ∈ Λ) given (Xi : i /∈ Λ). Indeed,
for finite Λ, the Gibbsian formalism of equilibrium statistical mechanics provides a
simple and reasonable scheme for selecting γΛ. But of course a consistency problem
arises for the collection {γΛ : Λ finite}.

Precisely, fix any enumeration Λ1,Λ2, . . . of the finite parts of S and define

Zn = (Xi : i /∈ Λn), An = σ
(
Zn), µn(ω) = γΛn(ω)× δZn(ω).

Then, assessing {γΛ : Λ finite} makes sense if and only if the µn are consistent.

2.2. Bayesian inference. Loosely speaking, given two events A and B, to assess
Prob(A | B) is often easier than to evaluate Prob(A). This vague remark can be
useful in Bayesian statistics.

Let (X ,F) and (Θ,G) be measurable spaces and P = {Pθ : θ ∈ Θ} a (measur-
able) collection of probabilities on F . Fix a prior probability π on G and define
m(F ) =

∫
Pθ(F )π(dθ) for F ∈ F . A posterior for P and π is a (measurable)

collection Q = {Qx : x ∈ X} of probabilities on G satisfying∫
G

Pθ(F )π(dθ) =
∫
F

Qx(G)m(dx) for all F ∈ F and G ∈ G.

The standard Bayes procedure is to select a prior π and to calculate (or to
approximate) the posterior Q. To assess π is often very arduous. Sometimes, it is
more convenient to avoid the explicit choice of π, and to assign directly a collection
Q = {Qx : x ∈ X} of probabilities on G. Here, Qx describes our opinions on θ
when x is observed. In these cases, the standard Bayes scheme is reverted. One
first selects some collection Q of probabilities on G and then asks whether Q is
consistent with P, in the sense that Q is the posterior of P and some prior π.

Examples of this ”reverted” Bayes procedure are not unusual. Suppose Q is the
formal posterior of an improper prior, or else it is obtained by some empirical Bayes
method. Then, Q is assessed without explicitly selecting a (proper) prior π. Such
Q may look reasonable or not (there are indeed different opinions). But again, a
preliminary (and not escapable) question is whether Q is consistent with P.

The reverted Bayes procedure agrees with the subjective view of probability.
In fact, it has been developed in a coherence framework; see [1], [4], [6], [7] and
references therein. However, in a coherence framework, P and Q are requested to
be consistent under some finitely additive prior.

To investigate the reverted Bayes procedure, without using finitely additive proba-
bilities but relying on standard (Kolmogorovian) probability theory, we need exactly
the notion of consistency of Section 1.
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3. Results

3.1. Preliminaries. We begin with a couple of lemmas and a corollary.

Lemma 1. Let A = σ(∪n∈IAn). The µn are consistent if and only if

Q
(
µn(A) = IA

)
= 1 whenever n ∈ I and A ∈ An,(1)

EQ
{
µn(B)

}
= EQ

{
µ1(B)

}
whenever n ∈ I and B ∈ B,(2)

for some probability measure Q on A. In particular, if Q meets conditions (1)-(2)
and P (·) = EQ{µ1(·)}, then P ∈M and P = Q on ∪n∈IAn. Moreover, if each An
is countably generated, condition (1) can be written as Q(Ω0) = 1, where

Ω0 = {µn(A) = IA for all n ∈ I and A ∈ An}.

Proof. If the µn are consistent, it suffices to let Q = P |A for some P ∈ M. Con-
versely, suppose conditions (1)-(2) hold for some Q. Define P (B) = EQ

{
µ1(B)

}
for all B ∈ B. Fix n ∈ I, A ∈ An and B ∈ B. Then, µn(A ∩B) = IA µn(B) on the
set {µn(A) = IA}. Thus, conditions (1)-(2) yield

P (A ∩B) = EQ
{
µ1(A ∩B)

}
= EQ

{
µn(A ∩B) I{µn(A)=IA}

}
= EQ

{
IA µn(B)

}
.

For B = Ω, the above equation reduces to P (A) = Q(A). Hence, P = Q on An.
Since σ(µn) ⊂ An, it follows that EP

{
IA µn(B)

}
= EQ

{
IA µn(B)

}
= P (A ∩ B).

This proves that P ∈ M. Finally, suppose the An countably generated and take
countable fields Un such that An = σ(Un). Since Ω0 =

⋂
n∈I

⋂
A∈Un

{µn(A) = IA},
then Ω0 ∈ A and condition (1) amounts to Q(Ω0) = 1. �

In a sense, up to replacing Ω with Ω0, condition (1) can be assumed to be true
whenever the An are countably generated. In this case, in fact, the µn are certainly
not consistent if Ω0 = ∅. Otherwise, if Ω0 6= ∅, they are consistent if and only if
there is a probability Q on the trace σ-field A ∩ Ω0 satisfying condition (2).

Among other things, Lemma 1 answers our initial question, raised in Section 1.
Suppose in fact I = {1}. Since (2) is trivially true, M 6= ∅ if and only if condition
(1) holds. In turn, condition (1) is automatically true if Ω0 6= ∅ (just let Q = δω
for some ω ∈ Ω0, so that Lemma 1 implies µ1(ω) ∈ M). Furthermore, Ω0 6= ∅ is
equivalent to (1) if A1 is countably generated (but not in general).

From now on, whether or not the An are countably generated, it is assumed
Ω0 = Ω or equivalently

µn(ω)(A) = IA(ω) for all ω ∈ Ω, n ∈ I and A ∈ An.(3)

Lemma 2. Suppose condition (3) holds. The µn are consistent if and only if∫
µj(ω)(B)Qj(dω) =

∫ ∫
µn(x)(B)µj(ω)(dx)Qj(dω)(4)

for some j ∈ I, some probability Qj on Aj, and all n ∈ I and B ∈ B.

Proof. Suppose the µn are consistent. Fix P ∈ M and j ∈ I and let Qj = P |Aj .
Since P (dx) = µj(ω)(dx)Qj(dω), then∫ ∫

µn(x)(B)µj(ω)(dx)Qj(dω) =
∫
µn(x)(B)P (dx) = P (B) =

∫
µj(ω)(B)Qj(dω)
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for all n ∈ I and B ∈ B. Conversely, suppose condition (4) holds for some j ∈ I
and probability Qj on Aj . Define P (B) = EQj

{
µj(B)

}
for all B ∈ B. By (3),

P (A) = EQj

{
µj(A)

}
= EQj

{
IA
}

= Qj(A) for all A ∈ Aj .

Let n ∈ I and B ∈ B. Since P = Qj on Aj , condition (4) yields

EP
{
µn(B)

}
=
∫
µn(x)(B)P (dx) =

∫ ∫
µn(x)(B)µj(ω)(dx)Qj(dω)

=
∫
µj(ω)(B)Qj(dω) =

∫
µj(ω)(B)P (dω) = EP

{
µj(B)

}
.

An application of Lemma 1 (with Q = P |A) concludes the proof. �

Corollary 3. Suppose condition (3) holds. If there is ω0 ∈ Ω such that

µ1(ω0)(·) =
∫
µn(x)(·)µ1(ω0)(dx) for all n ∈ I,(5)

the µn are consistent. Moreover, condition (5) is equivalent to consistency of the
µn in case B is countably generated and An ⊃ A1 for all n ∈ I.

Proof. Just apply Lemma 2 with j = 1 and Qj = δω0 . Next, suppose B countably
generated, An ⊃ A1 for all n, and the µn are consistent. Fix P ∈ M and define
A = {ω : µ1(ω)(·) =

∫
µn(x)(·)µ1(ω)(dx) for all n ∈ I}. Then,

µ1(B) = EP
(
IB | A1

)
= EP

{
EP (IB | An) | A1

}
=
∫
µn(x)(B)µ1(·)(dx), P -a.s.,

for fixed B ∈ B and n ∈ I. Hence, B countably generated yields P (A) = 1.
�

When the µn are consistent, various questions on M arise. A natural one is
uniqueness of P ∈ M. Another question is existence (and possibly uniqueness) of
P ∈M such that P ∼ P0, where P0 is a given reference measure.

In general, to find non trivial conditions for uniqueness of P ∈ M looks very
arduous. For instance, P (· | A) ∈ M whenever P ∈ M, A ∈ ∩nAn and P (A) > 0.
However, uniqueness conditions are available in particular cases. One such case
is that of Gibbs measures; see Chapter 8 of [3]. Here, incidentally, uniqueness of
P ∈M is crucial as non uniqueness corresponds to phase transitions.

The second question is connected to equivalent martingale measures.

Proposition 4. Suppose condition (3) holds and ∪n∈IAn is a field. Fix a probabil-
ity P0 on A = σ(∪n∈IAn) and let F be the linear space generated by µn(B)−µ1(B)
for all n ∈ I and B ∈ B. Then, there is P ∈M such that P ∼ P0 on A if and only
if

(6) F − L+
∞ ∩ L+

∞ = {0}
where L∞ = L∞(Ω,A, P0) and the closure is in the weak* topology on L∞.

Proof. By a result of Kreps [5], condition (6) is equivalent to existence of a proba-
bility Q on A such that

(7) Q ∼ P0 and EQ(f) = 0 for all f ∈ F.
Thus, if P ∈M and P ∼ P0 on A, it suffices to note that Q = P |A meets condition
(7). Conversely, under (6), take Q satisfying (7) and define P (·) = EQ{µ1(·)}. In
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view of (3), Lemma 1 implies P ∈ M and P = Q on ∪n∈IAn. Since ∪n∈IAn is a
field, it follows that P = Q ∼ P0 on A. �

As an extreme example, if F is finite dimensional, existence of P ∈M such that
P ∼ P0 on A reduces to the no arbitrage condition

P0

(
f > 0

)
> 0 ⇐⇒ P0

(
f < 0

)
> 0 for each f ∈ F.

3.2. Main results. Some notation is needed. Let f : Ω → R be a bounded B-
measurable function. We write P (f) = EP (f) =

∫
f dP whenever P ∈ P. For any

map µ : Ω→ P, we denote µ(f) the function on Ω given by

µ(ω)(f) =
∫
f(x)µ(ω)(dx), ω ∈ Ω.

A B-determining class is a class S of bounded B-measurable functions f : Ω → R
such that, for arbitrary P1, P2 ∈ P,

P1 = P2 ⇐⇒ P1(f) = P2(f) for all f ∈ S.

If X is a topological space, C(X) denotes the set of real continuous functions,
B(X) the Borel σ-field, and B0(X) := σ

[
C(X)

]
the Baire σ-field. Say that X is

pseudocompact if each f ∈ C(X) is a bounded function. Clearly, a compact space
is pseudocompact. Our main tool is the following.

Lemma 5. Let L be a vector lattice of real functions on a set X. Assume 1 ∈ L
and, for any function f : X → [0,∞),

f ∧ n ∈ L for all n ≥ 1 =⇒ f ∈ L.

Then, each linear positive functional U on L admits the representation
U(f) =

∫
f dν, f ∈ L, for some (unique) measure ν on σ(L). Next, suppose

every f ∈ L is bounded and fix a linear subspace F ⊂ L. If sup f ≥ 0 for all f ∈ F ,
there is a probability measure P on σ(L) such that EP (f) = 0 for all f ∈ F .

Proof. The first part of the Lemma is Theorem 8 of [2]. We prove the second
part. Suppose f1 + λ1 = f2 + λ2 where f1, f2 ∈ F and λ1, λ2 ∈ R. Since F is a
linear space and sup f ≥ 0 for all f ∈ F , one obtains λ1 = λ2 and f1 = f2. Let
G be the linear space generated by F and the constants. Each g ∈ G admits the
representation g = f+λ, for some unique f ∈ F and λ ∈ R, and thus one can define
T (g) = T (f + λ) = λ. Such a T is a linear functional on G satisfying T = 0 on F
and T (g) ≤ sup g for all g ∈ G. Since L consists of bounded functions, f 7→ sup f
is a real sublinear functional on L. By Hahn Banach theorem, T can be extended
to a linear functional U on L satisfying U(f) ≤ sup f for all f ∈ L. Finally, as
U(1) = T (1) = 1, the first part of the Lemma yields U(f) = EP (f), f ∈ L, for
some probability P on σ(L). �

Note that, if X is a pseudocompact space and E a σ-field on X, one can take
L = C(X) or L = {f ∈ C(X) : f is E-measurable} in Lemma 5.

We are now in a position to state our main result.

Theorem 6. Suppose condition (3) holds. Fix j ∈ I and a B-determining class S.
The µn are consistent provided one of the following conditions (a)-(b) holds.
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(a) Ω is a pseudocompact space and B ⊂ B0(Ω). Further,

sup
ω∈Ω

h(ω) ≥ 0 and h ∈ C(Ω)

for each function h : Ω→ R in the linear space generated by

{µn(f)− µj(f) : n ∈ I, f ∈ S}.

(b) There are a pseudocompact space K, a σ-field K ⊂ B0(K) and a surjective
map φ : Ω→ K, such that Aj = φ−1(K). Further,

sup
ω∈Ω

h(ω) ≥ 0 and h is continuous in the topology induced by φ

for each function h : Ω→ R in the linear space generated by{∫
µn(x)(f)µj(·)(dx)− µj(·)(f) : n ∈ I, f ∈ S

}
.

(The topology induced by φ is φ−1(U) where U is the topology on K).

Proof. We first prove (b). Fix h ∈ H, where H is the linear space generated by∫
µn(x)(f)µj(·)(dx)− µj(·)(f) for all n ∈ I and f ∈ S.

Since φ is surjective and h measurable with respect to Aj = φ−1(K), there is a
unique function k : K → R such that h = k ◦ φ. (Just set k(a) = h(ωa) for
each a ∈ K, where ωa ∈ Ω satisfies φ(ωa) = a). Also k ∈ C(K), due to h is
continuous in the topology induced by φ, and supa∈K k(a) = supω∈Ω h(ω) ≥ 0.
Thus, F := {k : h = k ◦ φ for some h ∈ H} is a linear subspace of C(K) and
sup k ≥ 0 for all k ∈ F . By Lemma 5, applied with X = K and L = C(K), there is
a probability P on σ(L) = B0(K) such that EP (k) = 0 for all k ∈ F . Next, since
Aj = φ−1(K) with φ surjective, each A ∈ Aj can be written as A = {φ ∈ BA} for
some unique BA ∈ K ⊂ B0(K). Hence, it makes sense to define

Qj(A) = Qj(φ ∈ BA) = P (BA) for all A ∈ Aj .
Then, Qj is a probability on Aj and Qj ◦ φ−1 = P on K. Given h ∈ H,

EQj
(h) = EQj

(k ◦ φ) = EP (k) = 0

where k ∈ F and h = k ◦ φ. In particular,∫
µj(ω)(f)Qj(dω) =

∫ ∫
µn(x)(f)µj(ω)(dx)Qj(dω) for all n ∈ I and f ∈ S.

Since S is B-determining, an application of Lemma 2 concludes the proof of (b).
Finally, to prove (a), take F the linear space generated by µn(f)− µj(f) for all

n ∈ I and f ∈ S. Then, (a) follows precisely as (b), by applying Lemma 5 with
X = Ω and L = C(Ω) and by using Lemma 1 instead of Lemma 2.

�

In real problems, part (a) of Theorem 6 is much more convenient when Ω is
pseudocompact. For non pseudocompact Ω, however, part (b) may be useful as
well; see Examples 9 and 11.

The connections between Theorem 6 and Proposition 4 should also be stressed.
In a sense, the latter is the density-counterpart of the former. Apart from tech-
nicalities, in both cases, the main issue is existence of a probability measure with
null expectation on a suitable linear space of bounded random variables. This is
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achieved via Lemma 5, as regards Theorem 6, and by a result of Kreps [5] in case of
Proposition 4. Perhaps, Theorem 6 and Proposition 4 could be unified in a single
statement, or at least they could be given essentially parallel proofs.

Our last result, suggested by ideas in [3] (see Theorems (4.17) and (4.22)), is
tailor-made for Gibbs measures.

Theorem 7. Suppose condition (3) holds, Ω is a pseudocompact space, and

B = σ(V ) where V = {f ∈ C(Ω) : f is B-measurable}.

Suppose also that µn(f) ∈ C(Ω) for all n ∈ I and f ∈ V , and there is a subsequence
{nj} satisfying

(8) for each n ≥ 1, there is j0 ≥ 1 such that Anj ⊂ An for all j ≥ j0.

The µn are consistent if there is ω0 ∈ Ω such that

µn(ω0)(·) =
∫
µm(x)(·)µn(ω0)(dx) whenever An ⊂ Am.

Moreover, existence of such ω0 is equivalent to consistency of the µn in case B is
countably generated.

Proof. As Ω is pseudocompact, each f ∈ V is bounded. Since σ(V ) = B and V
is closed under multiplications, V is a B-determining class. By the latter fact and
condition (3), for every P ∈ P one obtains

P ∈M ⇐⇒ EP
{
µn(f)

}
= EP (f) for all n ∈ I and f ∈ V.

Let W = {f ∈ V : 0 ≤ f ≤ 1} and let [0, 1]W be equipped with the product
topology. Every P ∈ P can be regarded as a map P : W → [0, 1]. Since [0, 1]W

is compact, {µnj (ω0) : j ≥ 1} admits a converging subnet, say {µα(ω0) : α ∈ D}
where D is a suitable directed set. Each f ∈ V can be written as f = a + b g for
some a, b ∈ R and g ∈W . Accordingly, one can define

U(f) = lim
α
µα(ω0)(f) = a+ b lim

α
µα(ω0)(g) for all f ∈ V.

Such U is a linear positive functional on V with U(1) = 1. By Lemma 5, applied
with X = Ω and L = V , one obtains U(f) = EP0(f) for all f ∈ V and some
probability P0 on σ(V ) = B. Fix n ∈ I and f ∈ V . Since µn(f) ∈ V and Aα ⊂ An
for large α, then

EP0

{
µn(f)

}
= lim

α
µα(ω0)

{
µn(f)

}
= lim

α
µα(ω0)(f) = U(f) = EP0(f).

Hence, P0 ∈ M and the µn are consistent. Finally, suppose B countably generated
and define A = {ω : µn(ω)(·) =

∫
µm(x)(·)µn(ω)(dx) whenever An ⊂ Am}. Then,

P (A) = 1 for each P ∈M, by the same argument in the proof of Corollary 3.
�

Remark 8. In part (a) of Theorem 6, B ⊂ B0(Ω) can be replaced by B ⊂ B(Ω)
if each probability on B0(Ω) can be extended to a probability on B(Ω). This is
trivially true if Ω is metric (B0(Ω) = B(Ω) in this case) or if Ω is compact and
Hausdorff. The same comment holds for part (b) up to replacing (Ω,B) with (K,K).



8 PATRIZIA BERTI, EMANUELA DREASSI, AND PIETRO RIGO

4. Examples

Example 9. Let Ω = Rn \ {0} and B = B(Ω). Define

φ(ω) =
ω

‖ω‖
, K = {ω : ‖ω‖ = 1}, A1 = φ−1

(
B(K)

)
, S = {f ∈ C(Ω) : f bounded}.

Define also λ(ω) = maxi|ωi|
‖ω‖ , where ωi is the i-th coordinate of ω, and

µ1(ω)(B) = λ(ω)
∫ ∞

0

IB [r φ(ω)] exp (−λ(ω) r) dr for all B ∈ B.

Then, µ1(A) = IA if A ∈ A1. Also, if f ∈ S, it is not hard to see that µ1(f) is
continuous in the topology induced by φ. Thus, in principle, given any collection
{µn : n ∈ I, n > 1} of random probability measures, consistency of {µn : n ∈ I}
can be checked through part (b) of Theorem 6. To fix ideas, suppose A2 ⊂ B is a
sub-σ-field and µ2 : Ω→ P any map. Then, µ1 and µ2 are consistent whenever

σ(µ2) ⊂ A2, µ2(A) = IA for A ∈ A2, µ2(f) ∈ S for f ∈ S,

sup
ω

λ(ω)
∫ ∞

0

{
µ2[r φ(ω)](f)− f [r φ(ω)]

}
exp (−λ(ω) r) dr ≥ 0 for f ∈ S.

Example 10. (Gibbs measures). Let (Ω,B) = (ES , ES) where (E, E) is a mea-
surable space and S a countable set. As in Subsection 2.1, select a collection
γ = {γΛ : Λ ⊂ S, Λ finite} where each γΛ is a (suitably measurable) random proba-
bility measure on (EΛ, EΛ). Given γ, define An and µn as in Subsection 2.1. Then,
conditions (3) and (8) are automatically true. Therefore, by Theorem 7, the µn are
consistent provided

(i) E is a compact space and E = B0(E);
(ii) µn(f) ∈ C(Ω) for all n ≥ 1 and f ∈ V , where Ω is given the product

topology and V = {f ∈ C(Ω) : f is B-measurable};
(iii) There is ω0 ∈ Ω such that µn(ω0)(·) =

∫
µm(x)(·)µn(ω0)(dx) if An ⊂ Am.

However, the present example adds very little to what already known. In fact,
by arguments in [3] (see e.g. the Introduction to Chapter 4 and Theorem (4.17)),
the µn are consistent provided E is a compact metric space and γ a quasilocal
specification. Now, the quasilocality condition essentially amounts to (ii) and each
specification γ satisfies

(iv) µn(ω0)(·) =
∫
µm(x)(·)µn(ω0)(dx) if An ⊂ Am for all ω0 ∈ Ω;

we refer to [3] for details. Thus, the only contributions of this example are that
metrizzability of E can be dropped and (iv) can be weakened into (iii).

Example 11. (Bayesian inference). In the notation of Subsection 2.2, define

Ω = X ×Θ, B = F ⊗ G, A1 = φ−1
1 (F), A2 = φ−1

2 (G),

µ1(x, θ) = δx ×Qx, µ2(x, θ) = Pθ × δθ,

where φ1(x, θ) = x and φ2(x, θ) = θ for all (x, θ) ∈ X ×Θ. Condition (3) trivially
holds. Hence, consistency of Q with P can be checked by part (b) of Theorem 6
if at least one between (X ,F) and (Θ,G) is a pseudocompact space equipped with
the Baire σ-field. This fact, however, is basically known; see Corollary 3.1 of [6].

Example 12. (Predictive inference). For each n ∈ I := {1, 2, . . .}, a point xn
is observed in a measurable space (Xn,Fn). The problem is to make inference on
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(xn+1, xn+2, . . .), conditionally on (x1, . . . , xn), in a sequential framework. Define
Ω =

∏∞
i=1 Xi, B = ⊗∞i=1Fi and An = σ(X1, . . . , Xn), where Xi(ω) = xi for all

ω = (x1, . . . , xi, . . .) ∈ Ω. Also, for each n ≥ 1, select a measurable collection

Pn = {Pn(· | x1, . . . , xn) : (x1, . . . , xn) ∈ X1 × . . .×Xn}
of laws on ⊗i>nFi. Measurability means that (x1, . . . , xn) 7→ Pn

(
B | x1, . . . , xn

)
is

measurable for fixed B ∈ ⊗i>nFi. Each Pn(· | x1, . . . , xn) should be regarded as
the conditional distribution of (Xn+1, Xn+2, . . .) given that X1 = x1, . . . , Xn = xn.
Note that, even if a parameter space (Θ,G) is available, we do not assess any prior
on G. To test consistency of {Pn : n ≥ 1}, define

µn(ω) = δ(x1,...,xn) × Pn(· | x1, . . . , xn) where ω = (x1, . . . , xn, . . .) ∈ Ω.

Again, condition (3) is trivially true. Thus, by Corollary 3, the µn are consistent
provided condition (5) holds for some ω0 ∈ Ω. If the Fn are countably generated,
existence of ω0 satisfying (5) is necessary for consistency as well.

Acknowledgment: This note benefited from the helpful suggestions of two anony-
mous referees.
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