SOME REMARKS ON SKOROHOD REPRESENTATION THEOREM

Patrizia Berti, Luca Pratelli, Pietro Rigo

Universita' di Modena e Reggio-Emilia Accademia Navale di Livorno Universita' di Pavia

Modena, June 8, 2015

Notation and state of the art

Throughout,

(S,d) is a metric space

 ${\mathcal B}$ the Borel $\sigma\text{-field}$ on S

 $(\mu_n : n \ge 0)$ a sequence of probability measures on \mathcal{B}

Skorohod representation thm

If

 $\mu_n \rightarrow \mu_0$ weakly and μ_0 is separable,

there are a probability space (Ω, \mathcal{A}, P) and random variables $X_n : \Omega \to S$ such that

 $X_n \sim \mu_n$ for each $n \geq 0$ and $X_n \to X_0$ a.s.

Separability of the limit μ_0

It is consistent with ZFC that non-separable probabilities on \mathcal{B} do not exist. However, the existence of such probabilities cannot be currently excluded

Also, non-separable probabilities are quite usual on sub- σ -fields $\mathcal{G} \subset \mathcal{B}$. For instance, take

 $S = \{\text{real cadlag functions on } [0,1]\}, d = \text{uniform distance},$

 $\mathcal{G} = \text{Borel } \sigma$ -field under Skorohod topology, X real cadlag process,

and define

 $\mu(A) = \operatorname{Prob}(X \in A) \text{ for } A \in \mathcal{G}$

Then, μ is not separable unless all jump times of X have a discrete distribution

Say that $(\mu_n : n \ge 0)$ admits a **Skorohod representation** if

 $X_n \sim \mu_n$ for each $n \geq 0$ and $X_n \to X_0$ in probability

for some random variables X_n (defined on the same probability space)

If non-separable probabilities on \mathcal{B} exist, then:

- Separability of μ_0 cannot be dropped, even if a.s. convergence is weakened into convergence in probability. Indeed, it may be that $\mu_n \rightarrow \mu_0$ weakly, and yet (μ_n) does not have a Skorohod representation
- Convergence a.s. is too much. Indeed, it may be that (μ_n) admits a Skorohod representation, but no random variables Y_n satisfy $Y_n \sim \mu_n$ for each $n \ge 0$ and $Y_n \to Y_0$ a.s.

A conjecture

If (μ_n) has a Skorohod representation, then

 $\lim_n \sup_f |\mu_n(f) - \mu_0(f)| = 0$

where sup is over those $f: S \to [-1, 1]$ which are 1-Lipschitz. Also, when μ_0 is separable, the above condition amounts to $\mu_n \to \mu_0$ weakly. Thus, a **conjecture** is:

 (μ_n) has a Skorohod representation

if and only if

 $\lim_n D(\mu_n,\mu_0)=0$

where D is some distance (or discrepancy index) between probability measures. Two intriguing choices of D are

$$D(\mu,\nu) = L(\mu,\nu) = \sup_{f} |\mu(f) - \nu(f)|$$

$$D(\mu,\nu) = W(\mu,\nu) = \inf E\{1 \land d(X,Y)\}$$

where inf is over those pairs (X, Y) satisfying $X \sim \mu$ and $Y \sim \nu$.

To make W well defined, we assume

 $\sigma(d)\subset \mathcal{B}\otimes \mathcal{B}$

Note also that

 $L \leq 2 W$

We dont know whether the conjecture is true with D = L or D = W, but we mention two attempts to prove it

First attempt: D=W

In a sense, W is the natural choice of D. However, W could not be a distance (we dont know whether the triangle inequality holds)

If (μ_n) has a Skorohod representation, then

 $\lim_n W(\mu_n,\mu_0)=0$

Conversely, under the above condition, there is a sequence $(\gamma_n : n \ge 1)$ of laws on $\mathcal{B} \otimes \mathcal{B}$ such that

 γ_n has marginals μ_0 and μ_n

 $\lim_{n} \gamma_n\{(x,y) : d(x,y) > \epsilon\} = 0 \text{ for all } \epsilon > 0$

Thus, it would be enough a sequence $(X_n : n \ge 0)$ of random variables (defined on the same probability space) such that

 $(X_0, X_n) \sim \gamma_n$ for each $n \ge 1$

Unfortunately, such sequence $(X_n : n \ge 0)$ fails to exist for an arbitrary choice of $(\gamma_n : n \ge 1)$. However, things can be adjusted in a finitely additive setting. (This is not so unusual, incidentally). In fact,

Thm: If $\lim_{n \to \infty} W(\mu_n, \mu_0) = 0$, there are a finitely additive probability space (Ω, \mathcal{A}, P) and random variables $X_n : \Omega \to S$ such that

 $X_n
ightarrow X_0$ in probability, $X_0 \sim \mu_0$ and

 $E_P\{f(X_n)\} = \mu_n(f)$ for each $n \ge 1$ and each bounded continuous f

Second attempt: Skorohod thm under a stronger distance

Suppose now that (S,d) is nice, say S Polish under d, so that there are no problems with Skorohod thm under d. However, we want

 $X_n \sim \mu_n$ for each $n \ge 0$ and $\rho(X_n, X_0) \to 0$ in probability

where ρ is another distance on S, typically stronger than d

The motivating example is:

$$S = \{ \text{real cadlag functions on } [0, 1] \},\$$

 $d = Skorohod distance, \rho = uniform distance$

In real problems, one has cadlag processes Y_n , whose distributions are assessed on the Skorohod Borel sets. Indeed, such distributions may even fail to exist on the uniform Borel sets. Yet, one could look for some processes X_n satisfying

 $X_n \sim Y_n$ for each $n \ge 0$ and $|\sup_t |X_n(t) - X_0(t)| \to 0$ in probability

As a **further example**, for $x, y \in S$, define

$$\rho(x,y) = \sup_{f \in F} |f(x) - f(y)|$$

where F is a collection of real Borel functions on S. Then, ρ is a distance under mild conditions on F, and we could aim to random variables X_n such that

 $X_n \sim \mu_n$ for each $n \ge 0$ and

 $|\sup_{f\in F} |f(X_n) - f(X_0)| \to 0$ in probability

Anyhow, the following result is available

Thm: Suppose $\rho : S \times S \to R$ is lower-semi-continuous with respect to *d*. There are random variables X_n such that

 $X_n \sim \mu_n$ for each $n \geq 0$ and $\rho(X_n, X_0) \rightarrow 0$ in probability

if and only if

 $\lim_{n} \sup_{f} |\mu_n(f) - \mu_0(f)| = 0$

where sup is over those $f:S\to [-1,1]$ which are $\mathcal B\text{-measurable}$ and 1-Lipschitz with respect to ρ

Remark: It is (essentially) enough that ρ is Borel measurable with respect to d. Also, instead of (S,d) Polish, it is sufficient (S,d) separable and μ_n perfect for each n > 0