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Classical (Kolmogorovian) conditional probabilities

Let (Ω,A, P ) be a probability space and G ⊂ A a sub-σ-field.

A regular conditional distribution (rcd) is a map Q on Ω×A such

that

(i) Q(ω, ·) is a probability on A for ω ∈ Ω

(ii) Q(·, A) is G-measurable for A ∈ A

(iii) P (A ∩B) =
∫
BQ(ω,A)P (dω) for A ∈ A and B ∈ G

An rcd can fail to exist. However, it exists and is a.s. unique under

mild conditions (A countably generated and P perfect)
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In the standard framework, thus, conditioning is with respect to a
σ-field G and not with respect to an event H.

What does it mean ?

According to the usual interpretation: For each B ∈ G, we now
whether B is true or false. This naive interpretation is dangerous.

Example 1 Let X = {Xt : t ≥ 0} be a process adapted to a filtration
F = {Ft : t ≥ 0}. Suppose

P (X = x) = 0 for each path x and

{A ∈ A : P (A) = 0} ⊂ F0.

In this case,

{X = x} ∈ F0 for each path x.

But then we can stop. We already know the X-path at time 0 !
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Example 2 (Borel-Kolmogorov paradox) Suppose

{X = x} = {Y = y}

for some random variables X and Y . Let QX and QY be rcd’s given
σ(X) and σ(Y ). Then,

P (· |X = x) = QX(ω, ·) and P (· |Y = y) = QY (ω, ·)

where ω ∈ Ω meets X(ω) = x and Y (ω) = y. Hence it may be that

P (· |X = x) 6= P (· |Y = y) even if {X = x} = {Y = y}.

Example 3 For the naive interpretation to make sense, Q should be
proper, i.e.

Q(ω, ·) = δω on G for almost all ω .

But Q needs not be proper. In fact, properness of Q essentially
amounts to G countably generated
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Conditional 0-1 laws

An rcd Q is 0-1 on G if

Q(ω, ·) ∈ {0,1} on G for almost all ω

Why to focus on such a 0-1 law ?

• It is a (natural) consequence of properness

• It is equivalent to

A independent G, under Q(ω, ·), for almost all ω

• It is basic for integral representation of invariant measures

• It is not granted. It typically fails if {A ∈ A : P (A) = 0} ⊂ G

4



Theorem 1

Let Gn ⊂ A be a sub-σ-field and Qn an rcd given Gn.

The rcd Q is 0-1 on G if

• The ”big” σ-field A is countably generated

• Qn is 0-1 on Gn for each n

• E(1A|Gn)→ E(1A|G) a.s. for A ∈ A and G ⊂ lim supn Gn

Note that, by martingale convergence, the last condition is automat-

ically true if the sequence Gn is monotonic
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Examples

Let S be a Polish space, B = Borel(S), and

(Ω,A) = (S∞, B∞)

Theorem 1 applies to

Tail σ-field: G = ∩nσ(Xn, Xn+1, . . .)

where Xn is a sequence of real random variables

Symmetric σ-field:

G = {B ∈ B∞ : B = f−1(B) for each finite permutation f}
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In particular,

Theorem 1 ⇒ de Finetti’s theorem

Open problem: Theorem 1 does not apply to the shift-invariant

σ-field:

G = {B ∈ B∞ : B = s−1(B)}

where s(x1, x2, . . .) = (x2, x3, . . .) is the shift
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Disintegrability

The notion of disintegrability makes sense in both the classical and

the coherent frameworks

Let Π ⊂ A be a partition of Ω. P is disintegrable on Π if

P (A) =
∫
Π P (A|H)P ∗(dH)

for each A ∈ A, where

• P (·|H) is a finitely additive probability (f.a.p.) on A such that

P (H|H) = 1

• P ∗ is a f.a.p. on the power set of Π
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Let A0 denote the σ-field on Ω generated by the maps

ω 7→ P [A|H(ω)] for all A ∈ A

• If A0 ⊂ A, one trivially obtains

P (A) =
∫
Π P (A|H)P ∗(dH) = P ∗{H ∈ Π : H ⊂ A}

for all A ∈ A0. Thus, P ∗ essentially agrees with P |A0 and, with a
slight abuse of notation, one can write

P (A) =
∫
Π P (A|H)P (dH).

The reason for involving P ∗ is that, in general, A0 needs not be
included in A

• The pair (P ∗, P (·|·)) is said to be a disintegration for P . It is
called a σ-additive disintegration if P ∗ is σ-additive on A0 and
P (·|H) is σ-additive on A for each H ∈ Π
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Theorem 2

Given a partition Π of Ω, let

G = {(x, y) ∈ Ω×Ω : x ∼ y}.

Then, P admits a σ-additive disintegration on Π whenever

• (Ω,A) is nice (e.g. a standard space)

• G is a Borel subset of Ω×Ω

Remark: G is actually a Borel set if Π is the partition in the atoms

of the tail, or the symmetric, or the shift invariant σ-fields
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Remark: The condition on G can be relaxed. Indeed, it suffices G

coanalytic, or else G analytic and every member of Π a Gδ or an Fσ

set.

Open problem: If Ω = [0,1], A the Borel σ-field and P the Lebesgue

measure, is P disintegrable on any partition Π ⊂ A ?

Note: The answer is actually yes under suitable axioms of set theory.

Under the Martin axiom, for instance, the Lebesgue measure on [0,1]

admits a σ-additive disintegration on every Borel partition



Coherent (de Finettian) conditional probabilities

A different notion of conditioning is as follows.

Let

P (·|·) : A× G → R.

For all n ≥ 1, c1, . . . , cn ∈ R, A1, . . . , An ∈ A and B1, . . . , Bn ∈ G \ ∅,
define

G(ω) =
∑n
i=1 ci 1Bi(ω) {1Ai(ω)− P (Ai|Bi)}.

Then, P (·|·) is coherent if

supω∈BG(ω) ≥ 0 where B = ∪ni=1Bi
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Such a definition has both merits and drawbacks. In particular, con-

trary to the classical case:

• The conditioning is now with respect to events,

• P (B|B) = 1,

• For fixed B, P (·|B) is ”only” a f.a.p.,

• Disintegrability on Π is not granted, where Π is the partition of

Ω in the atoms of G
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Bayesian inference

(X , E) sample space, (Θ,F) parameter space,

P = {Pθ : θ ∈ Θ} statistical model,

A prior is a f.a.p. π on the power set of Θ,

A posterior for π is any collection Q = {Qx : x ∈ X} such that

• Qx is a f.a.p. on F for each x ∈ X

• Qx(dθ)m(dx) = Pθ(dx)π(dθ) on E ⊗ F

for some f.a.p. m on the power set of X
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The posterior Q is σ-additive if

• Qx is σ-additive for each x ∈ X and m is σ-additive on the σ-field

generated by the map x 7→ Qx

Theorem 3

Fix a measurable function T on X (a statistic) such that

Pθ(T = t) = 0 for all θ and t

Under mild conditions, for any prior π, there is a posterior Q for π

such that

T (x) = T (y) ⇒ Qx = Qy

Moreover, Q is σ-additive if the prior π is σ-additive on F
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Interpretation:

In a subjective framework, the condition

T (x) = T (y) ⇒ Qx = Qy

means that T is sufficient for Q. Suppose you start with a prior

π, describing your feelings on θ, and a statistic T , describing how

different samples affect your inference on θ. Theorem 3 states that,

whatever π and T (provided Pθ(T = t) = 0) there is a posterior Q
for π which makes T sufficient. In addition, Q can be taken to be

σ-additive if the prior π is σ-additive on F
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Point estimation

Suppose Θ ⊂ R and d : X → Θ is an estimate of θ.

Theorem 4:

Under mild conditions, if the prior π is null on compacta, there is a

posterior Q for π such that
∫
θ2Qx(dθ) <∞ and

EQ(θ|x) =
∫
θ Qx(dθ) = d(x)

Interpretation: The above condition means that d is optimal under

square error loss. Suppose you start with a measurable map d : X →
Θ, to be regarded as your estimate of θ. Theorem 4 states that, if

the prior π vanishes on compacta, there is a posterior Q for π which

makes d optimal
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Remark: A prior π vanishing on compacta may look strange. In fact,

it is exactly what happens with most improper priors

Warning: Abusing terminology, in Theorem 4, I said ”a posterior Q
for π”. Instead, the equation

Qx(dθ)m(dx) = Pθ(dx)π(dθ)

holds on E×F (i.e., on the measurable rectangles) but not necessarily

on the product σ-field E ⊗ F = σ(E × F)
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