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Abstract. Let (X ,A) and (Y,B) be measurable spaces. Suppose we are given

a probability α on A, a probability β on B and a probability µ on the product
σ-field A ⊗ B. Is there a probability ν on A ⊗ B, with marginals α and β,

such that ν � µ or ν ∼ µ ? Such a ν, provided it exists, may be useful with

regard to equivalent martingale measures and mass transportation. Various
conditions for the existence of ν are provided, distinguishing ν � µ from ν ∼ µ.

1. Introduction

1.1. The problem. Let (X ,A) and (Y,B) be measurable spaces. Fix a probability
measure (p.m.) α on A, a p.m. β on B and a p.m. µ on the product σ-field A⊗B.
Let P denote the collection of all p.m.’s on A⊗ B and

Γ(α, β) = {ν ∈ P : the marginals of ν are α and β}.

This paper is concerned with the following questions:

(a) Is there ν ∈ Γ(α, β) such that ν � µ ?

(b) Is there ν ∈ Γ(α, β) such that ν ∼ µ ?

Problems (a)-(b) are motivated in Section 2. Here, we introduce some further
notation and summarize the content of this paper.

1.2. Notation and preliminary facts. Let (Ω,F , P ) be a probability space. We
write

EP (X) =

∫
X dP

whenever X is a real P -integrable random variable. Given another p.m. Q on F ,
we write P � Q to mean that P (A) = 0 whenever A ∈ F and Q(A) = 0. Similarly,
P ∼ Q stands for P � Q and Q � P . The notations P � Q and P ∼ Q have
the same meaning even if F is a field (and not necessarily a σ-field) and P, Q are
finitely additive probabilities (and not necessarily p.m.’s). Further, P is perfect
if, for each measurable function f : Ω → R, there is a real Borel set B such that
B ⊂ f(Ω) and P (f ∈ B) = 1. If Ω is separable metric and F the Borel σ-field, then
P is perfect if and only if it is tight. Thus, for P to be perfect, it suffices that Ω
is a universally measurable subset (in particular, a Borel subset) of a Polish space
and F the Borel σ-field. We refer to [6] for more information on perfect p.m.’s.
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In the sequel, the reference p.m. µ ∈ P is fixed. Moreover, for each ν ∈ P, the
marginals ν1 and ν2 of ν are meant as

ν1(A) = ν(A× Y) and ν2(B) = ν(X ×B) where A ∈ A and B ∈ B.
Finally, m denotes the Lebesgue measure on the Borel σ-field of [0, 1] and we

adopt the following convention. If X or Y are topological spaces, then A or B are
always taken to be the Borel σ-fields.

1.3. Outline. This paper consists of four sections. Section 2 provides some moti-
vations to problems (a)-(b) while Section 5 includes concluding remarks. The core
of the paper are Sections 3 and 4 which are concerned with problems (a) and (b),
respectively. The main results are various conditions for problems (a)-(b) to admit
a solution. Among other things, finitely additive solutions are considered as well.

2. Motivations

In principle, problems (a)-(b) are noteworthy in all those fields where Γ(α, β)
plays a role. In all such fields, in fact, there may be reasons for investigating proper
subsets of Γ(α, β), such as

Λ0 = {ν ∈ Γ(α, β) : ν � µ} or Λ1 = {ν ∈ Γ(α, β) : ν ∼ µ}.
And an obvious, preliminary question is whether Λ0 6= ∅ or Λ1 6= ∅.

We also note that, in addition to their possible applied interest, problems (a)-
(b) are quite natural from the foundational point of view. Nevertheless, to our
knowledge, they have been neglected so far. Apart from a recent paper [2, Example
15] we are not aware of any explicit reference.

In particular, problems (a)-(b) are not covered by the well known results by
Strassen [8]. More precisely, such results do not apply to problem (b), for Λ1 fails
to be closed in any reasonable topology on P. Instead, Strassen’s ideas can be
adapted to problem (a), since Λ0 is sequentially closed if P is given the topology
of setwise convergence. Some Strassen-type solutions to problem (a) are actually
provided by Theorems 5 and 6.

We next present a few examples. To fix ideas, we focus on some specific issues,
but the ensuing remarks essentially extend to all areas where Γ(α, β) is involved.

Example 1. (Mass transportation). Let C be a non-negative measurable func-
tion on X ×Y. Here, C(x, y) is regarded as the cost per unit mass for transporting
a material from x ∈ X to y ∈ Y. Such units are distributed according to α, before
transportation, and according to β after transportation. Therefore, each member
of Γ(α, β) is called a transport plan. Given Λ ⊂ Γ(α, β), say that ν is an optimal
transport plan for Λ if ν ∈ Λ and Eν(C) = minλ∈ΛEλ(C). In this framework, it
could be reasonable to choose Λ such that Λ ⊂ Λ0 or Λ ⊂ Λ1, provided of course
Λ0 6= ∅ or Λ1 6= ∅. As to Λ ⊂ Λ0, sometimes, it makes sense to focus only on those
transport plans which have a density with respect to some reference measure µ.
This happens for instance in [5], with X = Y = Rp and µ equivalent to Lebesgue
measure, in order to take capacity constraints into account. A further (concrete)
reason for taking Λ ⊂ Λ0 is the following. It may be that some H ∈ A ⊗ B is
”forbidden”, in the sense that (x, y) ∈ H does not make sense for the problem at
hand. Situations of this type are usually modeled by letting C = ∞ on H. An
alternative option could be obtained by letting Λ ⊂ Λ0 and taking µ such that
µ(H) = 0. Finally, quite analogous considerations hold for Λ ⊂ Λ1.
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We hope to devote further work to more specific applications in the near future.
As an interesting hint provided by one of the referees, the results in this paper could
be applicable to find Monge solutions in those cases where the underlying optimal
transport plan is not unique.

Example 2. (Equivalent martingale measures). Let X = {Xt : 0 ≤ t ≤ 1}
and Y = {Yt : 0 ≤ t ≤ 1} be real cadlag processes on the probability space
(Ω,F , P ). A p.m. Q on F is said to be an equivalent martingale measure (e.m.m.)
if Q ∼ P and both X and Y are Q-martingales.

Let D be the set of real cadlag functions on [0, 1], equipped with the Skorohod
topology, and let S be the Borel σ-field on D. We make two simplifying assump-
tions. Firstly, X and Y are taken to be canonical processes. Namely, we let

Ω = D ×D, F = S ⊗ S, Xt(ω) = ω1(t), Yt(ω) = ω2(t),

where t ∈ [0, 1] and ω = (ω1, ω2) ∈ D×D. Secondly, and more importantly, X and
Y are required to be Q-martingales with respect to their canonical filtrations only.

Under these assumptions, existence of an e.m.m. fits nicely into the framework
of this paper. It suffices to let X = Y = D, µ = P , and to choose α and β such
that

α ∼ µ1, β ∼ µ2, X is an α-martingale, Y is a β-martingale

where µ1 and µ2 are the marginals of µ. In fact, if such α and β do not exist, no
e.m.m. is available. Otherwise, if α and β exist, an e.m.m. is exactly a solution to
problem (b). And the condition µ1×µ2 � µ guarantees the existence of an e.m.m.
by Theorem 11 below.

The situation is more complicated, even though more realistic, when X and Y
are asked to be martingales with respect to a common filtration {Ft : 0 ≤ t ≤ 1}
on Ω = D × D. In this case, existence of an e.m.m. can not be easily seen as a
particular case of problem (b). In fact, to decide whether X and Y are martingales
with respect to {Ft : 0 ≤ t ≤ 1}, one needs some further information beyond α and
β; see also Section 5.

Example 3. (Contingency tables). For definiteness, a contingency table is
identified with a non-negative p × q matrix T = (ti,j) such that

∑
i,j ti,j = 1. If

S and T are contingency tables, write S � T if ti,j = 0 ⇒ si,j = 0, and S ∼ T
if ti,j = 0 ⇔ si,j = 0. Let α = (α1, . . . , αp) and β = (β1, . . . , βq) be non-negative
vectors such that

∑
i αi =

∑
j βj = 1. Suppose we are given α, β and a contingency

table T . Then, the following natural questions arise. Is there a contingency table
S such that S � T and∑

j

si,j = αi,
∑
i

si,j = βj for all i, j ?

Similarly, is there a contingency table S satisfying the above condition as well as
S ∼ T ?

3. Absolutely continuous laws with given marginals

We begin with a definition. Let ν ∈ P. Say that ν is dominated by µ on
rectangles, written ν �R µ, if

µ(A×B) = 0 =⇒ ν(A×B) = 0 whenever A ∈ A and B ∈ B.
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Then, ν � µ implies ν �R µ, but not conversely. As an example, take

X = Y = [0, 1], µ = m×m and ν(·) = m{x : (x, x) ∈ ·}.

Since ν is supported by the diagonal, ν fails to be absolutely continuous with respect
to µ. However, ν �R µ for

ν(A×B) = m(A ∩B) ≤ m(A) ∧m(B) whenever A ∈ A and B ∈ B.

Next result gives conditions for ν � µ and ν �R µ to be equivalent. (Such equiv-
alence is also briefly discussed in Section 5). Let µ1 and µ2 denote the marginals
of µ.

Lemma 4. Suppose X and Y are separable metric spaces. Let ν ∈ P. Then,

ν � µ ⇐⇒ ν �R µ

provided (at least) one of the following conditions holds:

(i) µ1 or µ2 is discrete;
(ii) µ is supported by the graph of a measurable function (from X into Y or

from Y into X );
(iii) There is a σ-finite measure γ on A⊗ B such that

ν � γ, µ� γ and ν
(
∂{f = 0}

)
= 0,

where f is a density of µ with respect to γ and ∂{f = 0} is the boundary
of the set {f = 0}.

Proof. Let ν1 and ν2 denote the marginals of ν. If ν �R µ, as assumed throughout
this proof, then ν1 � µ1 and ν2 � µ2. Furthermore, ν is dominated by µ on the
open sets, that is, ν(C) = 0 whenever µ(C) = 0 and C ⊂ X × Y is open. In fact,
each open subset of X × Y is a countable union of (open) rectangles.

(i) Suppose µ1 discrete, i.e., µ1(A) = 1 for some countable A ⊂ X . Since
ν1 � µ1, then ν1(A) = 1. Fix C ∈ A⊗B and let Cx = {y ∈ Y : (x, y) ∈ C}
denote the section of C with respect to x ∈ X . Since A is countable,

µ(C) =
∑
x∈A

µ
(
{x} × Cx

)
and ν(C) =

∑
x∈A

ν
(
{x} × Cx

)
.

If µ(C) = 0, then ν
(
{x}×Cx

)
= 0 for all x ∈ A because of ν �R µ. Thus,

ν(C) = 0. The proof is exactly the same if µ2 is discrete.
(ii) Let µ(G) = 1, where G = {(x, g(x)) : x ∈ X} and g : X → Y. We first

suppose g continuous. Then, G is closed, so that ν(G) = 1 as well. Hence,
both µ and ν can be written as

µ(C) = µ1{x : (x, g(x)) ∈ C} and ν(C) = ν1{x : (x, g(x)) ∈ C}

for all C ∈ A ⊗ B. Thus, ν � µ follows from ν1 � µ1. Next, suppose
g measurable. By Lusin’s theorem, given ε ∈ (0, 1), there is a closed set
F ⊂ X such that µ1(F c) < ε and g is continuous on F . Since ν1 � µ1, it
can be assumed ν1(F ) > 0. Define

νF (·) = ν
(
· | F × Y

)
and µF (·) = µ

(
· | F × Y

)
.

By what already proved, since νF �R µF and g is continuous on F , one
obtains νF � µF . Hence, ν � µ follows from ν1 � µ1 and the arbitrariness
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of ε. The proof is exactly the same if G = {(h(y), y) : y ∈ Y} with
h : Y → X measurable.

(iii) Fix C ∈ A⊗ B with µ(C) = 0. Since∫
C∩{f>0}

f dγ = 0,

one obtains γ
(
C ∩ {f > 0}

)
= 0. Since µ{f = 0} = 0, one also obtains

ν
(
{f = 0}0

)
= 0, where H0 denotes the interior of H. Hence,

ν(C) = ν
(
C ∩ {f = 0}

)
≤ ν{f = 0} ≤ ν

(
∂{f = 0}

)
= 0.

�

In connection with (iii) of Lemma 4 it is worth noting that, since ν � γ, the

condition ν
(
∂{f = 0}

)
= 0 is automatically true whenever

γ
(
∂{f = 0}

)
= 0.

We next turn to problem (a). Let α be a p.m. on A and β a p.m. on B. For all
functions f : X → R and g : Y → R, denote

f ⊕ g(x, y) = f(x) + g(y) for (x, y) ∈ X × Y.

Moreover, suppose X and Y are Polish spaces and P is given the topology of weak
convergence of p.m.’s.

By a classical result of Strassen [8], if Λ ⊂ P is convex and closed,

Γ(α, β) ∩ Λ 6= ∅

if and only if

(1) Eα(f) + Eβ(g) ≥ inf
λ∈Λ

Eλ
(
f ⊕ g

)
for all bounded continuous f : X → R and g : Y → R.

Basing on this fact, it is tempting to let Λ = {ν ∈ P : ν � µ} in condition (1).
But such a Λ is not closed, and in fact Strassen’s result does not apply to problem
(a). As a trivial example, take Λ = {ν ∈ P : ν � µ} and

X = Y = [0, 1], µ = m×m, α = m, β = δ0.

Since β = δ0 is not absolutely continuous with respect to µ2 = m, problem (a)
admits no solutions. Nevertheless, if βn is uniform on (0, 1/n), then α × βn ∈ Λ
and βn → β weakly. Therefore,

Eα(f) + Eβ(g) = lim
n

{
Eα(f) + Eβn

(g)
}

= lim
n
Eα×βn

(
f ⊕ g

)
≥ inf
λ∈Λ

Eλ
(
f ⊕ g

)
for all bounded continuous f and g.

Even though Strassen’s result does not work as it stands, the underlying ideas
can be adapted to problem (a). In fact, Λ = {ν ∈ P : ν � µ} is sequentially closed if
P is given the topology of setwise convergence, that is, the topology on P generated
by the maps λ 7→ λ(H) for all H ∈ A ⊗ B. Similarly, Λ = {ν ∈ P : ν �R µ} is
sequentially closed in such topology. This suggests to require condition (1), with
Λ = {ν ∈ P : ν � µ} or Λ = {ν ∈ P : ν �R µ}, replacing continuous functions
with measurable functions.
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Theorem 5. Let α be a p.m. on A and β a p.m. on B. Suppose at least one
between α and β is perfect and define

Λ = {ν ∈ P : ν �R µ}.

Then, Γ(α, β)∩Λ 6= ∅ if and only if condition (1) holds for all bounded measurable
functions f : X → R and g : Y → R.

Proof. If ν ∈ Γ(α, β) ∩ Λ and f and g are bounded measurable, then

Eα(f) + Eβ(g) = Eν
(
f ⊕ g

)
≥ inf
λ∈Λ

Eλ
(
f ⊕ g

)
where the equality is because ν ∈ Γ(α, β) and the inequality for ν ∈ Λ. Conversely,
suppose condition (1) holds for all bounded measurable f and g. Define

Xf,g(λ) = Eα(f) + Eβ(g)− Eλ
(
f ⊕ g

)
for all λ ∈ Λ and all bounded measurable f and g, and let

S =
{
Xf,g : f and g bounded and measurable

}
.

Then, S is a linear space of real bounded functions on the set Λ. By condition (1),

sup
λ∈Λ

X(λ) ≥ 0 for all X ∈ S.

Hence, by de Finetti’s coherence principle, there is a finitely additive probability P
on the power set of Λ such that∫

Λ

X(λ)P (dλ) = 0 for all X ∈ S;

see e.g. [1] and [2].
Let R be the field generated by A×B, for all A ∈ A and B ∈ B, and

ν0(C) =

∫
Λ

λ(C)P (dλ) for all C ∈ R.

Such ν0 is a finitely additive probability on R. In view of [7, Theorem 2], since one
between α and β is perfect, ν0 is actually σ-additive on R.

Take ν to be the (only) σ-additive extension of ν0 to σ(R) = A ⊗ B. Given
A ∈ A, let

X(λ) = XIA,0(λ) = α(A)− λ
(
A× Y

)
.

Then,

ν
(
A× Y

)
= ν0

(
A× Y

)
= α(A)−

∫
Λ

X(λ)P (dλ) = α(A).

Similarly, ν
(
X × B

)
= β(B) for all B ∈ B. Hence, ν ∈ Γ(α, β). Further, if

µ
(
A × B

)
= 0 for some A ∈ A and B ∈ B, then λ

(
A × B

)
= 0 for each λ ∈ Λ,

which in turn implies ν
(
A×B

)
= ν0

(
A×B

)
= 0. Thus, ν ∈ Γ(α, β) ∩ Λ.

�

Theorem 5 provides only a partial solution to problem (a), for one only obtains
ν �R µ (and not ν � µ) for some ν ∈ Γ(α, β). Under the conditions of Lemma
4, however, ν �R µ amounts to ν � µ and Theorem 5 yields a full solution. If µ
has at least one discrete marginal, for instance, there exists ν ∈ Γ(α, β) such that
ν � µ if and only if condition (1) holds, with Λ = {λ ∈ P : λ �R µ}, for all
bounded measurable f and g.
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The argument which leads to Theorem 5 allows to obtain some other results.
Next Theorems 6 and 7 are examples of this claim.

Say that Λ ⊂ P is uniformly dominated by µ if, for each ε > 0, there is δ > 0
such that supλ∈Λ λ(C) ≤ ε whenever C ∈ A ⊗ B and µ(C) < δ. This notion of
absolute continuity is well known, mainly with regard to Vitali-Hahn-Saks theorem
and related topics. A straightforward example of Λ uniformly dominated by µ is

Λ = {λ ∈ P : λ ≤ r µ} for some constant r.

Theorem 6. Let α be a p.m. on A and β a p.m. on B. Suppose Λ is uniformly
dominated by µ and condition (1) holds for all bounded measurable f : X → R and
g : Y → R. Then, there is ν ∈ Γ(α, β) such that ν � µ.

Proof. Define S as in the proof of Theorem 5. Arguing as in such a proof, condition
(1) implies

∫
Λ
X(λ)P (dλ) = 0 for all X ∈ S and some finitely additive probability

P on the power set of Λ. Let ν(C) =
∫

Λ
λ(C)P (dλ) for all C ∈ A ⊗ B. Then,

ν is a finitely additive probability on A ⊗ B with marginals α and β. Since Λ is
uniformly dominated by µ and ν(·) ≤ supλ∈Λ λ(·), one obtains limn ν(Cn) = 0 for
every sequence Cn ∈ A⊗ B such that limn µ(Cn) = 0. Thus, ν is σ-additive (for µ
is σ-additive) so that ν ∈ Γ(α, β) and ν � µ. �

An open problem is whether condition (1) generally implies Γ(α, β) ∩ Λ 6= ∅
when Λ is taken to be Λ = {λ ∈ P : λ � µ}. This is actually the case under
the conditions of Lemma 4. Furthermore, concerning finitely additive solutions to
problem (a), the following result is available.

Theorem 7. Let α be a p.m. on A and β a p.m. on B. Suppose condition (1)
holds, with Λ = {λ ∈ P : λ �R µ}, for all bounded measurable f : X → R and
g : Y → R. Then, there is a finitely additive probability ν on A⊗B, with marginals
α and β, such that ν � µ.

Proof. We first prove a claim.

Claim: Let Pi be a finitely additive probability on the field Fi, i = 1, 2, and let
F1 ⊂ F2. Then, P1 can be extended to a finitely additive probability P
on F2 such that P � P2 if and only if P1 � (P2|F1), where P2|F1 is the
restriction of P2 on F1.

In fact, the ”only if” part is trivial. Conversely, suppose P1 � (P2|F1) and
define D = {B ∈ F2 : P2(B) ∈ {0, 1}}. Fix A ∈ F1 and B ∈ D with A ⊂ B. If
P2(B) = 1, then P1(A) ≤ P2(B). If P2(B) = 0, then A ⊂ B implies P2(A) = 0.
Since A ∈ F1 and P1 � (P2|F1), one obtains P1(A) = 0, and again P1(A) ≤ P2(B).
By [3, Theorem 3.6.1], there is a finitely additive probability P on F2 such that
P = P1 on F1 and P = P2 on D. Such a P does the job.

We next prove Theorem 7. Define ν0 as in the proof of Theorem 5. Such ν0 is
a finitely additive probability, defined on the field R generated by rectangles, with
marginals α and β. It is straightforward to verify that ν0 � (µ|R). Thus, it suffices
to apply the previous claim with

F1 = R, F2 = A⊗ B, P1 = ν0, P2 = µ.

�

Incidentally, unlike Theorem 5, Theorems 6 and 7 do not request α or β to be
perfect. It may be that perfectness can be dropped from Theorem 5 as well, but
we have not a proof of this fact.
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So far, µ, α and β are all fixed. We now take a different point of view, we fix
µ only while α and β are allowed to vary subject to the condition α � µ1 and
β � µ2 (recall that µ1 and µ2 are the marginals of µ). Such condition can not be
bypassed, being necessary for problem (a) to admit a solution.

Suppose µ dominates the product of its marginals, namely

µ1 × µ2 � µ.

Then, for all α � µ1 and β � µ2, one trivially obtains α × β ∈ Γ(α, β) and
α × β � µ1 × µ2 � µ. Hence, α × β is a solution to problem (a). In other terms,
if µ1 × µ2 � µ, then

for all p.m.’s α on A and β on B, satisfying α� µ1(2)

and β � µ2, there is ν ∈ Γ(α, β) such that ν � µ.

As a last result on problem (a) we now show that, under the conditions of Lemma
4, the converse of the above implication is true as well.

Theorem 8. Let γ = γ1 × γ2, where γ1 and γ2 are σ-finite measures on A and B
respectively, and let X and Y be separable metric spaces. Suppose µ1 is discrete,
or µ2 is discrete, or µ � γ and γ

(
∂{f = 0}

)
= 0 where f is a density of µ with

respect to γ. Then,

µ1 × µ2 � µ ⇐⇒ condition (2) ⇐⇒ µ1 × µ2 �R µ.

Proof. It has been proved in the text that µ1 × µ2 � µ implies condition (2).
Next, suppose µ fails to dominate µ1 × µ2 on rectangles, that is, µ

(
A × B

)
= 0,

µ1(A) > 0 and µ2(B) > 0 for some A ∈ A and B ∈ B. Let α(·) = µ1(· | A) and
β(·) = µ2(· | B). Then, α � µ1 and β � µ2. However, if ν ∈ Γ(α, β) and ν � µ,
one obtains the absurd conclusion

ν
(
A×Bc

)
= ν

(
A× Y

)
= α(A) = 1 and ν

(
Ac ×B

)
= ν

(
X ×B

)
= β(B) = 1.

Hence, condition (2) yields µ1 × µ2 �R µ. Finally, suppose µ1 × µ2 �R µ. If
µ1 or µ2 is discrete, Lemma 4 implies µ1 × µ2 � µ. Hence, suppose µ � γ
and γ

(
∂{f = 0}

)
= 0. Since µ � γ, then µ1 � γ1 and µ2 � γ2. Thus,

µ1 × µ2 � γ1 × γ2 = γ and again Lemma 4 yields µ1 × µ2 � µ. �

Note that, under the assumptions of Theorem 8, condition (2) amounts to

µ
(
A×B) = 0 ⇐⇒ µ1(A) ∧ µ2(B) = 0 whenever A ∈ A and B ∈ B.

The above condition, in fact, is clearly equivalent to µ1 × µ2 �R µ.

4. Equivalent laws with given marginals

A general approach to problem (b), introduced in [1]-[2], is the following.
Recall that a determining class for a measurable space (Ω,F) is a class H of real

bounded measurable functions on Ω such that

P = Q ⇐⇒ EP (h) = EQ(h) for each h ∈ H

whenever P and Q are p.m.’s on F . For instance, H = {IA : A ∈ F0} is a
determining class if F0 is a field such that F = σ(F0). Or else, H = {bounded
continuous functions on Ω} is a determining class if Ω is a metric space and F the
Borel σ-field.
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Fix a determining class F for (X ,A) and a determining class G for (Y,B). It is
also assumed that F and G are linear spaces. Further, given α and β, define

L0 =
{
f ⊕ g − Eα(f)− Eβ(g) : f ∈ F and g ∈ G

}
.

Such L0 is a linear space of bounded random variables on the measurable space
(X × Y, A⊗ B) and has the property that

ν ∈ Γ(α, β) ⇐⇒ ν ∈ P and Eν(X) = 0 for each X ∈ L0.

Thus, problem (b) can be stated as: Is there ν ∈ P satisfying ν ∼ µ and Eν(X) = 0
for each X ∈ L0 ? Next result gives a tool for answering this question.

Theorem 9. (Lemma 6 of [2]). Let L be a linear space of real bounded random
variables on the probability space (Ω,F , P0). There is a p.m. P on F such that

P ∼ P0 and EP (X) = 0 for all X ∈ L
if and only if there are a p.m. Q on F and a constant c < 1 such that

Q ∼ P0 and |EQ(X) | ≤ cEQ|X| for all X ∈ L.

Letting

(Ω,F , P0) = (X × Y, A⊗ B, µ) and L = L0,

Theorem 9 yields the following result.

Theorem 10. Let Λ = {λ ∈ P : λ ∼ µ} and M = {X ∈ L0 : Eµ|X| > 0}. Then,
Γ(α, β) ∩ Λ 6= ∅ if and only if

inf
λ∈Λ

sup
X∈M

|Eλ(X) |
Eλ|X|

< 1.

On one hand, Theorem 10 formally solves problem (b). On the other hand,
Theorem 10 is not very helpful in real problems, since the proposed condition is
quite hard to be checked. There are some exceptions, however. In [2, Example 15],
a usable condition for solving problem (b) is obtained through Theorem 10. We
now (slightly) improve such condition. We also provide a new and simpler proof.

Theorem 11. Let α and β be p.m.’s on A and B, respectively. If

α ∼ µ1, β ∼ µ2 and µ1 × µ2 � µ,

there is ν ∈ Γ(α, β) such that ν ∼ µ.

Proof. For each λ ∈ P, let λ1 and λ2 denote the marginals of λ. Then,

µ = c λ+ (1− c) ρ(3)

for some c ∈ (0, 1) and some λ, ρ ∈ P satisfying

λ ∼ µ, α ≥ c λ1 and β ≥ c λ2.

To prove (3), fix a density f1 of α with respect to µ1, a density f2 of β with
respect to µ2, and define

φ(x, y) = f1(x) ∧ f2(y) ∧ (1/2) for (x, y) ∈ X × Y.
Since α ∼ µ1 and β ∼ µ2, then µ(φ > 0) = 1. Hence, 0 < Eµ(φ) ≤ 1/2. Let

c = Eµ(φ) and λ(H) =
Eµ
{
IH φ

}
c

for all H ∈ A⊗ B.
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Then, λ ∈ P and µ(H)− c λ(H) = Eµ
{
IH (1−φ)

}
≥ (1/2)µ(H) for all H ∈ A⊗B.

Hence, µ− c λ ≥ 0 so that

ρ :=
µ− c λ
1− c

∈ P.

Also, µ(φ > 0) = 1 implies λ ∼ µ, and

α(A)− c λ1(A) = α(A)−
∫
A×Y

φdµ ≥ α(A)−
∫
A

f1 dµ1 = α(A)− α(A) = 0

for all A ∈ A. Similarly, one obtains β − c λ2 ≥ 0.
For future purposes, we note that µ admits representation (3) provided α ∼ µ1

and β ∼ µ2, even if µ1 × µ2 � µ fails to be true.
Next, having proved (3), define

α∗ =
α− c λ1

1− c
and β∗ =

β − c λ2

1− c
.

Then, α∗ is a p.m. on A and β∗ a p.m. on B. Further, α∗ � µ1 and β∗ � µ2.
Hence, a solution to problem (b) is given by

ν = c λ+ (1− c) (α∗ × β∗).
In fact, ν ∼ µ follows from λ ∼ µ and α∗ × β∗ � µ1 × µ2 � µ. Further,

ν1 = c λ1 + (1− c)α∗ = α and ν2 = c λ2 + (1− c)β∗ = β.

This concludes the proof.
�

Theorem 11 provides a sufficient condition for problem (b) to admit a solution.
Note that α ∼ µ1 and β ∼ µ2 are necessary for solving problem (b). Thus, the real
requirement of Theorem 11 is µ1 × µ2 � µ. Note also that, under the conditions
of Theorem 8, µ1 × µ2 � µ reduces to µ1 × µ2 �R µ.

Among other things, Theorem 11 allows to settle the following conjecture. Let
us consider the condition

for all p.m.’s α on A and β on B, satisfying α ∼ µ1(4)

and β ∼ µ2, there is ν ∈ Γ(α, β) such that ν ∼ µ.

Condition (4) is trivially true if µ ∼ γ1× γ2, with γ1 and γ2 σ-finite measures on A
and B respectively. Indeed, given α ∼ µ1 and β ∼ µ2, it suffices to let ν = α×β. A
(natural) question is whether the converse is true as well, and our first conjecture
was that condition (4) actually amounts to µ ∼ γ1×γ2 for some σ-finite γ1 and γ2.
Such a conjecture fails to be true, however.

Example 12. Let X = Y = [0, 1] and

µ =
(m×m) + µ′

2
where µ′(·) = m{x ∈ [0, 1] : (x, x) ∈ ·}.

Since µ1 = µ2 = m, then µ1×µ2 � µ. Thus, condition (4) follows from Theorem 11.
Suppose now that µ ∼ γ1× γ2 with γ1 and γ2 σ-finite. Let D = {(x, x) : x ∈ [0, 1]}
be the diagonal. Since γ1 ∼ µ1 = m, then γ1{x} = 0 for all x ∈ [0, 1], which in turn
implies γ1 × γ2(D) = 0. But this is a contradiction, for 2µ(D) = µ′(D) = 1.

As for problem (a), one might be also interested in a finitely additive solution
to problem (b). In this case, the conditions of Theorem 11 may be weakened.
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Theorem 13. Let α and β be p.m.’s on A and B, respectively. If

α ∼ µ1, β ∼ µ2 and µ1 × µ2 �R µ,

there is a finitely additive probability ν on A ⊗ B, with marginals α and β, such
that ν ∼ µ.

Proof. As in the proof of Theorem 11, since α ∼ µ1 and β ∼ µ2, one obtains
µ = c λ+ (1− c) ρ where

c ∈ (0, 1), λ, ρ ∈ P, λ ∼ µ, α ≥ c λ1 and β ≥ c λ2.

Let α∗ = (1− c)−1
(
α− c λ1

)
, β∗ = (1− c)−1

(
β − c λ2

)
and Λ = {τ ∈ P : τ �R µ}.

Since α∗ � µ1 and β∗ � µ2, then α∗ × β∗ � µ1 × µ2 �R µ. Hence, α∗ × β∗ ∈ Λ,
and this implies

Eα∗(f) + Eβ∗(g) = Eα∗×β∗(f ⊕ g) ≥ inf
τ∈Λ

Eτ (f ⊕ g)

for all bounded measurable f : X → R and g : Y → R. By Theorem 7, there is
a finitely additive probability ν∗ on A ⊗ B, with marginals α∗ and β∗, such that
ν∗ � µ. Therefore, it suffices to let

ν = c λ+ (1− c) ν∗.

In fact, ν ∼ µ follows from λ ∼ µ and ν∗ � µ, while it is straightforward to verify
that ν has marginals α and β. �

Still concerning problem (b), we close this section with a result analogous to
Theorem 8.

Theorem 14. Under the assumptions of Theorem 8,

µ1 × µ2 � µ ⇐⇒ condition (4).

Proof. If µ1 × µ2 � µ, condition (4) follows from Theorem 11. Conversely, assume
condition (4). By Theorem 8, it suffices to prove that µ1 × µ2 �R µ. Toward a
contradiction, suppose µ

(
A × B

)
= 0, µ1(A) > 0 and µ2(B) > 0 for some A ∈ A

and B ∈ B. Then,

µ1(A) = µ
(
A× Y

)
= µ

(
A×Bc

)
≤ µ

(
X ×Bc

)
= µ2(Bc) < 1.

Similarly, µ2(B) < 1, and one can define

α(·) =
3µ1(· | A) + µ1(· | Ac)

4
and β(·) =

3µ2(· | B) + µ2(· | Bc)
4

.

Then, α ∼ µ1 and β ∼ µ2. By condition (4), there is ν ∈ Γ(α, β) such that ν ∼ µ.
If such a ν exists, however, one obtains the absurd conclusion

ν
(
A×Bc

)
= ν

(
A× Y

)
= α(A) = 3/4 and ν

(
Ac ×B

)
= ν

(
X ×B

)
= β(B) = 3/4.

This concludes the proof. �
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5. Concluding remarks

This section collects some miscellaneous material, connected to parts of the pa-
per. Some problems to be investigated are mentioned as well.

• Extreme points. Various questions arise once Λ0 = {ν ∈ Γ(α, β) : ν � µ}
or Λ1 = {ν ∈ Γ(α, β) : ν ∼ µ} are shown to be non-empty. One of such
questions is whether each ν ∈ Λ0 is a mixture of extreme points of Λ0.
Precisely, let Σ be the σ-field on P generated by the maps λ 7→ λ(H) for
all H ∈ A ⊗ B. Given ν ∈ Λ0, is there a p.m. π on Σ, supported by the
extreme points of Λ0, such that

ν(·) =

∫
λ(·)π(dλ) ?

A further problem, connected to mass transportation, concerns conditions
for Λ0 or Λ1 to admit an optimal transport plan.

• Equivalent martingale measures. As noted in Example 2, the case
where X and Y are required to be martingales with respect to a common
filtration is not covered by problem (b). To capture this case, problems (a)-
(b) should be generalized as follows. Let (Ω,F , P ) be a probability space
and Pi a p.m. on the sub-σ-field Fi ⊂ F , where i = 1, 2. Is there a p.m.
Q on F such that Q � P , or Q ∼ P , and Q = Pi on Fi for each i ? This
question looks intriguing but also quite hard to be answered in general.

• Domination on rectangles. Let R be the field generated by the measur-
able rectangles; ν �R µ just means that ν is dominated by µ on R but not
necessarily on σ(R) = A⊗ B. Nevertheless, to our knowledge, domination
on rectangles has not been explicitly investigated so far. Lemma 4 provides
conditions under which ν �R µ implies ν � µ, but possibly some other
conditions can be singled out. However, condition (ii) of Lemma 4 can not
be improved by asking µ to be supported by countably many graphs. In
fact, next example exhibits a situation where ν is not dominated by µ even
if ν �R µ and µ

(
∪nGn

)
= 1 where each Gn is the graph of a measurable

function.

Example 15. Let q1, q2, . . . be an enumeration of the rational numbers in
the interval [0, 1). For each n ≥ 1, define

fn(x) = x+ qn if x ∈ [0, 1− qn) and fn(x) = x+ qn − 1 if x ∈ [1− qn, 1).

Take X = Y = [0, 1), ν = m×m and µ =
∑
n 2−nλn, where

λn(·) = m
{
x ∈ [0, 1) : (x, fn(x)) ∈ ·

}
.

Then, µ
(
∪nGn

)
= 1 and ν

(
∪nGn

)
= 0 where Gn = {(x, fn(x)) : x ∈ [0, 1)}.

Hence, µ is supported by countably many graphs and ν is not dominated
by µ. However, ν �R µ. To prove the latter fact, since µ1 ∼ µ2 ∼ m, we
need to show that

λn
(
A×B) = 0 for all n =⇒ m(A) ∧m(B) = 0
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whenever A, B ⊂ [0, 1) are Borel sets. Fix A and B such that λn
(
A×B) = 0

for all n, and define

B∗ = ∪nf−1
n B =

{
x ∈ [0, 1) : fn(x) ∈ B for some n

}
.

If m(B) = 0, we are done. Otherwise, if m(B) > 0, it can be shown that
m(B∗) = 1; see e.g. Exercise 30, p. 39 , of [4]. In this case, since

m
(
A ∩ f−1

n B
)

= λn
(
A×B) = 0 for all n,

one obtains

m(A) = m(A ∩B∗) = m
[
∪n
(
A ∩ f−1

n B
)]

= 0.

Therefore, ν �R µ.

• An open problem. Let Λ = {λ ∈ P : λ � µ}. For such a Λ, as already
noted, we do not know whether condition (1) (required for all bounded
measurable f and g) implies Λ0 = Γ(α, β) ∩ Λ 6= ∅.

• Finitely additive probabilities. Problems (a)-(b) are basically extension
problems. Define in fact

ν∗
(
A× Y

)
= α(A), ν∗

(
X ×B

)
= β(B), ν∗(H) = 0,

whenever A ∈ A, B ∈ B, H ∈ A ⊗ B and µ(H) = 0. In problem (a),
one is looking for a (countably additive) extension ν of ν∗ to A ⊗ B. In
problem (b), ν is also required to be strictly positive whenever µ is strictly
positive. Now, since problems (a)-(b) are of the extension type, allowing for
finitely additive probabilities makes easier to solve them. This is confirmed
by Theorems 7 and 13. Note also that, up to technical details, condition
(1) is essentially a coherence condition in de Finetti’s sense. Indeed, in the
proof of Theorem 5, condition (1) is actually used as a coherence condition.
And, a coherent map can be coherently extended to any larger domain.

• A curious fact. Say that α and β are admissible for problem (a) (or for
problem (b)) whenever α � µ1 and β � µ2 (or α ∼ µ1 and β ∼ µ2). By
Theorems 8 and 14, under some assumptions, one obtains

condition (2) ⇐⇒ condition (4).

Thus, problem (a) admits a solution for all admissible α and β if and only
if the same happens to problem (b).

Acknowledgements: The authors thank two anonymous referees for helpful
comments.
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