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Abstract. In a Bayesian framework, to make predictions on a sequence

X1, X2, . . . of random observations, the inferrer needs to assign the predictive

distributions σn(·) = P
(
Xn+1 ∈ · | X1, . . . , Xn

)
. In this paper, we propose to

assign σn directly, without passing through the usual prior/posterior scheme.

One main advantage is that no prior probability is to be assessed. The data

sequence (Xn) is requested to be conditionally identically distributed (c.i.d.)
in the sense of [4]. To realize this programme, a class Σ of predictive distribu-

tions is introduced and investigated. Such a Σ is rich enough to model various

real situations and (Xn) is actually c.i.d. if σn belongs to Σ. Further, when a
new observation Xn+1 becomes available, σn+1 can be obtained by a simple

recursive update of σn. If µ is the a.s. weak limit of σn, conditions for µ to

be a.s. discrete are provided as well.

1. Introduction

The object of this paper is Bayesian predictive inference for a sequence of random
observations. Let (Xn : n ≥ 1) be a sequence of random variables with values in a
set S. Assuming that (X1, . . . , Xn) = x, for some n ≥ 1 and x ∈ Sn, the problem
is to predict Xn+1 based on the observed data x. In a Bayesian framework, this
means to assess the predictive distribution, say

σn(x)(B) = P
(
Xn+1 ∈ B | (X1, . . . , Xn) = x

)
for all measurable B ⊂ S.

To address this problem, the Xn can be taken to be the coordinate random
variables on S∞. Accordingly, in the sequel, we let

Xn(s1, . . . , sn, . . .) = sn

for each n ≥ 1 and each (s1, . . . , sn, . . .) ∈ S∞. Also, we assume that S is a Borel
subset of a Polish space.

Let B denote the Borel σ-field on S and P the collection of all probability mea-
sures on B. Following Dubins and Savage, a strategy is a sequence

σ = (σ0, σ1, . . .)

such that

• σ0 ∈ P and σn = {σn(x) : x ∈ Sn} is a collection of elements of P;

• The map x 7→ σn(x)(B) is Bn-measurable for fixed n ≥ 1 and B ∈ B.
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Here, σ0 should be regarded as the marginal distribution of X1 and σn(x) as the
conditional distribution of Xn+1 given that (X1, . . . , Xn) = x.

According to the Ionescu-Tulcea theorem, for any strategy σ, there is a unique
probability measure P on (S∞,B∞) satisfying

P (X1 ∈ ·) = σ0 and P
(
Xn+1 ∈ · | (X1, . . . , Xn) = x

)
= σn(x)

for all n ≥ 1 and P -almost all x ∈ Sn.
Such a P is denoted Pσ in the sequel.

1.1. Standard and non-standard approach for exchangeable data. The se-
quence (Xn) is usually requested to be exchangeable. In that case, the standard
approach to Bayesian prediction problems is quite involved. First, a prior probabil-
ity on P, say π, is to be selected. Then, the posterior πn(x) of π is to be evaluated.
And finally the predictive distribution is

σn(x)(B) =

∫
P
p(B)πn(x)(dp) for all B ∈ B.

To assess a prior π is not an easy task. In addition, once π is selected, to evaluate
the posterior πn(x) is quite hard as well. Frequently, it happens that πn(x) can not
be written in closed form but only approximated numerically.

A non-standard approach (henceforth, NSA) is to assign σn directly, without
passing through π and πn. In other terms, instead of choosing π and then evalu-
ating πn and σn, the inferrer just selects his/her predictive distribution σn. This
procedure makes sense because of the Ionescu-Tulcea theorem. See [3], [6], [9], [11],
[12], [14], [17], [18]; see also [15], [22], [23], [25] and references therein.

NSA is in line with de Finetti, Dubins and Savage, among others. Recently,
NSA has been used to obtain a fast online Bayesian prediction via copulas; see
[17]. In addition, NSA is quite implicit in most of the machine learning literature.
From our point of view, NSA has essentially two merits. Firstly, it requires to place
probabilities on observable facts only. The value of the next observation Xn+1 is
actually observable, while π and πn (being probabilities on P) do not deal with
observable facts. Secondly, NSA is much more direct than the standard approach.
In fact, if the main goal is to predict future observations, why to select the prior π
explicitly ? Rather than wondering about π, it looks reasonable to reflect on how
the next observation Xn+1 is affected by (X1, . . . , Xn).

However, if (Xn) is requested to be exchangeable, NSA has a gap. Given an
arbitrary strategy σ, the Ionescu-Tulcea theorem does not grant exchangeability of
(Xn) under Pσ. Therefore, for NSA to apply, one should first characterize those
strategies σ which make (Xn) exchangeable under Pσ. A nice characterization is
[14, Theorem 3.1]. However, the conditions on σ for making (Xn) exchangeable are
quite hard to be checked in real problems. This is the main reason for NSA has not
developed so far.

1.2. Conditionally identically distributed data. Trivially, a way to bypass the
gap mentioned in the above paragraph is to weaken the exchangeability assumption.
One option is to request (Xn) to be conditionally identically distributed (c.i.d.),
namely

P
(
Xk ∈ · | Fn

)
= P

(
Xn+1 ∈ · | Fn

)
a.s. for all k > n ≥ 0

where Fn = σ(X1, . . . , Xn) and F0 is the trivial σ-field.
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Roughly speaking, the above condition means that, at each time n ≥ 0, the future
observations (Xk : k > n) are identically distributed given the past Fn. Such a
condition is actually weaker than exchangeability. Indeed, (Xn) is exchangeable if
and only if is stationary and c.i.d.

We refer to Subsection 2.1 for more on c.i.d. sequences. Here, we just mention
three reasons for taking c.i.d. data into account.

• It is not hard to characterize the strategies σ which make (Xn) c.i.d. under
Pσ; see Theorem 2. Therefore, unlike the exchangeable case, NSA can be
easily implemented.
• The asymptotic theory of c.i.d. sequences is basically the same as that of

exchangeable sequences.
• A number of meaningful strategies can not be used if (Xn) is requested to be

exchangeable, but are available if (Xn) is only asked to be c.i.d. Examples
are in Sections 4-6.

1.3. Content of this paper. We aim to develop NSA for c.i.d. data. To this end,
we introduce and investigate a class Σ of strategies. Such a Σ is rich enough to model
various real situations and (Xn) is c.i.d. under Pσ for each σ ∈ Σ. Furthermore,
when a new observation Xn+1 becomes available, σn+1 can be obtained by a simple
recursive update of σn.

To introduce Σ, some further notation is needed. In the sequel, a kernel on (S,B)
is a collection

α = {α(x) : x ∈ S}

such that α(x) ∈ P for each x ∈ S and the map x 7→ α(x)(B) is measurable for
fixed B ∈ B. If x = (x1, . . . , xn) ∈ Sn and y ∈ S, we write (x, y) to denote

(x, y) = (x1, . . . , xn, y).

In addition, for any strategy σ, we let

S0 = {∅}, σ0(∅) = σ0, σ1(∅, y) = σ1(y).

Then, each σ ∈ Σ can be described as follows. Fix σ0 ∈ P and a sequence of
measurable functions fn : Sn+2 → [0, 1] satisfying

fn(x, y, z) = fn(x, z, y) for all n ≥ 0, x ∈ Sn and (y, z) ∈ S2.

In addition, fix a kernel α on (S,B) such that

(a) σ0 is a stationary distribution for α, namely,

σ0(B) =

∫
α(x)(B)σ0(dx) for all B ∈ B;

(b) There is a set A ∈ B such that σ0(A) = 1 and

α(x)(B) =

∫
α(z)(B)α(x)(dz) for all x ∈ A and B ∈ B.

Conditions (a)-(b) are not so unusual. For instance, they are satisfied whenever
α is a regular conditional distribution for σ0 given any sub-σ-field of B; see Lemma
5. In particular, conditions (a)-(b) trivially hold if

α(x) = δx for all x ∈ S
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where δx denotes the point mass at x.
Anyhow, given σ0, α and (fn : n ≥ 0), a strategy σ can be obtained via the

recursive equation

σn+1(x, y)(B) =

∫
α(z)(B) fn(x, y, z)σn(x)(dz) + α(y)(B)

{
1−

∫
fn(x, y, z)σn(x)(dz)

}
for all n ≥ 0, B ∈ B, x ∈ Sn and y ∈ S. We define Σ to be the collection of all
such strategies σ.

The simplest example corresponds to

fn(x, y, z) = qn(x),

where qn : Sn → [0, 1] is any measurable map (with q0 constant). In that case,
σn+1(x, y) can be written explicitly (and not only in recursive form) as

σn+1(x, y) = σ0

n∏
i=0

qi + α(y)(1− qn) +

n∑
i=1

α(xi) (1− qi−1)

n∏
j=i

qj

for all (x, y) ∈ An+1, where A is the set involved in condition (b) and qi a shorthand
notation to denote

qi = qi(x1, . . . , xi).

Specifying fn and α suitably, many other examples are possible. For instance,
letting α(x) = δx, various well known strategies are actually members of Σ, includ-
ing the predictive distributions of Dirichlet sequences, species sampling sequences
and generalized Polya urns. In addition, to our knowledge, Σ includes some mean-
ingful strategies not proposed so far.

We also note that various strategies σ ∈ Σ are such that σn(x) is diffuse for
all n ≥ 0 and x ∈ Sn. (A probability measure is said to be diffuse if vanishes
on singletons). The possibility of working with diffuse strategies is useful in real
problems.

Our main results are Theorems 3-4, which state that (Xn) is c.i.d. under Pσ for
each σ ∈ Σ, and Theorems 15-17 dealing with the asymptotics of σn. We spend a
few words on Theorem 15.

Let X∗1 , X
∗
2 , . . . denote the (finite or infinite) sequence of distinct values corre-

sponding to the observations X1, X2, . . . If (Xn) is c.i.d. under Pσ, where σ is any
strategy (possibly not belonging to Σ), there is a random probability measure µ on
(S,B) such that

σn(B)
a.s.→ µ(B) for every fixed B ∈ B

where ”a.s.” stands for ”Pσ-a.s.”; see Subsection 2.1. Theorem 15 states that

µ
a.s.
=
∑
k

Wk δX∗
k
,

for some random weights Wk ≥ 0 such that
∑
kWk = 1, if and only if

lim
n
Pσ
(
Xn 6= Xi for each i < n

)
= 0.

Furthermore, Wk admits the representation

Wk
a.s.
= lim

n

1

n

n∑
i=1

1{Xi=X∗
k}.
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Applying Theorem 15 to σ ∈ Σ, it is not hard to give conditions on fn and
α implying that µ is a.s. discrete. Conditions for X∗1 , X

∗
2 , . . . to be i.i.d. and

independent of the weights W1,W2, . . . are given as well.
It is worth noting that Theorem 15 holds true for any strategy σ which makes

(Xn) c.i.d. Hence, Theorem 15 extends to all c.i.d. sequences a known fact con-
cerning the exchangeable case; see e.g. [21].

In addition to the results quoted above, another main contribution of this paper
are the examples included in Sections 4-6. In our intentions, these examples should
support that Σ is rich enough to cover a wide range of problems.

2. Preliminaries

2.1. Conditional identity in distribution. C.i.d. sequences have been intro-
duced in [4] and [20] and then investigated in various papers; see e.g. [1], [2], [6],
[7], [8], [9], [10], [16]. Here, we just recall a few basic facts.

Let (Gn : n ≥ 0) be a filtration and (Yn : n ≥ 1) a sequence of S-valued random
variables. Then, (Yn) is c.i.d. with respect to (Gn) if is adapted to (Gn) and

P
(
Yk ∈ · | Gn

)
= P

(
Yn+1 ∈ · | Gn

)
a.s. for all k > n ≥ 0.

When (Gn) is the canonical filtration of (Yn), i.e., G0 is the trivial σ-field and
Gn = σ(Y1, . . . , Yn), the filtration is not mentioned at all and (Yn) is just called
c.i.d. By a result in [20], (Yn) is exchangeable if and only if is stationary and c.i.d.

Let (Yn) be c.i.d. with respect to (Gn). Under various respects, the asymptotic
behavior of (Yn) is similar to that of an exchangeable sequence. We support this
claim by two facts.

First, (Yn) is asymptotically exchangeable, in the sense that

(Yn, Yn+1, . . .)→ (Z1, Z2, . . .) in distribution, as n→∞,

where (Z1, Z2, . . .) is an exchangeable sequence.
To state the second fact, let

µn =
1

n

n∑
i=1

δYi

be the empirical measure. Then, there is a random probability measure µ on (S,B)
satisfying

µn(B)
a.s.−→ µ(B) for every fixed B ∈ B.

As a consequence, for fixed n ≥ 0 and B ∈ B, one obtains

E
{
µ(B) | Gn

}
= lim

m
E
{
µm(B) | Gn

}
= lim

m

1

m

m∑
i=n+1

P
(
Yi ∈ B | Gn

)
= P

(
Yn+1 ∈ B | Gn

)
a.s.

Thus, the predictive distribution P
(
Yn+1 ∈ · | Gn

)
can be written as E

{
µ(·) | Gn

}
,

where µ is the a.s. weak limit of the empirical measures µn. In particular, the
martingale convergence theorem implies

P
(
Yn+1 ∈ B | Gn

)
= E

{
µ(B) | Gn

} a.s.−→ µ(B) for every fixed B ∈ B.



6 PATRIZIA BERTI, EMANUELA DREASSI, LUCA PRATELLI, AND PIETRO RIGO

2.2. Stationarity, reversibility and characterizations. We first recall some
definitions. Let τ ∈ P and α = {α(x) : x ∈ S} a kernel on (S,B). Then:

• τ is a stationary distribution for α if∫
α(x)(B) τ(dx) = τ(B) for all B ∈ B;

• α is reversible with respect to τ if∫
A

α(x)(B) τ(dx) =

∫
B

α(x)(A) τ(dx) for all A, B ∈ B;

• α is a regular conditional distribution for τ given G, where G ⊂ B is a
sub-σ-field, if x 7→ α(x)(B) is G-measurable and∫

A

α(x)(B) τ(dx) = τ(A ∩B) for all A ∈ G and B ∈ B.

Note that reversibility implies stationarity (just take A = S) but not conversely.
In addition, τ is a stationary distribution for α provided α is a regular conditional
distribution for τ (take A = S again).

We next characterize exchangeable and c.i.d. sequences in terms of strategies.

Theorem 1. ([14, Theorem 3.1]). For any strategy σ, (Xn) is exchangeable
under Pσ if and only if

(i) The kernel {σn+1(x, y) : y ∈ S} is reversible with respect to σn(x) for all
n ≥ 0 and Pσ-almost all x ∈ Sn;

(ii) σn(x) = σn(f(x)) for all n ≥ 2, all permutations f on Sn and Pσ-almost
all x ∈ Sn.

To deal with the c.i.d. case, it suffices to drop condition (ii) and to replace
”reversible” with ”stationary” in condition (i).

Theorem 2. ([7, Theorem 3.1]). For any strategy σ, (Xn) is c.i.d. under Pσ if
and only if

(i*) The kernel {σn+1(x, y) : y ∈ S} has stationary distribution σn(x) for all
n ≥ 0 and Pσ-almost all x ∈ Sn.

An obvious consequence of Theorem 2 is that (Xn) is c.i.d. under Pσ whenever
{σn+1(x, y) : y ∈ S} has stationary distribution σn(x) for all n ≥ 0 and all x ∈ Cn,
where C ∈ B is any set with σ0(C) = 1.

Theorem 2 also suggests how to assess a c.i.d. sequence stepwise. First, select
σ0 ∈ P, the marginal distribution of X1. Then, choose a kernel {σ1(y) : y ∈ S}
with stationary distribution σ0, where σ1(y) is the conditional distribution of X2

given X1 = y. Next, for each x ∈ S, select a kernel {σ2(x, y) : y ∈ S} with
stationary distribution σ1(x), where σ2(x, y) is the conditional distribution of X3

given X1 = x and X2 = y. And so on. In other terms, for getting a c.i.d. sequence,
it is enough to assign at each step a kernel with a given stationary distribution.

3. A sequential updating rule

Our starting point is the following simple fact.
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Theorem 3. Let τ ∈ P and f : S2 → [0, 1] a measurable symmetric function. Fix
a kernel α = {α(x) : x ∈ S} on (S,B) and define

β(x)(B) =

∫
α(z)(B) f(x, z) τ(dz) + α(x)(B)

∫
(1− f(x, z)) τ(dz)

for all x ∈ S and B ∈ B. Then, β = {β(x) : x ∈ S} is a kernel on (S,B). Moreover:

• If τ is stationary for α, then τ is stationary for β;

• If α(x) = δx for all x ∈ S, then β is reversible with respect to τ .

Proof. Let φ(x) =
∫
f(x, z) τ(dz). If φ(x) = 0, then β(x) is clearly a probability

measure on B. If φ(x) ∈ (0, 1],

β(x)(B) = φ(x)

∫
α(z)(B) f(x, z) τ(dz)

φ(x)
+ (1− φ(x))α(x)(B).

Hence, β(x) ∈ P for all x ∈ S. Further, for fixed B ∈ B, the map x 7→ β(x)(B) is
measurable because of Fubini’s theorem. Thus, β is a kernel on (S,B).

Next, suppose τ stationary for α. Since f(x, z) = f(z, x), one obtains∫
β(x)(B) τ(dx) =

∫ ∫
α(z)(B) f(x, z) τ(dz) τ(dx) +

+

∫
α(x)(B) τ(dx)−

∫
α(x)(B)φ(x) τ(dx)

=

∫
α(z)(B)

∫
f(z, x) τ(dx) τ(dz) + τ(B)−

∫
α(x)(B)φ(x) τ(dx)

=

∫
α(z)(B)φ(z) τ(dz) + τ(B)−

∫
α(x)(B)φ(x) τ(dx) = τ(B)

for all B ∈ B. Thus, τ is stationary for β.
Finally, if α(x) = δx, then∫

A

β(x)(B) τ(dx) =

∫ ∫
1A(x) 1B(z) f(x, z) τ(dz) τ(dx) +

+

∫
1A(x) 1B(x) τ(dx)−

∫
1A(x) 1B(x)φ(x) τ(dx)

for all A, B ∈ B. It follows that∫
A

β(x)(B) τ(dx)−
∫
B

β(x)(A) τ(dx)

=

∫ ∫
1A(x) 1B(z) f(x, z) τ(dz) τ(dx)−

∫ ∫
1B(x) 1A(z) f(x, z) τ(dz) τ(dx)

=

∫
1B(z)

∫
1A(x) f(z, x) τ(dx) τ(dz)−

∫
1B(x)

∫
1A(z) f(x, z) τ(dz) τ(dx) = 0.

Thus, β is reversible with respect to τ . �

Heuristically, in the special case α(x) = δx, the idea underlying β reminds the
Metropolis’ algorithm. Starting from a state x, one first selects a new state z
according to τ , and then goes to z or remains in x with probabilities f(x, z) and
1 − f(x, z), respectively. This naive idea can be adapted to an arbitrary kernel α
as follows. First, select z according to τ . Then, the new state y is drawn from α(z)
with probability f(x, z), or from α(x) with probability 1− f(x, z). From our point
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of view, however, what is meaningful is that this idea provides a simple updating
procedure.

As in Subsection 1.3, fix σ0 ∈ P, a kernel α on (S,B) satisfying conditions
(a)-(b), and a sequence of measurable functions fn : Sn+2 → [0, 1] such that

fn(x, y, z) = fn(x, z, y) for all n ≥ 0, x ∈ Sn and (y, z) ∈ S2.

Then, define the strategy σ according to

σn+1(x, y)(B) =

∫
α(z)(B) fn(x, y, z)σn(x)(dz) + α(y)(B)

{
1−

∫
fn(x, y, z)σn(x)(dz)

}
for all n ≥ 0, x ∈ Sn, y ∈ S and B ∈ B.

Note that, when a new observation y ∈ S becomes available, σn+1(x, y) is just a
recursive update of σn(x).

Let Σ denote the collection of all the strategies σ obtained in this way, for σ0, α
and (fn : n ≥ 0) varying. Each σ ∈ Σ makes (Xn) c.i.d.

Theorem 4. Let σ ∈ Σ. Then, (Xn) is c.i.d. under Pσ. Moreover, if α(x) = δx
for all x ∈ S, then

Pσ
[
(Xn+1, Xn+2) ∈ · | Fn

]
= Pσ

[
(Xn+2, Xn+1) ∈ · | Fn

]
a.s.(1)

for all n ≥ 0, where F0 is the trivial σ-field and Fn = σ(X1, . . . , Xn).

Proof. We show that there is C ∈ B such that σ0(C) = 1 and {σn+1(x, y) : y ∈ S}
has stationary distribution σn(x) for all n ≥ 0 and all x ∈ Cn. By the remark after
Theorem 2, this implies that (Xn) is c.i.d. under Pσ.

Let A ∈ B be the set involved in condition (b). Define

A0 = A and An+1 =
{
x ∈ An : α(x)(An) = 1

}
for all n ≥ 0.

If σ0(An) = 1 for some n ≥ 0, condition (a) yields∫
α(x)(An)σ0(dx) = σ0(An) = 1,

which in turn implies σ0(An+1) = 1. Since σ0(A0) = σ0(A) = 1, by induction, one
obtains σ0(An) = 1 for each n ≥ 0. Let

C =
∞⋂
n=0

An.

If x ∈ C, then α(x)(An) = 1 for all n, so that α(x)(C) = 1. Also, C ⊂ A and
σ0(C) = 1. To summarize, C satisfies

σ0(C) = 1, α(x)(C) = 1 and

∫
α(z)(B)α(x)(dz) = α(x)(B) for all x ∈ C and B ∈ B.

Next, if σn(x)(C) = 1 for some n ≥ 0 and all x ∈ Cn, then

σn+1(x, y)(C) =

∫
C

α(z)(C) fn(x, y, z)σn(x)(dz) + α(y)(C)
{

1−
∫
fn(x, y, z)σn(x)(dz)

}
=

∫
C

fn(x, y, z)σn(x)(dz) + 1−
∫
fn(x, y, z)σn(x)(dz) = 1 for all (x, y) ∈ Cn+1.

Arguing by induction again, σ0(C) = 1 implies

σn(x)(C) = 1 for all n ≥ 0 and all x ∈ Cn.
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Finally, fix (x, y) ∈ Cn+1. Since σn(x)(C) = 1,∫
α(v)(B)σn+1(x, y)(dv) =

∫
C

∫
α(v)(B)α(z)(dv) fn(x, y, z)σn(x)(dz) +

+
{

1−
∫
fn(x, y, z)σn(x)(dz)

} ∫
α(v)(B)α(y)(dv)

=

∫
C

α(z)(B) fn(x, y, z)σn(x)(dz) +
{

1−
∫
fn(x, y, z)σn(x)(dz)

}
α(y)(B)

= σn+1(x, y)(B) for all B ∈ B.

Therefore, σn+1(x, y) is a stationary distribution for the kernel α. By Theorem 3,
σn+1(x, y) is still stationary for the kernel {σn+2(x, y, z) : z ∈ S}.

This concludes the proof that (Xn) is c.i.d. under Pσ. To conclude the proof
of the whole theorem, suppose α(x) = δx for all x ∈ S. Then, condition (1)
is a direct consequence of Theorem 3 and the following well known fact. Let X
and Z be S-valued random variables, τ the probability distribution of X, and
γ = {γ(x) : x ∈ S} a regular version of the conditional distribution of Z given X.
Then,

(X,Z) ∼ (Z,X) ⇔ γ is reversible with respect to τ.

�

Condition (1) is stronger than the c.i.d. condition. As an example, (1) implies

(Xi, Xj) ∼ (Xj , Xi) for all i 6= j

and this may fail for an arbitrary c.i.d. sequence; see e.g. [7, Example 3]. Therefore,
when α(x) = δx, the updating procedure of this section yields a special type of c.i.d.
sequences.

Finally, we turn to conditions (a)-(b). The next result is helpful to find a kernel
α satisfying (a)-(b).

Lemma 5. If α = {α(x) : x ∈ S} is a regular conditional distribution for σ0 given
a sub-σ-field G ⊂ B, then α satisfies conditions (a)-(b).

Proof. Condition (a) (that is, σ0 stationary for α) has been already noted in Sub-
section 2.2. In turn, the proof of (b) essentially agrees with that of [5, Lemma 10],
but we report it for completeness. Let G0 be the σ-field over S generated by the
maps z 7→ α(z)(B) for all B ∈ B. Then, α is also a regular conditional distribu-
tion for σ0 given G0. In addition, since B is countably generated, G0 is countably
generated as well. Hence, there is A ∈ B such that σ0(A) = 1 and

α(x)(B) = δx(B) for all x ∈ A and B ∈ G0.

Fix x ∈ A and B ∈ B. Since the map z 7→ α(z)(B) is G0-measurable, one obtains∫
α(z)(B)α(x)(dz) =

∫
α(z)(B) δx(dz) = α(x)(B).

�
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4. Examples: Discrete strategies

From now on, we fix σ0 ∈ P and a sequence

qn : Sn → [0, 1], n ≥ 0,

of measurable functions (with q0 constant).
Moreover, in this section, we let

α(x) = δx for all x ∈ S and

fn(x, y, z) = qn(x) for all x ∈ Sn and (y, z) ∈ S2.

With this choice of fn, the calculation of σn(x) is straightforward. Writing

x = (x1, . . . , xn) and qi = qi(x1, . . . , xi),

one obtains

σn(x) = σ0

n−1∏
i=0

qi + δxn(1− qn−1) +

n−1∑
i=1

δxi(1− qi−1)

n−1∏
j=i

qj .(2)

The strategy (2) is connected to Beta-GOS processes, as meant in [1], and is
analogous to formula (10) of [17]. Further, if σ0 is diffuse, the qi have the fol-
lowing interpretation. Let x = (x1, . . . , xn). Since σ0

(
{x1, . . . , xn}

)
= 0 and

δxi
(
{x1, . . . , xn}

)
= 1 for i ≤ n, it follows that

Pσ

(
Xn+1 = Xi for some i ≤ n | (X1, . . . , Xn) = x

)
= σn(x)

(
{x1, . . . , xn}

)
= (1− qn−1) +

n−1∑
i=1

(1− qi−1)

n−1∏
j=i

qj = 1−
n−1∏
i=0

qi.

More importantly, specifying the qi suitably, a lot of meaningful predictive dis-
tributions can be obtained from (2).

Example 6. (Vague a priori knowledge). If qi = q for all i ≥ 0, where q ∈ [0, 1]
is any constant, formula (2) reduces to

σn(x) = qnσ0 + (1− q)
n∑
i=1

qn−iδxi ;

see also [2]. Roughly speaking, this choice of σ makes sense when the inferrer has
only vague opinions on the dependence structure of the data, and yet he/she feels
that the weight of the i-th observation xi should be a decreasing function of n− i.
Note that σn(x) is not invariant under permutations of x, so that (Xn) fails to be
exchangeable under Pσ. Yet, (Xn) is c.i.d. under Pσ because of Theorem 4.

Example 7. (Dirichlet sequences). If qi = i+c
i+1+c for some constant c > 0,

formula (2) yields

σn(x) =
c σ0 +

∑n
i=1 δxi

n+ c
.

These are the predictive distributions of a Dirichlet sequence. In this case, (Xn) is
exchangeable under Pσ.
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Example 8. (Latent variables). Suppose qi of the form

qi = qi(x1, . . . , xi; λ1, . . . , λi)

where λ1, . . . , λi take values in a Borel set T of some Polish space.
To cover this situation, fix a Borel probability measure σ∗0 on S × T such that

σ∗0
(
B × T ) = σ0(B) for all B ∈ B,

and define

σ∗n

[
(x1, λ1), . . . , (xn, λn)

]
= σ∗0

n−1∏
i=0

qi + δ(xn,λn)(1− qn−1) +

n−1∑
i=1

δ(xi,λi)(1− qi−1)

n−1∏
j=i

qj .

Marginalizing σ∗n, one obtains

σ∗n

[
(x1, λ1), . . . , (xn, λn)

](
B × T

)
= σn(x)(B) for all B ∈ B

where σn(x) is given by (2). Also, up to replacing S with S×T , Theorem 4 applies
to the strategy σ∗. More precisely, let Pσ∗ be the probability measure on the Borel
sets of (S×T )∞ induced by σ∗ and let Λn be the n-th coordinate random variable
on T∞. Then, the sequence (Xn,Λn) is c.i.d. under Pσ∗ . In other terms, (Xn) is
c.i.d. (under Pσ∗) even if qi depends on the latent variables λ1, . . . , λi.

A last remark, motivated by next Example 9, is the following. The above argu-
ment still applies if λ1 is a known constant and

qi = qi(x1, . . . , xi; λ1, . . . , λi, λi+1).

In fact, since λ1 is constant, q0 = q0(λ1) is constant as well. Thus, it suffices to
replace (xn, λn) with (xn, λn+1), namely, to define σ∗n as

σ∗n

[
(x1, λ2), . . . , (xn, λn+1)

]
= σ∗0

n−1∏
i=0

qi + δ(xn,λn+1)(1− qn−1) +

n−1∑
i=1

δ(xi,λi+1)(1− qi−1)

n−1∏
j=i

qj .

Arguing as above, the sequence (Xn,Λn+1) is c.i.d. under Pσ∗ and

σ∗n

[
(x1, λ2), . . . , (xn, λn+1)

](
B × T

)
= σn(x)(B) for all B ∈ B

where σn(x) is given by (2).

Example 9. (Generalized Polya urns). An urn contains a > 0 white balls and
b > 0 black balls. At each time n ≥ 1, a ball is drawn and then replaced together
with Dn more balls of the same color. In the classical scheme, Dn = d for all n
where d ≥ 0 is a fixed constant. Here, instead, (Dn) is any sequence of non-negative
random variables.

Let Yn be the indicator of the event {white ball at time n}. Following [4, Example
1.3], it is natural to let

P
(
Yn+1 = 1 | Y1, . . . , Yn, D1, . . . , Dn

)
=

a+
∑n
i=1DiYi

a+ b+
∑n
i=1Di

a.s.

Assuming D1 constant, this is a special case of Example 8. Take in fact S =
{0, 1}, T = [0,∞), and σ∗0 a Borel probability on S × T such that

σ∗0

(
{1} × [0,∞)

)
=

a

a+ b
.
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Then, it suffices to let

qi(x1, . . . , xi;λ1, . . . , λi, λi+1) =
a+ b+

∑i
j=1 λj

a+ b+
∑i+1
j=1 λj

for all i ≥ 0.

5. Examples: Diffuse strategies

In this section, we still let fn(x, y, z) = qn(x) but α = {α(x) : x ∈ S} is any
kernel on (S,B) satisfying conditions (a)-(b). We denote by σ ∈ Σ the strategy
induced by σ0, α and (qn : n ≥ 0).

Two remarks are in order.
First, σ is diffuse whenever σ0 and α are diffuse. (Here, a collection of probability

measures is said to be diffuse if each of its members is diffuse). Having a diffuse
strategy may be useful in applications. Instead, the strategy (2), as well as many
other popular strategies, has a discrete part in correspondence with the observed
data.

Second, σ can be written as

σn(x) = σ0

n−1∏
i=0

qi + α(xn) (1− qn−1) +

n−1∑
i=1

α(xi) (1− qi−1)

n−1∏
j=i

qj

for all n ≥ 1 and x ∈ An, where qi = qi(x1, . . . , xi) and A is the set involved in
condition (b). For instance, if x ∈ An, the strategies of Examples 6 and 7 turn into

σn(x) = qnσ0 + (1− q)
n∑
i=1

qn−iα(xi) and σn(x) =
c σ0 +

∑n
i=1 α(xi)

n+ c
,

respectively.
For another example, take a countable class G of measurable maps g : S → S

and say that σ0 is G-invariant if

σ0(g−1B) = σ0(B) for all g ∈ G and B ∈ B.

In that case, the inferrer may wish that his/her predictions are G-invariant as well.

Example 10. (Invariant strategies). Suppose σ0 is G-invariant and

G =
{
B ∈ B : g−1B = B for all g ∈ G

}
.

Since S is nice (it is in fact a Borel subset of a Polish space) there is a regular
conditional distribution α = {α(x) : x ∈ S} for σ0 given G. Because of Lemma 5,
α satisfies conditions (a)-(b).

By standard arguments, since G is countable and B countably generated, it can
be shown that α(x) is G-invariant for σ0-almost all x ∈ S. Thus, the set A in
condition (b) can be taken such that α(x) is G-invariant for every x ∈ A. In turn,
this implies that σn(x) is G-invariant for all n ≥ 0 and x ∈ An.

As a simple example, let S = R and σ0 symmetric. Take A = S, G = {g} where
g(x) = −x, and

α(x) =
δx + δ−x

2
.
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Then,

σn(x) = σ0

n−1∏
i=0

qi +
1

2

(
δxn (1− qn−1) +

n−1∑
i=1

δxi (1− qi−1)

n−1∏
j=i

qj

)
+

+
1

2

(
δ−xn (1− qn−1) +

n−1∑
i=1

δ−xi (1− qi−1)

n−1∏
j=i

qj

)
is a symmetric strategy which makes (Xn) c.i.d.

As a further example, let S = T d, where T is a Borel subset of a Polish space,
and assume σ0 exchangeable. Take A = S, G the set of all permutations of S, and

α(x) =

∑
g∈G δg(x)

d!
.

Then, σ is an exchangeable strategy which makes (Xn) c.i.d.

The strategy λ obtained in the next example does not belong to Σ. However, λ
comes from essentially the same idea of Σ.

Example 11. (A strategy dominated by σ0). For each n ≥ 1 and x ∈ S, take
a countable partition Hn of S and denote by Hn(x) the unique H ∈ Hn such that
x ∈ H. We assume

Hn ⊂ B, Hn+1 finer than Hn and σ0
(
H) > 0 for all H ∈ Hn.

To avoid trivialities, we also assume qn > 0 for all n ≥ 0.
For every n ≥ 1 and τ ∈ P, a kernel αn = {αn(x) : x ∈ S} which admits τ as a

stationary distribution is

αn(x) =
∑
H∈Hn

1H(x) τ(· | H) = τ
(
· | Hn(x)

)
.

(Here, we tacitly assumed τ(H) > 0 for all H ∈ Hn, but this assumption can be
easily removed).

Let us define a strategy λ as follows. Let λ0 = σ0 and

λ1(x) = q0 σ0 + (1− q0)σ0
(
· | H1(x)

)
for all x ∈ S.

By Theorem 3, λ0 is a stationary distribution for the kernel {λ1(x) : x ∈ S}. Next,
for every (x, y) ∈ S2, define

λ2(x, y) = q1(x)λ1(x) + (1− q1(x))λ1(x)
(
· | H2(y)

)
.

The kernel {λ2(x, y) : y ∈ S} admits λ1(x) as a stationary distribution. Moreover,
since H2 is finer than H1, one obtains

λ1(x)
(
B | H2(y)

)
= σ0

(
B | H2(y)

)
for all B ∈ B.

Therefore, λ2(x, y) can be written as

λ2(x, y) = q0 q1(x)σ0 + (1− q0) q1(x)σ0
(
· | H1(x)

)
+ (1− q1(x))σ0

(
· | H2(y)

)
.

In general, for every n ≥ 1 and x = (x1, . . . , xn) ∈ Sn, define

λn(x) = σ0

n−1∏
i=0

qi + σ0
(
· | Hn(xn)

)
(1− qn−1) +

n−1∑
i=1

σ0
(
· | Hi(xi)

)
(1− qi−1)

n−1∏
j=i

qj
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where qi stands for qi(x1, . . . , xi). Arguing as above, it is easily seen that, for fixed
x ∈ Sn, the kernel {λn+1(x, y) : y ∈ S} admits λn(x) as a stationary distribution.
Hence, Theorem 2 implies that (Xn) is c.i.d. under Pλ.

The strategy λ is reminiscent of (2). In fact, λ agrees with (2) up to replacing
δxi with σ0

(
· | Hi(xi)

)
. Furthermore, the partitions Hn can be chosen such that

{x} =
⋂
n

Hn(x) for each x ∈ S.

Unlike (2), however, λn(x) is absolutely continuous with respect to σ0 for all n ≥ 1
and x ∈ Sn. In particular, λn(x) is diffuse if σ0 is diffuse.

6. Examples: Other choices of fn

In the examples given so far, fn(x, y, z) = qn(x) does not depend on (y, z). This
is not so in the present section. We denote by σ ∈ Σ the strategy induced by σ0, α
and (fn : n ≥ 0) and we let α(x) = δx for all x ∈ S.

Example 12. (Separating sets). For each n ≥ 0 and x ∈ Sn, take a set An(x) ∈
B and define

fn(x, y, z) = 1An(x)(y) 1An(x)(z) + 1Acn(x)(y) 1Acn(x)(z)

where Acn(x) is the complement of An(x). Thus, fn(x, y, z) = 0 or fn(x, y, z) = 1
according to whether y and z can, or can not, be separated by the set An(x). A
direct calculation shows that

σn+1(x, y) = σn(x)
(
An(x)

)
σn(x)

(
· | An(x)

)
+ σn(x)

(
Acn(x)

)
δy if y ∈ An(x),

where the first summand on the right is meant to be 0 in case σn(x)
(
An(x)

)
= 0.

Similarly,

σn+1(x, y) = σn(x)
(
Acn(x)

)
σn(x)

(
· | Acn(x)

)
+ σn(x)

(
An(x)

)
δy if y /∈ An(x).

According to the heuristic interpretation of Section 3, such a strategy σ can be
described as follows. At time n + 1, after observing (x, y) ∈ Sn+1, the inferrer
selects a new state z according to σn(x). Then, he/she remains in y or goes to z
according to whether y and z are, or are not, separated by An(x). This could be
reasonable, for instance, if the inferrer has some reason to request

σn+1(x, y)
(
An(x)

)
= 1An(x)(y).

Example 13. (Decreasing functions of the distance). In the spirit of Example
12, let

fn(x, y, z) = gn
[
x, d(y, z)

]
where d is the distance on S and gn : Sn × [0,∞) → [0, 1] a measurable function
such that

gn(x, t) < gn(x, s) < gn(x, 0) = 1 for all x ∈ Sn and 0 < s < t.

Then, σ can be attached an interpretation similar to Example 12. Again, after
observing (x, y) ∈ Sn+1, the inferrer selects a new state z according to σn(x).
Then, he/she goes to z with probability fn(x, y, z) or remains in y with probability
1 − fn(x, y, z). Moreover, the chance of reaching z starting from y is a decreasing
function of d(y, z) and is 1 if and only if y = z.
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Example 14. (Ehrenfest-like models). Theorem 3 still works if the assumption
f ≤ 1 is weakened. Precisely, define β according to Theorem 3 with α(x) = δx and
f a measurable symmetric function such that 0 ≤ f ≤ c, where c is any constant.
Then, β is a reversible kernel provided β(x)(B) ≥ 0 for all x ∈ S and B ∈ B. Note
that the latter condition is trivially true if c ≤ 1.

As an example, take S = {0, 1} and fn a non-negative function on Sn+2 such
that fn(x, y, z) = fn(x, z, y). If

fn(x, 0, 1)− 1 ≤ fn(x, 0, 1)σn(x)({1}) ≤ 1 for all n ≥ 0 and x ∈ Sn,(3)

then σn(x)(B) ≥ 0 for all n, x and B. Hence, (Xn) is c.i.d. under Pσ whenever
condition (3) holds. On the other hand, if fn(x, 0, 1) > 1, then

σn+1(x, y)({y}) = σn(x)({y}) + (1− fn(x, 0, 1))σn(x)({1− y}) < σn(x)({y}).
In other terms, observing y at step n+ 1 makes the probability of y at step n+ 2
strictly less than the probability of y at step n+ 1. This may look counterintuitive
but makes sense in some problems.

Think of two water-containers C0 and C1. At each time n ≥ 1, one of C0 and C1

is selected and a part of its water is transferred into the other. The total quantity
of water, say w, remains constant in time. The data are the selected containers.
To model this situation, it is quite natural to let S = {0, 1} and

λn(x)({y}) =
quantity of water in Cy after observing x

w

for all n ≥ 0, x ∈ Sn and y ∈ S. Such a strategy λ belongs to Σ under some
assumptions on the quantity of water moving from one container to the other.
For instance suppose that, after observing (x, y) for some x ∈ Sn and y ∈ S, the
quantity of water transferred from Cy into C1−y is

λn(x)({1− y})2 λn(x)({y})w.

Then, λ ∈ Σ. In fact, λ is induced by λ0, {δx : x ∈ S} and

fn(x, 0, 1) = 1 + λn(x)({0})λn(x)({1}).

7. Discreteness of the limit of σn

This section is split into two subsections. The first exhibits a sequence of ran-
dom variables whose predictive distributions are given by (2). The second, which
includes the main results, deals with the limit of σn.

7.1. An explicit construction. Let σ be the strategy (2). To better understand
the meaning of σ, it may be useful to build a sequence (Yn) of random variables
satisfying Y1 ∼ σ0 and

P
(
Yn+1 ∈ · | Y1, . . . , Yn

)
= σn(Y1, . . . , Yn)(4)

= σ0

n−1∏
i=0

qi + δYn (1− qn−1) +

n−1∑
i=1

δYi (1− qi−1)

n−1∏
j=i

qj a.s. for n ≥ 1

where qi = qi(Y1, . . . , Yi). One such (Yn) is provided by [9].
Let (Tn : n ≥ 1) and (Ui,j : j ≥ 1, 0 ≤ i < j) be random variables such that:

(j) (Tn) is an i.i.d. sequence of S-valued random variables with T1 ∼ σ0;
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(jj) (Ui,j) is an i.i.d. array of [0, 1]-valued random variables with U0,1 uniformly
distributed on [0, 1];

(jjj) (Tn) is independent of (Ui,j).

Using (Tn) and (Ui,j) as building blocks, the sequence (Yn) is obtained as follows.
Let Y1 = T1. Then, define Y2 = T2 or Y2 = Y1 according to whether U0,1 ≤ q0

or U0,1 > q0. At step n+ 1, after Y1, . . . , Yn have been defined, let

Yn+1 = Tn+1 if Ui,n ≤ qi(Y1, . . . , Yi) for all 0 ≤ i < n,

Yn+1 = Yi+1 if Ui,n > qi(Y1, . . . , Yi) and Uj,n ≤ qj(Y1, . . . , Yj)
for some 0 ≤ i < n and all j > i.

It is not hard to verify that Y1 ∼ σ0 and condition (4) holds; see [9, Lemma 3].

7.2. Asymptotics. Let s = (s1, . . . , sn, . . .) denote a point of S∞. For any strategy
σ which makes (Xn) c.i.d., there is a random probability measure µ on (S,B) such
that, for every fixed B ∈ B,

σn(s1, . . . , sn)(B) −→ µ(s)(B) for Pσ-almost all s ∈ S∞;

see Subsection 2.1.
A (natural) question is: What kind of random probability measures µ can be

obtained if σ ∈ Σ ? We address this question when σ is given by (2). To this end,
we first prove a general result.

In the next statement, we write ”a.s.” to mean ”Pσ-a.s.” and we denote by
X∗1 , X

∗
2 , . . . the (finite or infinite) sequence of distinct observations corresponding

to X1, X2, . . . Precisely, if N is the cardinality of the (random) set {X1, X2, . . .},
we let

X∗n = Xτn for all integers n such that 1 ≤ n ≤ N,
where τ1 = 1 and τn = inf

{
j : Xj /∈ {X∗1 , . . . , X∗n−1}

}
.

Theorem 15. Suppose (Xn) is c.i.d. under Pσ, where σ is any strategy. Then,

µ
a.s.
=
∑
k

Wk δX∗
k
,(5)

for some random variables Wk ≥ 0 such that
∑
kWk = 1, if and only if

lim
n
Pσ
(
Xn 6= Xi for each i < n

)
= 0.(6)

In addition,

Wk
a.s.
= lim

n

1

n

n∑
i=1

1{Xi=X∗
k}.(7)

Proof. To make the notation easier, write P = Pσ, E = EPσ and In−1 = (X1, . . . , Xn−1).
We first note a simple fact. Let

γ1 = δIn−1
× δXn , γ2 = δIn−1

× µ, and

H = {(s1, . . . , sn) ∈ Sn : sn = si for some i < n}.

Then, γ1 and γ2 are random probability measures on (Sn,Bn) such that

γ1(H) = δXn
(
{X1, . . . , Xn−1}

)
and γ2(H) = µ

(
{X1, . . . , Xn−1}

)
.
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Next, define two (non random) probability measures on (Sn,Bn) as

γ∗1(C) = E
{
γ1(C)

}
and γ∗2(C) = E

{
γ2(C)

}
for all C ∈ Bn.

Since (Xn) is c.i.d. under P , then P (Xn ∈ B | In−1) = E(µ(B) | In−1) a.s. for
each B ∈ B; see Subsection 2.1. Therefore,

γ∗1 (A×B) = P
(
In−1 ∈ A, Xn ∈ B

)
= E

{
1A(In−1)P (Xn ∈ B | In−1)

}
= E

{
1A(In−1)E(µ(B) | In−1)

}
= E

{
1A(In−1)µ(B)

}
= γ∗2 (A×B)

for all A ∈ Bn−1 and B ∈ B. Hence, γ∗1 = γ∗2 on Bn, which in turn implies

P
(
Xn = Xi for some i < n

)
= E

(
δXn

(
{X1, . . . , Xn−1}

))
= γ∗1 (H) = γ∗2(H) = E

(
µ
(
{X1, . . . , Xn−1}

))
.

It follows that

E
(
µ
(
{X∗1 , X∗2 , . . .}

))
= lim

n
E
(
µ
(
{X1, . . . , Xn−1}

))
= lim

n
P
(
Xn = Xi for some i < n

)
.

This proves the equivalence between (5) and (6). In fact,

condition (5) ⇔ µ
(
{X∗1 , X∗2 , . . .}

) a.s.
= 1 ⇔ E

(
µ
(
{X∗1 , X∗2 , . . .}

))
= 1.

We finally turn to (7). As noted in Subsection 2.1, µ also satisfies

µn(B)
a.s.−→ µ(B) for every fixed B ∈ B,

where µn = 1
n

∑n
i=1 δXi is the empirical measure. Hence,

P
(
µn

weakly−→ µ
)

= 1.

If condition (6) holds, then

µ
(
{X∗1 , X∗2 , . . .}

) a.s.
= 1 and µn

(
{X∗1 , X∗2 , . . .}

)
= 1 for each n,

where the first equation has been proved above and the second is trivial. Hence,
under (6), µn converges to µ in total variation norm with probability 1, i.e.

sup
B∈B

∣∣∣µn(B)− µ(B)
∣∣∣ a.s.−→ 0.

In particular,

Wk = µ({X∗k}) = lim
n
µn({X∗k}) = lim

n

1

n

n∑
i=1

1{Xi=X∗
k} a.s.

�

Theorem 15 extends to the c.i.d. case a result concerning exchangeability. In
fact, the equivalence between (5) and (6) is already known if (Xn) is exchangeable
under Pσ; see e.g. [21].

Finally, we focus on the special case where σ is assessed according to (2). Then,
Theorem 15 provides conditions for µ to be a.s. discrete.
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Theorem 16. Suppose the strategy σ is given by (2) and

n−1∏
i=0

qi(X1, . . . , Xi)
Pσ−→ 0.

Then, µ admits representation (5) and the weights Wk are given by (7).

Proof. Just note that

Pσ

(
Xn+1 /∈ {X1, . . . , Xn} | (X1, . . . , Xn) = x

)
= σn(x)

(
{x1, . . . , xn}c

)
= σ0

(
{x1, . . . , xn}c

) n−1∏
i=0

qi

where n ≥ 1, x = (x1, . . . , xn) ∈ Sn and qi = qi(x1, . . . , xi). Hence,

Pσ
(
Xn+1 6= Xi for each i ≤ n

)
= EPσ

{
σ0
(
{X1, . . . , Xn}c

) n−1∏
i=0

qi(X1, . . . , Xi)
}

≤ EPσ
{n−1∏
i=0

qi(X1, . . . , Xi)
}
−→ 0.

An application of Theorem 15 concludes the proof. �

Various popular random probability measures ν admit the representation

ν
a.s.
=
∑
k

Dk δZk ,(8)

where (Zk) is an i.i.d. sequence of random variables and the weights (Dk) are
independent of (Zk). A well known example is the Dirichlet random probability
measure; see e.g. [19] and [24]. Our last result is that µ often admits representation
(8) provided σ is given by (2) and the qi are constant.

Theorem 17. Suppose the strategy σ is given by (2) and σ0 is diffuse. Suppose
also that qi is constant for every i ≥ 0, and

n−1∏
i=0

qi → 0 and

∞∑
n=1

n−1∏
i=0

qi =∞.

Then, µ admits representation (5) and the weights Wk are given by (7). Moreover,
the sequence (X∗k) is i.i.d., X∗1 ∼ σ0, and (X∗k) is independent of (Wk).

Proof. Take (Tn) and (Ui,j) satisfying conditions (j)-(jjj) and define (Yn) as in
Subsection 7.1. Since the predictive distributions of (Yn) are given by (2), we can
replace (Xn) with (Yn). In addition, since∑

n

P
(
Yn+1 /∈ {Y1, . . . , Yn} | Y1, . . . , Yn

) a.s.
=
∑
n

n−1∏
i=0

qi =∞,

the Borel-Cantelli lemma yields

P
(
Yn+1 /∈ {Y1, . . . , Yn} for infinitely many n

)
= 1.

Hence, one can define

Y ∗n = Yρn for all n ≥ 1,
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where ρ1 = 1 and ρn = inf
{
j : Yj /∈ {Y ∗1 , . . . , Y ∗n−1}

}
.

Let ν be a random probability measure on (S,B) such that

P
(
Yn+1 ∈ B | Y1, . . . , Yn

) a.s.−→ ν(B) for each fixed B ∈ B.

Since
∏n−1
i=0 qi → 0, Theorem 16 implies

ν
a.s.
=
∑
k

Dk δY ∗
k

where Dk
a.s.
= lim

n

1

n

n∑
i=1

1{Yi=Y ∗
k }.

We now prove that (Y ∗k ) is i.i.d., Y ∗1 ∼ σ0, and (Y ∗k ) is independent of (Dk).
Let U be the σ-field generated by Ui,j for all i and j and

A =
{
Ti 6= Tj for all i 6= j

}
.

On the set A, one obtains Yn /∈ {Y1, . . . , Yn−1} if and only if Yn = Tn. Further,
P (A) = 1 for (Tn) is i.i.d. and σ0 diffuse. Thus, up to a negligible set, ρk is U-
measurable for each k. Similarly, up to a negligible set, Dk is U-measurable for each
k. Since (Tk) is independent of U , it follows that (Tk) is independent of (Dk, ρk).
Therefore, for each event H in the σ-field generated by (Dk), one obtains

P
(
H ∩ {Y ∗1 ∈ B1, . . . , Y

∗
k ∈ Bk}

)
=

=
∑

m1,...,mk

P
(
H ∩ {ρ1 = m1, . . . , ρk = mk, Tm1 ∈ B1, . . . , Tmk ∈ Bk}

)
=

∑
m1,...,mk

P
(
Tm1

∈ B1, . . . , Tmk ∈ Bk
)
P
(
H ∩ {ρ1 = m1, . . . , ρk = mk}

)
=

k∏
i=1

σ0(Bi)
∑

m1,...,mk

P
(
H ∩ {ρ1 = m1, . . . , ρk = mk}

)
= P (H)

k∏
i=1

σ0(Bi).

This concludes the proof. �

Incidentally, if σ0 is diffuse, Theorem 17 applies to Dirichlet sequences; see Exam-
ple 7. In that case, as already noted, it is well known that µ admits representation
(8). However, Theorem 17 says something more. Not only (8) holds, but one can
take Zk = X∗k and Dk = Wk, namely, the sequence (X∗k) of distinct observations is
i.i.d. and independent of (Wk). In addition, the weights Wk can be written accord-
ing to (7). Most probably, in the special case of Dirichlet sequences, all these facts
are already known, but we are not aware of any explicit reference; see e.g. [19] and
references therein.
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