CLASSICAL VERSUS COHERENT CONDITIONAL PROBABILITIES

Pietro Rigo University of Pavia

The Mathematics of Subjective Probability Milano, september 3-5, 2018

Classical (Kolmogorovian) conditional probabilities

Let (Ω, \mathcal{A}, P) be a probability space and $\mathcal{G} \subset \mathcal{A}$ a sub- σ -field.

A regular conditional distribution (rcd) is a map Q on $\Omega \times \mathcal{A}$ such that

(i) $Q(\omega, \cdot)$ is a probability on \mathcal{A} for $\omega \in \Omega$

(ii) $Q(\cdot, A)$ is \mathcal{G} -measurable for $A \in \mathcal{A}$

(iii) $P(A \cap B) = \int_B Q(\omega, A) P(d\omega)$ for $A \in \mathcal{A}$ and $B \in \mathcal{G}$

An rcd can fail to exist. However, it exists and is a.s. unique under mild conditions (A countably generated and P perfect)

In the standard framework, thus, conditioning is with respect to a σ -field \mathcal{G} and not with respect to an event H.

What does it mean ?

According to the usual interpretation: For each $B \in \mathcal{G}$, we now whether B is true or false. This naive interpretation is dangerous.

Example 1 Let $X = \{X_t : t \ge 0\}$ be a process adapted to a filtration $\mathcal{F} = \{\mathcal{F}_t : t \ge 0\}$. Suppose

P(X = x) = 0 for each path x and

 $\{A \in \mathcal{A} : P(A) = 0\} \subset \mathcal{F}_0.$

In this case,

 $\{X = x\} \in \mathcal{F}_0$ for each path x.

But then we can stop. We already know the X-path at time 0 !

Example 2 (Borel-Kolmogorov paradox) Suppose

$$\{X = x\} = \{Y = y\}$$

for some random variables X and Y. Let Q_X and Q_Y be rcd's given $\sigma(X)$ and $\sigma(Y)$. Then,

$$P(\cdot | X = x) = Q_X(\omega, \cdot)$$
 and $P(\cdot | Y = y) = Q_Y(\omega, \cdot)$

where $\omega \in \Omega$ meets $X(\omega) = x$ and $Y(\omega) = y$. Hence it may be that

$$P(\cdot | X = x) \neq P(\cdot | Y = y)$$
 even if $\{X = x\} = \{Y = y\}.$

Example 3 For the naive interpretation to make sense, Q should be **proper**, i.e.

 $Q(\omega, \cdot) = \delta_{\omega}$ on \mathcal{G} for almost all ω .

But Q needs not be proper. In fact, properness of Q essentially amounts to \mathcal{G} countably generated

Conditional 0-1 laws

An rcd Q is 0-1 on ${\mathcal G}$ if

 $Q(\omega, \cdot) \in \{0, 1\}$ on \mathcal{G} for almost all ω

Why to focus on such a 0-1 law ?

- It is a (natural) consequence of properness
- It is equivalent to

 \mathcal{A} independent \mathcal{G} , under $Q(\omega, \cdot)$, for almost all ω

- It is basic for integral representation of invariant measures
- It is not granted. It typically fails if $\{A \in \mathcal{A} : P(A) = 0\} \subset \mathcal{G}$

Theorem 1

Let $\mathcal{G}_n \subset \mathcal{A}$ be a sub- σ -field and Q_n an rcd given \mathcal{G}_n .

The rcd ${\it Q}$ is 0-1 on ${\it G}$ if

- The "big" $\sigma\text{-field}\ \mathcal{A}$ is countably generated
- Q_n is 0-1 on \mathcal{G}_n for each n
- $E(\mathbf{1}_A | \mathcal{G}_n) \to E(\mathbf{1}_A | \mathcal{G})$ a.s. for $A \in \mathcal{A}$ and $\mathcal{G} \subset \limsup_n \mathcal{G}_n$

Note that, by martingale convergence, the last condition is automatically true if the sequence \mathcal{G}_n is monotonic

Examples

Let S be a Polish space, $\mathcal{B} = Borel(S)$, and

 $(\Omega, \mathcal{A}) = (S^{\infty}, \mathcal{B}^{\infty})$

Theorem 1 applies to

Tail σ -field: $\mathcal{G} = \cap_n \sigma(X_n, X_{n+1}, \ldots)$

where X_n is a sequence of real random variables

Symmetric σ -field:

 $\mathcal{G} = \{B \in \mathcal{B}^{\infty} : B = f^{-1}(B) \text{ for each finite permutation } f\}$

In particular,

Theorem 1 \Rightarrow de Finetti's theorem

Open problem: Theorem 1 does not apply to the **shift-invariant** σ -field:

$$\mathcal{G} = \{ B \in \mathcal{B}^{\infty} : B = s^{-1}(B) \}$$

where $s(x_1, x_2, ...) = (x_2, x_3, ...)$ is the shift

Disintegrability

The notion of disintegrability makes sense in both the classical and the coherent frameworks

Let $\Pi \subset \mathcal{A}$ be a partition of Ω . *P* is disintegrable on Π if

 $P(A) = \int_{\prod} P(A|H) P^*(dH)$

for each $A \in \mathcal{A}$, where

- $P(\cdot|H)$ is a finitely additive probability (f.a.p.) on \mathcal{A} such that P(H|H) = 1
- P^* is a f.a.p. on the power set of Π

Let \mathcal{A}_0 denote the σ -field on Ω generated by the maps

 $\omega \mapsto P[A|H(\omega)]$ for all $A \in \mathcal{A}$

• If $\mathcal{A}_0 \subset \mathcal{A}$, one trivially obtains

 $P(A) = \int_{\Pi} P(A|H) P^*(dH) = P^*\{H \in \Pi : H \subset A\}$

for all $A \in A_0$. Thus, P^* essentially agrees with $P|A_0$ and, with a slight abuse of notation, one can write

 $P(A) = \int_{\Box} P(A|H) P(dH).$

The reason for involving P^* is that, in general, \mathcal{A}_0 needs not be included in \mathcal{A}

• The pair $(P^*, P(\cdot|\cdot))$ is said to be a disintegration for P. It is called a σ -additive disintegration if P^* is σ -additive on \mathcal{A}_0 and $P(\cdot|H)$ is σ -additive on \mathcal{A} for each $H \in \Pi$

Theorem 2

Given a partition Π of $\Omega,$ let

$$G = \{(x, y) \in \Omega \times \Omega : x \sim y\}.$$

Then, P admits a σ -additive disintegration on Π whenever

- (Ω, \mathcal{A}) is nice (e.g. a standard space)
- G is a Borel subset of $\Omega\times\Omega$

Remark: G is actually a Borel set if Π is the partition in the atoms of the tail, or the symmetric, or the shift invariant σ -fields

Remark: The condition on G can be relaxed. Indeed, it suffices G coanalytic, or else G analytic and every member of Π a G_{δ} or an F_{σ} set.

Open problem: If $\Omega = [0, 1]$, \mathcal{A} the Borel σ -field and P the Lebesgue measure, is P disintegrable on *any* partition $\Pi \subset \mathcal{A}$?

Note: The answer is actually yes under suitable axioms of set theory. Under the Martin axiom, for instance, the Lebesgue measure on [0, 1] admits a σ -additive disintegration on every Borel partition

Coherent (de Finettian) conditional probabilities

A different notion of conditioning is as follows.

Let

 $P(\cdot|\cdot) : \mathcal{A} \times \mathcal{G} \to R.$

For all $n \geq 1$, $c_1, \ldots, c_n \in R$, $A_1, \ldots, A_n \in \mathcal{A}$ and $B_1, \ldots, B_n \in \mathcal{G} \setminus \emptyset$, define

$$G(\omega) = \sum_{i=1}^{n} c_i \mathbf{1}_{B_i}(\omega) \{ \mathbf{1}_{A_i}(\omega) - P(A_i | B_i) \}.$$

Then, $P(\cdot|\cdot)$ is coherent if

 $\sup_{\omega \in B} G(\omega) \ge 0$ where $B = \bigcup_{i=1}^{n} B_i$

Such a definition has both merits and drawbacks. In particular, contrary to the classical case:

- The conditioning is now with respect to events,
- P(B|B) = 1,
- For fixed B, $P(\cdot|B)$ is "only" a f.a.p.,
- Disintegrability on Π is not granted, where Π is the partition of Ω in the atoms of ${\cal G}$

Bayesian inference

 $(\mathcal{X}, \mathcal{E})$ sample space, (Θ, \mathcal{F}) parameter space,

 $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ statistical model,

A **prior** is a f.a.p. π on the power set of Θ ,

A **posterior** for π is any collection $\mathcal{Q} = \{Q_x : x \in \mathcal{X}\}$ such that

- Q_x is a f.a.p. on \mathcal{F} for each $x \in \mathcal{X}$
- $Q_x(d\theta) m(dx) = P_\theta(dx) \pi(d\theta)$ on $\mathcal{E} \otimes \mathcal{F}$

for some f.a.p. m on the power set of \mathcal{X}

The posterior Q is σ -additive if

• Q_x is σ -additive for each $x \in \mathcal{X}$ and m is σ -additive on the σ -field generated by the map $x \mapsto Q_x$

Theorem 3

Fix a measurable function T on \mathcal{X} (a statistic) such that

 $P_{\theta}(T=t) = 0$ for all θ and t

Under mild conditions, for any prior π , there is a posterior Q for π such that

 $T(x) = T(y) \Rightarrow Q_x = Q_y$

Moreover, Q is σ -additive if the prior π is σ -additive on \mathcal{F}

Interpretation:

In a subjective framework, the condition

$$T(x) = T(y) \Rightarrow Q_x = Q_y$$

means that T is **sufficient** for Q. Suppose you start with a prior π , describing your feelings on θ , and a statistic T, describing how different samples affect your inference on θ . Theorem 3 states that, whatever π and T (provided $P_{\theta}(T = t) = 0$) there is a posterior Q for π which makes T sufficient. In addition, Q can be taken to be σ -additive if the prior π is σ -additive on \mathcal{F}

Point estimation

Suppose $\Theta \subset R$ and $d : \mathcal{X} \to \Theta$ is an estimate of θ .

Theorem 4:

Under mild conditions, if the prior π is null on compacta, there is a posterior Q for π such that $\int \theta^2 Q_x(d\theta) < \infty$ and

 $E_{\mathcal{Q}}(\theta|x) = \int \theta Q_x(d\theta) = d(x)$

Interpretation: The above condition means that d is optimal under square error loss. Suppose you start with a measurable map $d: \mathcal{X} \to \Theta$, to be regarded as your estimate of θ . Theorem 4 states that, if the prior π vanishes on compacta, there is a posterior \mathcal{Q} for π which makes d optimal

Remark: A prior π vanishing on compacta may look strange. In fact, it is exactly what happens with most improper priors

Warning: Abusing terminology, in Theorem 4, I said "a posterior Q for π ". Instead, the equation

 $Q_x(d\theta) m(dx) = P_\theta(dx) \pi(d\theta)$

holds on $\mathcal{E} \times \mathcal{F}$ (i.e., on the measurable rectangles) but not necessarily on the product σ -field $\mathcal{E} \otimes \mathcal{F} = \sigma(\mathcal{E} \times \mathcal{F})$