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Abstract. Let L be a linear space of real random variables on the measurable

space (Ω,A). Conditions for the existence of a probability P on A such that

EP |X| <∞ and EP (X) = 0 for all X ∈ L
are provided. Such a P may be finitely additive or σ-additive, depending

on the problem at hand, and may also be requested to satisfy P ∼ P0 or

P � P0 where P0 is a reference measure. As a motivation, we note that
a plenty of significant issues reduce to the existence of a probability P as

above. Among them, we mention de Finetti’s coherence principle, equivalent

martingale measures, equivalent measures with given marginals, stationary
and reversible Markov chains, and compatibility of conditional distributions.

1. Introduction

A number of problems, ranging from probability to statistics and finance, reduce
to the following question. Let (Ω,A) be a measurable space and L a linear space
of real random variables on (Ω,A). Is there a probability P on A such that

EP |X| <∞ and EP (X) = 0 for all X ∈ L ?(1)

Such a P may be finitely additive or σ-additive, depending on the problem at hand,
and may also be requested some additional requirement. For instance, in addition
to (1), the probability P could be asked to satisfy

P ∼ P0 or P � P0

where P0 is a reference probability measure on A.
Here are some examples. In the sequel, we let

P = {finitely additive probabilities on A},
H = {P ∈ P : P satisfies equation (1)},

P0 = {P ∈ P : P is σ-additive} and H0 = H ∩ P0.

Note that H or H0 may be empty and H0 is the collection of σ-additive solutions
of equation (1).
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Example 1. (de Finetti’s coherence principle). Let D be any collection of
real bounded functions on a set Ω. A map φ : D → R is coherent if

sup
ω∈Ω

n∑
j=1

λj
{
Xj(ω)− φ(Xj)

}
≥ 0

whenever n ≥ 1, λ1, . . . , λn ∈ R and X1, . . . , Xn ∈ D. Heuristically, suppose φ
describes your previsions on the members of D. If φ is coherent, it is impossible
to make you a sure looser, whatever ω ∈ Ω turns out to be true, by some finite
combinations of bets (on X1, . . . , Xn with stakes λ1, . . . , λn). Anyhow, define

L = span
(
X − φ(X) : X ∈ D

)
and A = σ(L).

(The notations span(·) and σ(·) stand for “linear space generated by” and “σ-field
generated by”, respectively). Then, φ is coherent if and only if EP (X) = 0 for all
X ∈ L and some P ∈ P, namely if and only if H 6= ∅. This is a well known fact
which follows from Hahn-Banach theorem; see e.g. [3, Section 2] and [11, Lemma
1].

In a sense, this paper stems from Example 1. Our main goal is in fact to address
and unify various problems, apparently unrelated, basing on condition (1). But (1)
has been suggested by Example 1 and, more generally, by de Finetti’s ideas.

Another basic example is the following.

Example 2. (Equivalent martingale measures). Let S = (St : t ∈ I) be a real
stochastic process, indexed by I ⊂ R, on the probability space (Ω,A, P0). Suppose
S is adapted to a filtration G = (Gt : t ∈ I) and St0 is a constant random variable
for some t0 ∈ I. Say that P is an equivalent martingale measure (EMM) if

P ∈ P0, P ∼ P0 and S is a G-martingale under P.

Existence of EMM’s is a fundamental problem in mathematical finance; see e.g. [9].
Now, with a suitable choice of L, an EMM is exactly a probability P ∈ H0 such
that P ∼ P0. It suffices to let

L = span
(
IA (Su − St) : u, t ∈ I, u > t, A ∈ Gt

)
.

EMM’s are usually requested to be σ-additive, but their economic interpretation
is preserved if they are only finitely additive. Thus, to look for finitely additive
EMM’s seems to make sense; see [3], [4], [7], [12], [13].

Example 3. (Equivalent probability measures with given marginals). Let

Ω = Ω1 × Ω2 and A = A1 ⊗A2

where (Ω1,A1) and (Ω2,A2) are measurable spaces. Fix P0 ∈ P0 and a probability
Qi on Ai for i = 1, 2. Is there P ∈ P such that

(2) P ∼ P0 and P
(
· × Ω2

)
= Q1(·), P

(
Ω1 × ·

)
= Q2(·) ?

If Q1 and Q2 are σ-additive, is there P ∈ P0 satisfying (2) ? These questions look
natural (to us) and some possible answers are provided in [5, Example 12]; see also
[14]. The point to be stressed here, however, is that such a P is again a solution of
equation (1) (for a suitable L) such that P ∼ P0. Define in fact L to be the class
of all random variables X on Ω = Ω1 × Ω2 of the type

X(ω1, ω2) =
{
f(ω1)− EQ1

(f)
}

+
{
g(ω2)− EQ2

(g)
}
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where f and g are simple functions on (Ω1,A1) and (Ω2,A2), respectively. Then,
L is a linear space and condition (2) amounts to condition (1) and P ∼ P0.

Example 4. (Stationary and reversible Markov chains). A kernel on Ω×A
is a map α on Ω × A such that: (i) α(ω, ·) ∈ P0 for each ω ∈ Ω; (ii) ω 7→ α(ω,A)
is a measurable function for each A ∈ A. Fix a kernel α and a Markov chain (Xn)
with state space (Ω,A) and transition probability α. For P ∈ P0, say that P makes
(Xn) stationary if

P (A) =

∫
α(ω,A)P (dω) for all A ∈ A.

This means that (Xn) is a stationary sequence as far as X0 has distribution P .
Similarly, say that P makes (Xn) reversible if∫

A

α(ω,B)P (dω) =

∫
B

α(ω,A)P (dω) for all A, B ∈ A.

If X0 has distribution P , with P as above, then (Xn) is stationary and (X0, X1) is
distributed as (X1, X0).

Typically, α is given, and a fundamental question is whether there is P ∈ P0

which makes (Xn) stationary or reversible. Such a P could be also asked to satisfy
P ∼ P0 or P � P0 for some reference probability P0. Anyhow, P makes (Xn)
stationary or reversible if and only if P ∈ H0 for a suitable choice of L. In fact, let
L be the linear space of all random variables

X(ω) = f(ω)−
∫
f(x)α(ω, dx)

where f ranges over the simple functions on (Ω,A). Then, P satisfies equation (1)
if and only if P makes (Xn) stationary. Likewise, define L to be the linear space
generated by

X(ω) = IA(ω)α(ω,B)− IB(ω)α(ω,A)

for all A, B ∈ A. Then, P meets equation (1) if and only if P makes (Xn) reversible.

Example 5. (Compatibility of conditional distributions). Let
S = (Si : i ∈ I) be a collection of real random variables. In some statistical
frameworks, S is requested to have given conditional distributions. This means
that, instead of assessing the joint distribution of S directly, one selects a class H
of subsets of I and (tentatively) assigns the conditional distribution of(

Si : i ∈ H
)

given
(
Si : i ∈ I \H

)
for each H ∈ H.

But a joint distribution for S with the given conditional distributions can fail to
exist. Accordingly, such conditional distributions are said to be compatible if they
are actually induced by some joint distribution for S. We refer to [6] and references
therein for further details and examples. Here, we focus on the simplest case:
S = (Y,Z) with Y and Z real random variables.

Let Y ⊂ R and Z ⊂ R be Borel sets, to be regarded as the collections of
“admissible” values for Y and Z, respectively. Denote by BY and BZ the Borel σ-
fields on Y and Z. A conditional distribution for Y given Z is a kernel α on Z×BY ,
that is: (i) α(z, ·) is a probability measure on BY for each z ∈ Z; (ii) z 7→ α(z,A) is
BZ -measurable for each A ∈ BY . Here, α(z, ·) should be viewed as the conditional
distribution of Y given that Z = z. Let α be a conditional distribution for Y given
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Z and β a conditional distribution for Z given Y . Then, α and β are compatible if
there is a probability measure P on BY ⊗ BZ such that∫

A

β(y,B)PY(dy) = P (A×B) =

∫
B

α(z,A)PZ(dz) for A ∈ BY and B ∈ BZ

where PY and PZ are the marginals of P on Y and Z.
With a suitable choice of L, compatibility of α, β amounts to condition (1).

Define in fact (Ω,A) = (Y × Z, BY ⊗ BZ) and take L to be the collection of all
random variables of the form

X(y, z) =

∫
f(u, z)α(z, du)−

∫
f(y, u)β(y, du)

where f : Y × Z → R is a bounded continuous function. Then, L is a linear space
and α, β are compatible if and only if there is P ∈ H0.

So far, all probability measures in this example have been tacitly assumed to
be σ-additive. But compatibility issues arise even if such probabilities are finitely
additive. In this case, compatibility of α, β essentially coincides with the notion of
coherence introduced by Heath and Sudderth in [11]. See also [1] and references
therein.

Example 6. (Disintegrability). Let Π be a partition of Ω and F a σ-field of
subsets of Ω. For the sake of simplicity, assume Π ⊂ F . A Π-strategy is a map α
on F ×Π such that

α(· | H) is a finitely additive probability on F with α(H | H) = 1

for each H ∈ Π. Define A(α) to be the σ-field generated by the maps

ω 7→ α
(
A | H(ω)

)
for all A ∈ F ,

where H(ω) denotes the only element of Π including ω ∈ Ω. Let µ be a finitely
additive probability on F . A disintegration (for µ) is a pair (α, β) such that α is a
Π-strategy, β is a finitely additive probability on A(α), and

µ(A) =

∫
α
(
A | H(ω)

)
β(dω) for each A ∈ F .

If, in addition, β and each α(· | H) are σ-additive probabilities, then (α, β) is said
to be a σ-additive disintegration. See e.g. [1], [2], [10] and references therein.

Suppose now that we are given µ and α, and we ask whether (α, β) is a disin-
tegration for some β. Such a question clearly amounts to existence of P ∈ H. It
suffices to let A = A(α) and to take L as the linear space of all random variables
of the type

X(ω) =

∫
f(x)α

(
dx | H(ω)

)
−
∫
f dµ

where f is a simple function with respect to (Ω,F). Note also that, if µ and
each α(· | H) are σ-additive, it looks natural to ask wether (α, β) is a σ-additive
disintegration for some β. This amounts to existence of P ∈ H0.

The existence of P ∈ H such that P ∼ P0 or P � P0 is investigated in [3]-[5].
Moreover, conditions for the existence of P ∈ H0 such that P ∼ P0 are given in [5].
To our knowledge, however, the case where P is requested to belong to H0, but not
to satisfy P ∼ P0 or P � P0, has been neglected so far. Similarly, we do not know
of nontrivial conditions for H 6= ∅ when L includes unbounded random variables.
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This paper provides conditions for H 6= ∅ and H0 6= ∅ which apply to an arbitrary
linear space L. Special attention is paid to the second case, namely to the existence
of σ-additive solutions of equation (1). A new necessary and sufficient condition,
for the existence of P ∈ H0 such that P ∼ P0 and P has a bounded density with
respect to P0, is provided as well. Finally, various counterexamples are given.

2. Notation

In the sequel, as in Section 1, L is a linear space of real random variables on the
measurable space (Ω,A). We let P denote the set of finitely additive probabilities
on A and P0 = {P ∈ P : P is σ-additive}. Also, H is the set of laws P ∈ P which
satisfy equation (1) and

H0 = H ∩ P0 = {P ∈ P0 : EP |X| <∞ and EP (X) = 0 for all X ∈ L}.

Given P, Q ∈ P, we write P � Q to mean that P (A) = 0 whenever A ∈ A and
Q(A) = 0. Also, P ∼ Q stands for P � Q and Q� P .

When a reference measure P0 ∈ P0 is given, we let

ess sup(X) = inf{x ∈ R : P0(X > x) = 0} with inf ∅ =∞

for every real random variable X. We also need the notation

l∞ = l∞(Ω) = {real bounded functions on Ω}.

Let P ∈ P and X a real random variable. If X ∈ l∞, then X is P -integrable
and

∫
X dP is defined to be

∫
X dP = limn

∫
Xn dP , where (Xn) is a sequence of

simple functions converging to X uniformly. If X ≥ 0, then X is P -integrable if
and only if infn P (X > n) = 0 and supn

∫
X I{X≤n} dP <∞. In this case,∫

X dP = sup
n

∫
X I{X≤n} dP.

If X is arbitrary real, X is P -integrable if and only if X+ and X− are both P -
integrable, and in this case

∫
XdP =

∫
X+dP −

∫
X−dP .

In this paper, we write EP |X| <∞ to mean that X is P -integrable, and we let

EP (X) =

∫
XdP

whenever EP |X| <∞.

3. σ-additive solutions of equation (1)

In this section, we give conditions for H 6= ∅ and H0 6= ∅, with special attention
to the second case. We point out that the solutions P of equation (1) are not
requested to satisfy any other requirement (such as P ∼ P0 or P � P0).

We begin with a general result, in the spirit of [5, Theorem 6].

Theorem 7. There is P ∈ H if and only if there is Q ∈ P such that

EQ|X| <∞ and |EQ(X) | ≤ cEQ|X|(3)

for all X ∈ L and some constant c ∈ [0, 1). Furthermore, if Q ∈ P0 then H0 6= ∅
(that is, equation (1) holds for some P ∈ P0).
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Proof. If P ∈ H, condition (3) trivially holds with Q = P and c = 0. Conversely,
suppose (3) holds for some c ∈ [0, 1) and Q ∈ P. Define

t = (1 + c)/(1− c) and K =
{
P ∈ P : (1/t)Q ≤ P ≤ tQ

}
.

If P ∈ K, then EP |X| ≤ t EQ|X| <∞ for all X ∈ L, and P ∈ P0 provided Q ∈ P0.
Thus, it suffices to see that EP (X) = 0 for some P ∈ K and all X ∈ L.

We first prove that, for each X ∈ L, there is P ∈ K such that EP (X) = 0. Fix
X ∈ L and note that condition (3) implies

EQ(X+) ≤ t EQ(X−) and EQ(X−) ≤ t EQ(X+).

If EQ|X| = 0, just take P = Q ∈ K. If EQ|X| > 0, define

f =
EQ(X−) I{X≥0} + EQ(X+) I{X<0}

EQ(X−)Q(X ≥ 0) + EQ(X+)Q(X < 0)

and P (A) = EQ
{
f IA

}
for all A ∈ A. Since EQ(f) = 1 and (1/t) ≤ f ≤ t, then

P ∈ K. In addition,

EP (X) = EQ(f X) =
EQ(X−)EQ(X+)− EQ(X+)EQ(X−)

EQ(X−)Q(X ≥ 0) + EQ(X+)Q(X < 0)
= 0.

Next, let Z be the set of all functions from A into [0, 1], equipped with the
product topology. Then,

K is compact and {P ∈ K : EP (X) = 0} is closed for each X ∈ L.(4)

To prove (4), fix a net (Pα) ⊂ Z converging to P ∈ Z, that is, P (A) = limα Pα(A)
for all A ∈ A. If Pα ∈ K for each α, then P ∈ P and (1/t)Q ≤ P ≤ tQ. Hence
P ∈ K, that is, K is closed. Since Z is compact, K is actually compact. If Pα ∈ K
and EPα(X) = 0, for some X ∈ L and each α, then P ∈ K (for K is closed). Hence,
EP |X| <∞. Define the set Ab = {|X| ≤ b} for b > 0. Since EPα(X) = 0 and both
Pα and P are in K, it follows that

|EP (X)| = |EP (X)− EPα(X)| ≤
≤ |EP

{
X −X IAb

}
|+ |EP

{
X IAb

}
− EPα

{
X IAb

}
|+ |EPα

{
X IAb −X

}
|

≤ EP
{
|X| I{|X|>b}

}
+ |EP

{
X IAb

}
− EPα

{
X IAb

}
|+ EPα

{
|X| I{|X|>b}

}
≤ 2 t EQ

{
|X| I{|X|>b}

}
+ |EP

{
X IAb

}
− EPα

{
X IAb

}
|.

Since X IAb is bounded, EP
{
X IAb

}
= limαEPα

(
X IAb

)
. Thus,

|EP (X)| ≤ 2 t EQ
{
|X| I{|X|>b}

}
for every b > 0.

Since EQ|X| <∞, then limb→∞Q(|X| > b) = 0, which in turn implies

|EP (X)| ≤ 2 t lim
b→∞

EQ
{
|X| I{|X|>b}

}
= 0.

Hence, {P ∈ K : EP (X) = 0} is closed.
Because of (4), to conclude the proof it suffices to see that{

P ∈ K : EP (X1) = . . . = EP (Xn) = 0
}
6= ∅

for all n ≥ 1 and X1, . . . , Xn ∈ L.
Given n ≥ 1 and X1, . . . , Xn ∈ L, define

C =
{(
EP (X1), . . . , EP (Xn)

)
: P ∈ K

}
.
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Then, C is a convex closed subset of Rn. Thus, C is the intersection of all half-planes
{f ≥ u} including it, where u ∈ R and f : Rn → R is a linear functional. Fix f and
u such that C ⊂ {f ≥ u}. Since f(X1, . . . , Xn) ∈ L, then EP

{
f(X1, . . . , Xn)

}
= 0

for some P ∈ K. Since
(
EP (X1), . . . , EP (Xn)

)
∈ C ⊂ {f ≥ u}, one obtains

f(0, . . . , 0) = 0 = EP
{
f(X1, . . . , Xn)

}
= f

(
EP (X1), . . . , EP (Xn)

)
≥ u.

This proves (0, . . . , 0) ∈ C and concludes the proof.
�

Roughly speaking Theorem 7 states that, for P ∈ H to exist, it is enough to
check a weaker condition (that is, condition (3)) for some probability Q possibly
different from P . In addition, P can be taken to be σ-additive whenever Q is σ-
additive. These facts can be useful in real problems. Note also that, if L ⊂ l∞,
then EQ|X| <∞ can be dropped from condition (3).

Theorem 7 unifies various different situations (L ⊂ l∞ or not, P ∈ H or P ∈ H0).
However, in the particular case where L ⊂ l∞ and P is not asked to be σ-additive,
a better result is available. In fact, if L ⊂ l∞, there is P ∈ H if and only if

sup
ω∈Ω

X(ω) ≥ 0 for all X ∈ L.

This fact is well known (it is basically Example 1) and will be exploited in the next
result.

We need the following notation. Let I be an index set and V = (Xi : i ∈ I) a
collection of functions Xi : Ω→ R. Then, V can be regarded as a map V : Ω→ RI ,
where RI is the set of functions from I into R equipped with the product topology.
It suffices to let

V (ω)(i) = Xi(ω) for ω ∈ Ω and i ∈ I.

For A ⊂ Ω, we let V (A) = {V (ω) : ω ∈ A} denote the range of V on A.

Theorem 8. Let L be the linear space generated by V = (Xi : i ∈ I). Suppose

V (A) compact and sup
ω∈A

X(ω) ≥ 0

for all X ∈ L and some (nonempty) A ⊂ Ω. Then, there is a σ-additive probability
P on σ(L) satisfying equation (1) and P ∗(A) = 1, where P ∗ is the P -outer measure.

Proof. Suppose first A = Ω. Let K = V (Ω) and fi(x) = x(i) for all i ∈ I and
x ∈ K. Also, let C be the set of real continuous functions on K and B0 = σ(C)
the Baire σ-field on K. Since B0 agrees with the σ-field generated by the maps
{fi : i ∈ I}, then σ(L) = V −1(B0). Since K is compact, Xi(Ω) = fi(K) is compact
for each i ∈ I, so that L ⊂ l∞. Since L ⊂ l∞ and supΩX ≥ 0 for all X ∈ L, there
is T ∈ H. Define

φ(f) = ET
{
f(V )

}
for all f ∈ C.

By the Riesz theorem, since K is compact and Hausdorff, there is a σ-additive
probability Q on B0 such that EQ(f) = φ(f) = ET

{
f(V )

}
for all f ∈ C.

Next, since σ(L) = V −1(B0), each U ∈ σ(L) can be written as U = {V ∈ B}
for some B ∈ B0. Since B ⊂ K = V (Ω), such a B is unique. Accordingly, one can
define

P (U) = P (V ∈ B) = Q(B).
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Then, P is a σ-additive probability on σ(L) and

EP (Xi) = EP
{
fi(V )

}
= EQ(fi) = ET

{
fi(V )

}
= ET (Xi) = 0

for all i ∈ I. This concludes the proof if A = Ω. If A 6= Ω, just apply the above
argument with A in the place of Ω. Then, there is a σ-additive probability PA on
the trace σ-field σ(L) ∩ A such that EPA(X|A) = 0 for all X ∈ L. (Here, X|A
denotes the restriction of X on A). Let

P (B) = PA(A ∩B) for B ∈ σ(L).

Then, for X ∈ L and B ∈ σ(L) with B ⊃ A, one obtains

EP (X) = EPA(X|A) = 0 and P (B) = PA(A) = 1.

This concludes the proof. �

Next example provides some possible applications of Theorem 8.

Example 9. Suppose that supAX ≥ 0 for all X ∈ L and some A ⊂ Ω. To fix
ideas, suppose also that A = σ(L). Then, H0 6= ∅ if L is finite dimensional and
each X ∈ L takes only a finite number of values on A. Similarly, H0 6= ∅ if A is a
compact topological space and each X ∈ L is continuous on A. In fact, the map
V : A→ RI is continuous if each member of L is continuous on A. As a particular
case, H0 6= ∅ whenever V = (X1, . . . , Xn) and{
h(X1) = a1, . . . , h(Xn) = an

}
6= ∅ for all a1, . . . , an ∈ {0, 1} where h = I[0,∞).

In fact, take A such that A∩{h(X1) = a1, . . . , h(Xn) = an} consists of exactly one
point for all a1, . . . , an ∈ {0, 1}. Since A is finite, it is compact and each X ∈ L is
continuous on A. Thus, it suffices to check supAX ≥ 0 for all X ∈ L. Let X ∈ L,
say X =

∑n
j=1 λjXj with λ1, . . . , λn ∈ R. Then, X(ω) ≥ 0 if ω is the point of A

satisfying λjXj(ω) ≥ 0 for all j.

Apart from Example 9 (and similar situations) compactness of V (A) is certainly
a strong assumption. A more realistic condition would be

(5) (Xi1 , . . . , Xin)(A) is a compact subset of Rn

for all n ≥ 1 and i1, . . . , in ∈ I. While condition (5) does not work for H0 6= ∅
(see Example 11) it suffices for the existence of P ∈ H which is σ-additive on
σ(X1, . . . , Xn) for all finite {X1, . . . , Xn} ⊂ L. We close this section by proving the
latter fact.

Theorem 10. Let L be the linear space generated by V = (Xi : i ∈ I). Suppose
condition (5) holds and supAX ≥ 0 for all X ∈ L and some (nonempty) A ⊂ Ω.
Then, there is P ∈ H such that P ∗(A) = 1 and

P is σ-additive on σ(X1, . . . , Xn) for all n ≥ 1 and X1, . . . , Xn ∈ L.

Proof. Let A = Ω. Since each Xi has compact range, it can be assumed |Xi| ≤ 1
for all i ∈ I. Hence, V (Ω) ⊂ [−1, 1]I . Also, since L ⊂ l∞ and supΩX ≥ 0 for all
X ∈ L, there is T ∈ H. Arguing as in the proof of Theorem 8, there is also a σ-
additive probability Q on the Baire σ-field of [−1, 1]I such that EQ(f) = ET

{
f(V )

}
for all continuous f : [−1, 1]I → R.

Next, let fi(x) = x(i) for i ∈ I and x ∈ [−1, 1]I and let A0 be the field of
subsets of Ω of the form {(Xi1 , . . . , Xin) ∈ B} where n ≥ 1, i1, . . . , in ∈ I and
B ⊂ Rn is a Borel set. Suppose {(Xi1 , . . . , Xin) ∈ B} = {(Xj1 , . . . , Xjm) ∈ D} for
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some i1, . . . , in, j1, . . . , jm ∈ I and some Borel sets B ⊂ Rn and D ⊂ Rm. Define
Y = (Xi1 , . . . , Xin , Xj1 , . . . , Xjm) and

K = {(fi1 , . . . , fin , fj1 , . . . , fjm) ∈ Y (Ω)}.

Because of (5), Y (Ω) is compact. Hence, K is compact, and this implies Q(K) = 1.
Further,

K ∩ {(fi1 , . . . , fin) ∈ B} = K ∩ {(fj1 , . . . , fjm) ∈ D}.
It follows that

Q
(
(fi1 , . . . , fin) ∈ B

)
= Q

(
K ∩ {(fi1 , . . . , fin) ∈ B}

)
= Q

(
K ∩ {(fj1 , . . . , fjm) ∈ D}

)
= Q

(
(fj1 , . . . , fjm) ∈ D

)
.

Therefore, it makes sense to define P0 on A0 as

P0

(
(Xi1 , . . . , Xin) ∈ B

)
= Q

(
(fi1 , . . . , fin) ∈ B

)
.

Such a P0 is a finitely additive probability onA0 which is σ-additive on σ(X1, . . . , Xn)
for all n ≥ 1 and X1, . . . , Xn ∈ L. Further,

EP0(Xi) = EQ(fi) = ET
{
fi(V )

}
= ET (Xi) = 0 for all i ∈ I.

To conclude the proof for A = Ω, take any finitely additive extension P of P0 to A.
Finally, for A 6= Ω, it suffices to argue as in the proof of Theorem 8. �

4. Equivalent martingale measures with bounded density

This section includes some miscellaneous material. The main result is a necessary
and sufficient condition for the existence of P ∈ H0 such that P ∼ P0 and P has a
bounded density with respect to P0. Various examples, connected to the previous
section as well as to [3]-[5], are given as well.

As remarked after Example 9, condition (5) does not imply H0 6= ∅. This fact is
pointed out in the following example.

Example 11. Let A be the power set of Ω = {1, 2, . . .} and L the linear space
generated by

X0 = I{1} − 1/3, Xn = I{n} − 3 I{n+1} for n ≥ 1.

Then, A = σ(L) and, for each P ∈ P, one obtains EP (X) = 0 for all X ∈ L if and
only if P{n} = 3−n for all n ≥ 1. Since

∑∞
n=1 P{n} = 1/2, it follows that H0 = ∅.

On the other hand, supΩX ≥ EP (X) = 0 for all X ∈ L if P = (P1 +Q)/2, where
P1 ∈ P, Q ∈ P0, P1{n} = 0 and Q{n} = 2 3−n for all n ≥ 1. Finally, condition (5)
trivially holds with A = Ω.

If V (A) is compact, A = σ(L) and supAX ≥ 0 for all X ∈ L, then Theorem
8 grants H0 6= ∅. For finite V , say V = (X1, . . . , Xn), a question is whether
compactness of V (A) can be weakened into compactness of Xi(A) for every i. It is
not hard to see that the answer is no.

Example 12. Let Ω = [0, 1], A the Borel σ-field, and L the linear space generated
by V = (X1, X2), where

X1(ω) = ω and X2(ω) = I{0}(ω).

Then, A = σ(L). If P ∈ P0 and EP (X1) = 0, then P is the point mass at 0, so that
EP (X2) = 1. Thus, H0 = ∅. Nevertheless, both X1 and X2 have compact range,
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and EP (X1) = EP (X2) = 0 if P ∈ P meets P (0, ε) = 1 for each ε > 0. Hence,
supΩX ≥ EP (X) = 0 for all X ∈ L.

In the rest of this paper, we fix a reference measure P0 ∈ P0 and we focus on
those P which satisfy equation (1) as well as P ∼ P0 or P � P0.

To begin with, we recall a (nice) result which applies in the finite dimensional
case. Indeed, if L is finite dimensional, there is P ∈ H0 such that P ∼ P0 if and
only if L satisfies the classical no-arbitrage condition, namely

P0(X > 0) > 0 ⇐⇒ P0(X < 0) > 0 for each X ∈ L.

This follows from [8, Theorem 2.4]. An elementary proof is given in [5, Example
7]. Incidentally, to our knowledge, no analogous result is available when P0 is not
given and one is only looking for some P ∈ H0 (Example 9 provides only sufficient
conditions for this case).

A second remark is that the proof of Theorem 7 actually implies the following
statement.

Theorem 13. There is P ∈ H such that P � P0 (or P ∼ P0) if and only if there
is Q ∈ P such that

Q� P0 (or Q ∼ P0), EQ|X| <∞ and |EQ(X) | ≤ cEQ|X|(6)

for all X ∈ L and some constant c ∈ [0, 1). Moreover, if Q ∈ P0, there is P ∈ H0

such that P � P0 (or P ∼ P0).

In real problems, to apply Theorem 13, one has to select some Q ∈ P such
that Q � P0 or Q ∼ P0. The choice of Q is clearly a drawback. At least when
looking for P ∈ H0 satisfying P ∼ P0, however, one option is to take Q = P0.
Indeed, condition (6) holds with Q = P0 if and only if there is P ∈ H0 such that
r P0 ≤ P ≤ s P0 for some constants 0 < r ≤ s; see [5, Theorem 6].

We next prove a new result concerning the case P ∼ P0.
In view of [5, Theorem 2], if L ⊂ l∞, there is P ∈ H such that P ∼ P0 if and

only if

EP0

(
X IAn

)
≤ kn ess sup(−X) for all n ≥ 1 and X ∈ L,

where (kn) is a sequence of nonnegative constants and (An) ⊂ A a sequence of
events such that limn P0(An) = 1. An obvious strengthening is

EP0

(
X IAn

)
≤ knEP0

(X−) for all n ≥ 1 and X ∈ L(7)

with (kn) and (An) as above. Condition (7) is potentially useful in applications,
for it involves P0 only (while Theorem 13 requires the choice of Q). Furthermore,
condition (7) looks like condition (6) applied with Q = P0, which in turn suffices
for the existence of P ∈ H0 such that r P0 ≤ P ≤ s P0. Thus, it seems natural to
investigate (7). It turns out that condition (7) works and L ⊂ l∞ may be weakened
into L ⊂ L1(P0).

Theorem 14. Suppose EP0 |X| < ∞ for all X ∈ L. Then, condition (7) is equiv-
alent to the existence of P ∈ H0 such that P ∼ P0 and P ≤ s P0 for some constant
s > 0.

Proof. Let P ∈ H0 be such that P ∼ P0 and P ≤ s P0. Define kn = ns and
An = {n f ≥ 1}, where f is a density of P with respect to P0. Then, limn P0(An) =
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P0(f > 0) = 1. Given X ∈ L, since EP (X+) = EP (X−), one also obtains

EP0

(
X IAn

)
≤ EP0

(
X+ IAn

)
= EP

(
X+ (1/f) IAn

)
≤ nEP (X+) = nEP (X−) ≤ knEP0

(X−).

Conversely, suppose condition (7) holds for some kn ≥ 0 and An ∈ A such that
limn P0(An) = 1. If there is a subsequence nj such that knj ≤ 1 for all j, taking
the limit as j → ∞ condition (7) yields EP0

(X) ≤ EP0
(X−) for all X ∈ L. It

follows that |EP0
(X) | ≤ (1/3)EP0

|X| for all X ∈ L, namely condition (6) holds
with Q = P0. As noted above, this implies the existence of P ∈ H0 such that
r P0 ≤ P ≤ s P0 for some 0 < r ≤ s.

Hence, it can be assumed kn > 1 for large n, say kn > 1 for each n ≥ m. Define

k =
( ∞∑
n=m

P0(An)

kn 2n

)−1

and Q(·) = k

∞∑
n=m

P0(· ∩An)

kn 2n
.

Then, 1 < k < ∞, Q ∈ P0 and Q ∼ P0. For any random variable Y ≥ 0, one
obtains

EQ(Y ) = k

∞∑
n=m

EP0

(
Y IAn

)
kn 2n

≤ k EP0
(Y ).

In particular, Q(A) ≤ k P0(A) and EQ|X| ≤ k EP0 |X| < ∞ whenever A ∈ A and
X ∈ L. Further, condition (7) implies

EQ(X) = k

∞∑
n=m

EP0

(
X IAn

)
kn 2n

≤ k EP0(X−) for all X ∈ L.

Having proved the above facts about Q, the proof essentially proceeds as that
of Theorem 7. We sketch the fundamental points.

Define

K =
{
P ∈ P0 : (k + 1)−1Q ≤ P ≤ Q+ k P0

}
.

If P ∈ K, then EP |X| ≤ EQ|X|+ k EP0
|X| ≤ 2 k EP0

|X| <∞ for all X ∈ L. Also,
P ∈ P0, P ∼ P0 and P ≤ 2 k P0. Hence, it suffices to show that EP (X) = 0 for all
X ∈ L and some P ∈ K.

For each X ∈ L, there is P ∈ K such that EP (X) = 0. Fix in fact X ∈ L. If
EQ(X) = 0, just take P = Q ∈ K. If EQ(X) > 0, take a density h of Q with
respect to P0 and define

f =
EQ(X) I{X<0} + EP0

(X−)h

EQ(X)P0(X < 0) + EP0
(X−)

and P (A) = EP0

(
f IA

)
for A ∈ A.

Since EQ(X) ≤ k EP0
(X−), then (k + 1)−1h ≤ f ≤ h+ k. Hence, P ∈ K and

EP (X) = EP0

(
f X

)
=
−EQ(X)EP0

(X−) + EP0
(X−)EQ(X)

EQ(X)P0(X < 0) + EP0
(X−)

= 0.

Finally, if EQ(X) < 0, just replace X with −X and repeat the above argument.
From now on, the proof agrees exactly with that of Theorem 7. In fact, K

is compact and {P ∈ K : EP (X) = 0} is closed for each X ∈ L (under the
same topology as in the proof of Theorem 7). In addition, for each finite subset
{X1, . . . , Xn} ⊂ L, one obtains EP (X1) = . . . = EP (Xn) = 0 for some P ∈ K. This
concludes the proof. �
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Let us turn to the case P � P0.
If L ⊂ l∞, there is P ∈ H such that P � P0 if and only if

ess sup(X) ≥ 0 for all X ∈ L;

see [3, Theorem 3]. This is a simple and intuitive result and one may wonder how
long it depends on L ⊂ l∞. Say that L is dominated if there is a random variable
Y ≥ 1 satisfying

for each X ∈ L, there is λ > 0 such that |X| ≤ λY, P0-a.s.

Such condition is not so unusual. It holds, for instance, if L is countably generated;
see [5, Lemma 4]. If L is dominated, a conjecture is that there is P ∈ H such that
P � P0 if and only if ess sup(X) ≥ 0 for all X ∈ L. However, this conjecture is
false.

Example 15. Let Ω = (0,∞), A the Borel σ-field and P0 the exponential law with
parameter 1. Take L to be the linear space generated by

X1(ω) = 1/ω and X2(ω) = I(0,π/2)(ω) tan(ω)− I[π/2,∞)(ω).

Then, L is dominated (just take Y = 1 + |X1| + |X2|) and it is not hard to check
that ess sup(X) ≥ 0 for all X ∈ L. However, if P ∈ P and EP (X1) = 0, then
P (t,∞) = 1 for all t > 0, so that EP (X2) = −1. Therefore, H = ∅.

Next, each P ∈ H with P ∼ P0 can be written as P = αP1 + (1 − α)Q, where
α ∈ [0, 1), P1 ∈ P is pure, Q ∈ P0 and Q ∼ P0. Suppose that

for each ε > 0, there is P ∈ H such that P ∼ P0 and α(P ) < ε,(8)

where α(P ) is the weight of the pure component of P . Notwithstanding such
condition, it may be that no P ∈ H0 satisfies P ∼ P0; see [4, Example 9] and
[5, Example 10]. In both the quoted examples, however, there is P ∈ H0 such
that P � P0 (even if not P ∼ P0). We now give a more extreme example, where
condition (8) holds and no P ∈ H0 meets P � P0.

Example 16. Let Ω = (−1, 1). Take A the Borel σ-field, P0 uniform on Ω, and L
the linear space generated by

X0(ω) = −I(−1,0)(ω) + (1 + ω) I(0,1)(ω), Xn(ω) = sgn(ω) |ω|n for n ≥ 1.

Fix P ∈ P0 such that P � P0 and EP (Xn) = 0 for n ≥ 1. If f is a density of P
with respect to P0, then∫ 1

0

f(ω)ωn dω = 2EP
{
Xn I(0,1)

}
= −2EP

{
Xn I(−1,0)

}
=

∫ 0

−1

f(ω) |ω|n dω =

∫ 1

0

f(−ω)ωn dω for all n ≥ 1.

It follows that f(ω) = f(−ω) for almost all ω (with respect to Lebesgue measure)
which in turn implies

EP (X0) = −P (−1, 0) + P (0, 1) +

∫ 1

0

ω P (dω) = (1/2)

∫ 1

0

ω f(ω) dω > 0.
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Hence, there is no P ∈ H0 satisfying P � P0. However, condition (8) holds. In
fact, given ε ∈ (0, 1), define

Q(A) =
P0

(
A ∩ (−ε, ε)

)
+ ε2P0

(
A ∩ (−ε, ε)c

)
ε+ ε2(1− ε)

for all A ∈ A.

Then, Q ∈ P0 and Q ∼ P0. Since Q(−1, 0) = Q(0, 1),

EQ(X0) =

∫ 1

0

ωQ(dω) =
1

4

2 ε− ε3

ε (1− ε) + 1
< ε.

Fix X ∈ L, say X =
∑n
j=0 bjXj where n ≥ 1 and b0, . . . , bn ∈ R, and define

Y =
∑n
j=1 bjXj . Since Y is continuous and Y (0) = 0, then ess sup(−X) ≥ |b0|.

Thus, EQ(Y ) = 0 yields

EQ(X) = b0EQ(X0) ≤ ε |b0| ≤ ε ess sup(−X).

In view of [5, Theorem 2], letting

P =
Q+ ε P1

1 + ε
for suitable P1 ∈ P,

one obtains P ∈ H and P ∼ P0. On noting that α(P ) ≤ ε(1 + ε)−1 < ε, condition
(8) is shown to be true.

We finally mention a (slightly) different approach. Let L∗ be the linear space
generated by L and {IA : A ∈ A, P0(A) = 0}. Then, P ∈ H and P � P0 if and
only if

EP |X| <∞ and EP (X) = 0 for all X ∈ L∗.
Roughly speaking, to find P ∈ H such that P � P0 reduces to find P which
satisfies equation (1) alone for a larger linear space (namely, L∗). Similarly, P ∈ H
and P ∼ P0 if and only if P meets equation (1) with L∗ in the place of L and
EP (Y ) 6= 0 for each Y ∈ U , where U = {IA : A ∈ A, P0(A) > 0}. This suggests
the following problem. Given a class U of real random variables, is there P ∈ P or
P ∈ P0 such that

EP
(
|X|+ |Y |

)
<∞, EP (X) = 0 and EP (Y ) 6= 0 for all X ∈ L and Y ∈ U ?

Our last result is in this direction.

Proposition 17. Let L ⊂ l∞ and Y a bounded random variable. Define

a = inf
X∈L

sup
ω∈Ω

{
X(ω)− Y (ω)

}
and b = inf

X∈L
sup
ω∈Ω

{
X(ω) + Y (ω)

}
.

Given y ∈ R, there is P ∈ H such that EP (Y ) = y if and only if

sup
ω∈Ω

X(ω) ≥ 0 for all X ∈ L and − a ≤ y ≤ b.

In particular, Proposition 17 implies that EP (Y ) 6= 0 for some P ∈ H if and only
if supΩX ≥ 0 for all X ∈ L and |a|+ |b| > 0.

Proof of Proposition 17. If P ∈ H and EP (Y ) = y, for each X ∈ L one obtains

sup
Ω
X ≥ EP (X) = 0, sup

Ω
(X−Y ) ≥ EP (X−Y ) = −y, sup

Ω
(X+Y ) ≥ EP (X+Y ) = y.

Hence, −a ≤ y ≤ b. Conversely, suppose supΩX ≥ 0 for all X ∈ L and −a ≤ y ≤ b.
If Y ∈ L, then a ≤ 0 and b ≤ 0, so that y = 0. Thus, it suffices to take any P ∈ H
(which exists for supΩX ≥ 0 for all X ∈ L). If Y /∈ L, let M be the linear space
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generated by L and Y . Since Y /∈ L, each Z ∈ M can be written as Z = X + λY
for some unique X ∈ L and λ ∈ R. Define

φ(Z) = φ(X + λY ) = λ y for all Z ∈M.

Then, φ is a linear functional on M . Since M ⊂ l∞, if φ(Z) ≤ supΩ Z for all Z ∈M ,
then φ meets de Finetti’s coherence principle, so that φ(Z) = EP (Z) for all Z ∈M
and some P ∈ P. In particular, EP (Y ) = φ(Y ) = y and EP (X) = φ(X) = 0 for
all X ∈ L. Thus, it remains only to see that φ(Z) ≤ supΩ Z for all Z ∈ M . Let
Z = X + λY ∈M . If λ = 0, then Z = X and φ(X) = 0 ≤ supΩX. Since y ≥ −a,
if λ < 0 one obtains

φ(Z) = λ y ≤ |λ| a ≤ |λ| sup
Ω

{X
|λ|
− Y

}
= sup

Ω

{
X + λY

}
= sup

Ω
Z.

Since y ≤ b, the same argument works if λ > 0. This concludes the proof.
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