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Abstract. Let (Ω,B, P ) be a probability space, A ⊂ B a sub-σ-field, and
µ a regular conditional distribution for P given A. For various, classically
interesting, choices of A (including tail and symmetric) the following 0-1 law
is proved: There is a set A0 ∈ A such that P (A0) = 1 and µ(ω)(A) ∈ {0, 1}
for all A ∈ A and ω ∈ A0. Provided B is countably generated (and certain
regular conditional distributions exist), the result applies whatever P is.

1. Introduction

Let (Ω,B, P ) be a probability space, A ⊂ B a sub-σ-field, and P the set of all
probability measures on B. A regular conditional distribution (r.c.d.) for P given
A is a mapping µ : Ω → P such that µ(·)(B) is a version of E(IB | A) for all
B ∈ B. Throughout, P is assumed to admit a r.c.d. given A, denoted by µ, and B
is countably generated (that is, B is generated by one of its countable subclasses).

We aim at showing that, for certain sub-σ-fields A (including tail and symmet-
ric), µ obeys the following 0-1 law: There is a set A0 ∈ A with P (A0) = 1 and

(1) µ(ω)(A) ∈ {0, 1} for all A ∈ A and ω ∈ A0.

2. Motivations

In the sequel, A0 denotes a set of A satisfying P (A0) = 1.
For both foundational and technical reasons, it would be desirable that

(2) µ(ω)(A) = IA(ω) for all A ∈ A and ω ∈ A0

for some A0. Despite its heuristic content, however, condition (2) need not be
true. In fact, by results of Blackwell and Dubins (see [3] and references therein),
condition (2) holds if and only if the trace σ-field A ∩ A0 = {A ∩ A0 : A ∈ A} is
countably generated for some A0. Unless A is countably generated, thus, (2) does
not hold for a number of probability measures P .

When (2) fails, a natural question is whether some of its consequences are still
in force. The 0-1 law in (1) is just a (intriguing) consequence of condition (2).

To give (1) some interpretation, let us fix ω0 ∈ Ω. If µ(ω0) is 0-1 on A, then
µ(ω0)(A ∩ B) = µ(ω0)(A)µ(ω0)(B) for A ∈ A and B ∈ B. Conversely, the latter
relation (with B = A) yields µ(ω0)(A) = µ(ω0)(A)2 for A ∈ A, so that

µ(ω0) is 0-1 on A ⇔ B is independent of A under µ(ω0).
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Now, roughly speaking, the probability measure µ(ω) should embody the informa-
tion conveyed byA for each ω in some set A0. Accordingly, B should be independent
of A, under µ(ω), for all ω in such A0. This is precisely condition (1).

An equivalent (heuristic) argument is the following. If µ(ω0) already includes
the information in A, then µ should be a r.c.d. for µ(ω0) given A as well. In fact,
letting M = {Q ∈ P : µ is a r.c.d. for Q given A}, condition (1) holds if and only
if µ(ω) ∈ M for each ω in some A0; see Theorem 12 of [2].

Example 1. (Tail σ-field) Suppose A =
⋂

n σ(Xn, Xn+1, . . .) is the tail σ-field
of a sequence (Xn) of real random variables on (Ω,B, P ). A probability measure
Q ∈ P is 0-1 on A if and only if B is asymptotically independent of (Xn, Xn+1, . . .)
under Q, in the sense that

sup
H∈σ(Xn,Xn+1,...)

|Q(B ∩H)−Q(B)Q(H)| → 0 for each B ∈ B.

Hence, condition (1) becomes: B is asymptotically independent of (Xn, Xn+1, . . .),
under µ(ω), for each ω in some A0. This looks quite reasonable (to us). Indeed, in
[2], condition (1) is shown to be true (whatever P is) if A is a tail σ-field.

A nice property of (1) is that it is preserved under an absolutely continuous
change of probability measure.

Example 2. (Absolute continuity) Suppose Q ∈ P satisfies Q ¿ P and µ(ω) is
0-1 on A for each ω in some A0 (with A0 ∈ A and P (A0) = 1). Let f be a density
of Q with respect to P and A1 = {ω : 0 <

∫
f(x)µ(ω)(dx) < ∞}. Then, A1 ∈ A,

Q(A1) = 1, and

ν(ω)(B) =

∫
B

f(x)µ(ω)(dx)∫
f(x)µ(ω)(dx)

, B ∈ B, ω ∈ A1,

is a r.c.d. for Q given A. If ω ∈ A0 ∩ A1, then ν(ω) ¿ µ(ω) and µ(ω) is 0-1 on
A. Thus, ν(ω) = µ(ω) on A for all ω ∈ A0 ∩ A1. This fact has two consequences.
First, since Q(A0 ∩A1) = 1, condition (1) holds under Q as well. Second, if P and
Q are equivalent (i.e. Q ¿ P and P ¿ Q) then ν = µ on A a.s.. This seems in
line with intuition.

Since (1) holds in various real situations, one could suspect that it is always true,
at least under mild conditions. This is not so. Define in fact

N = {B ∈ B : P (B) = 0}.
Then, for (1) to fail, it is enough that: (i) A ⊃ N ; (ii) P{x : µ(x) = µ(ω)} = 0
for each ω in some A0; (iii) P{x : µ(x) is not 0-1 on B} > 0; see Proposition 11 of
[2]. Conditions (ii)-(iii) hold in most interesting problems. Thus, (1) typically fails
whenever A ⊃ N . The next two examples illustrate this fact.

Example 3. (A failure of condition (1)) Let (Ft : t ≥ 0) be a filtration on
(Ω,B, P ). As in stochastic calculus, suppose (Ft) is right continuous and F0 ⊃ N
(the so called ”usual conditions”). Suppose also that B is countably generated and
X = {Xt : t ≥ 0} is a real homogeneous Markov process, relative to (Ft), with
transition kernel

Kt(a,H) = Prob
(
Xt ∈ H | X0 = a

)
, t > 0, a ∈ R,H a real Borel set.
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Letting A = Ft for some t > 0, one obtains

µ(ω)
(
X2t ∈ ·

)
= Kt

(
Xt(ω), ·) for each ω in some set A0.

Thus, (1) fails under various conditions on Kt. For instance, (1) fails whenever
Kt(a, ·) 6= Kt(b, ·) for all a 6= b and Kt(a, {b}) = 0 for all a, b. In fact, µ(ω) is not
0-1 on B for each ω ∈ A0. Moreover, P (Xt = b) =

∫
Kt(X0, {b})dP = 0 for all b.

Hence,
P{x : µ(x) = µ(ω)} ≤ P

(
Xt = Xt(ω)

)
= 0 for all ω ∈ A0.

Therefore, conditions (i)-(ii)-(iii) hold.

Incidentally, Example 3 also suggests the following remark (unrelated to condi-
tion (1)). According to a usual naive interpretation, Ft describes the information
at time t, in the sense that each event A ∈ Ft is known to be true or false at time
t. This interpretation does not make sense in Example 3 as far as {X = x} ∈ B for
each possible path x of the process X. In fact, P (X = x) ≤ P (Xt = x(t)) = 0 for
all x, so that {X = x} ∈ F0 for every path x. Under such interpretation, thus, the
X-path would be already known at time t = 0.

Example 4. (One more failure of condition (1); see [2]) Let Ω = R2, B the
Borel σ-field, and P = Q × Q where Q is the N(0, 1) law on the real Borel sets.
Define A = σ

(G ∪N )
where G is the σ-field on Ω generated by (x, y) 7→ x. A r.c.d.

for P given G is µ((x, y)) = δx × Q. Since A = σ
(G ∪ N )

, µ is also a r.c.d. for P
given A. Moreover, for all (x, y), one has {x} × [0,∞) ∈ A and

µ((x, y))
(
{x} × [0,∞)

)
=

1
2
.

Though implicit in ideas of Dynkin [6] and Diaconis and Freedman [5], condition
(1) has been almost neglected so far. Possible related references are [1], [2], [3] and
[10], but only [2] is explicitly devoted to (1).

This note carries on the investigation started in [2]. It is proved that condition
(1) holds (whatever P is) for certain sub-σ-fields A, including the symmetric one.

3. Results

Let F be a class of measurable functions f : Ω → Ω, where measurability means
f−1

(B) ⊂ B. In case F is a group under composition, with the identity map on Ω
as group-identity, we briefly say that F is a group. Whether or not F is a group,
the F -invariant σ-field is

AF = {B ∈ B : f−1B = B for all f ∈ F}
and a probability measure Q on B is F -invariant if Q ◦ f−1 = Q for all f ∈ F . Let
PF denote the set of F -invariant probability measures.

One more definition is to be recalled. Let Q ⊂ P be a collection of probability
measures and G ⊂ B a sub-σ-field. Then, G is sufficient for Q in case, for each B ∈
B, there is a G-measurable function h : Ω → R which is a version of EQ

(
IB | G)

for
all Q ∈ Q. When Q = PF , sufficiency is a key ingredient for integral representation
of invariant measures; see [5], [6], [7] and [9]. Conditions under whichAF is sufficient
for PF are given in Theorem 3 of [7]. In particular, AF is sufficient for PF if F is
a countable group or if F includes only one function.
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Arguing as Maitra in [9], we now prove that condition (1) holds whenever P ∈ PF ,
F is countable and A sufficient for PF . Basing on this fact we subsequently show
that, if F is a finite group and A = AF , then (1) holds whatever P is.

Lemma 5. Suppose B is countably generated, F is countable, and P ¿ P0 for
some P0 ∈ PF which admits a r.c.d. given A. Then, condition (1) holds provided
A is sufficient for PF . In particular, when A = AF , condition (1) holds if F is a
group or if F includes only one function.

Proof. By Example 2, it is enough to prove that P0 meets (1). Thus, it can be
assumed P ∈ PF . Let M = {B ∈ B : Q(B) = 0 for all Q ∈ PF }. Since A is
sufficient for PF and B is countably generated, by Theorem 1 of [4], there is a
countably generated σ-field D such that D ⊂ A ⊂ σ

(D∪M). Since D is countably
generated and D ⊂ A, there is A1 ∈ A such that P (A1) = 1 and µ(ω)(D) = ID(ω)
for all D ∈ D and ω ∈ A1. Since P ∈ PF , given B ∈ B and f ∈ F , one obtains
µ(ω)(f−1B) = µ(ω)(B) for almost all ω. Since F is countable and B countably
generated, it follows that µ(ω) ∈ PF for each ω in some set A2 ∈ A with P (A2) = 1.
Fix ω ∈ A1∩A2. Then, µ(ω) is 0-1 onD∪M, so that µ(ω) is 0-1 on σ

(D∪M) as well.
Since A ⊂ σ

(D ∪M), for getting condition (1) it suffices to let A0 = A1 ∩A2. ¤

Theorem 6. If B is countably generated, F is a finite group and A = AF , then
condition (1) holds.

Proof. Define

Q =

∑
f∈F P ◦ f−1

card(F )
, ν(ω) =

∑
f∈F µ(ω) ◦ f−1

card(F )
for all ω ∈ Ω,

and note that Q = P and ν(ω) = µ(ω) on A = AF . Further, ν(ω) ∈ P for all
ω ∈ Ω, ω 7→ ν(ω)(B) is A-measurable for all B ∈ B, and for each A ∈ A and B ∈ B
one obtains: ∫

A

ν(ω)(B)Q(dω) =
∫

A

ν(ω)(B)P (dω)

=
1

card(F )

∑

f∈F

∫

A

µ(ω)(f−1B)P (dω) =
1

card(F )

∑

f∈F

P
(
A ∩ f−1B

)

=
1

card(F )

∑

f∈F

P
(
f−1A ∩ f−1B

)
= Q(A ∩B).

Hence, ν is a r.c.d. for Q given A. Since F is a finite group, then Q ∈ PF and
A = AF is sufficient for PF . Accordingly, by applying Lemma 5 to Q and ν, there
is A0 ∈ A such that Q(A0) = 1 and ν(ω) is 0-1 on A for each ω ∈ A0. Since Q = P
and ν = µ on A, this concludes the proof. ¤

Among other things, given a single measurable function f : Ω → Ω, Lemma 5
and Theorem 6 apply to A = A{f} = {B ∈ B : f−1B = B}. Precisely, Lemma
5 grants condition (1) in case P ¿ P0 for some f -invariant P0 (admitting a r.c.d.
given A). By Theorem 6, instead, condition (1) holds whatever P is in case f is
bijective with f = f−1.

Towards our main example, concerning the symmetric σ-field (cf. Example 11),
we mention one more consequence of Theorem 6.
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Example 7. (Permutations of order n) Fix a measurable space (X ,U), with
U countably generated, and define (Ω,B) = (X∞,U∞). Denote points of Ω = X∞
by ω = (ω1, ω2, . . .). A permutation of order n is a map f : Ω → Ω of the form

f(ω) = (ωπ1 , . . . , ωπn
, ωn+1, . . .), ω ∈ Ω,

for some permutation (π1, . . . , πn) of (1, . . . , n). The set Fn of permutations of
order n is a group with n! elements, and AFn includes those B ∈ B invariant under
permutations of the first n coordinates. By Theorem 6, every r.c.d. µ (for some law
P ∈ P) given A = AFn

meets condition (1).

We now turn to our main result. Let An ⊂ B be a sub-σ-field, n = 1, 2, . . ., and

A∗ = σ
( ⋃

n≥1

⋂

j≥n

Aj

)
, A∗ = σ

( ⋂

n≥1

⋃

j≥n

Aj

)
.

It seems reasonable that condition (1) holds provided it holds for every An and
An → A in some sense. In fact, this is true if A ⊂ A∗ and An → A is meant as

(3) E
(
IB | An

) P→ E
(
IB | A)

for each B ∈ B.

Furthermore, condition (1) holds for A ⊂ A∗ (and not only for A ⊂ A∗) if (3) is
strengthened into

(3*) E
(
IB | An

) a.s.→ E
(
IB | A)

for each B ∈ B.

Note that, by the martingale convergence theorem, if An is a monotonic sequence
then (3*) holds with A = A∗ = A∗.
Theorem 8. Suppose B is countably generated and, for each n ≥ 1:

There are a r.c.d. νn for P given An and a set Cn ∈ An(4)

such that P (Cn) = 1 and νn(ω) is 0-1 on An for all ω ∈ Cn.

If (3) holds and A ⊂ A∗, or if (3*) holds and A ⊂ A∗, then

µ(ω) is 0-1 on A for each ω ∈ A0, where A0 ∈ A and P (A0) = 1

(that is, condition (1) holds). In particular, condition (1) holds whenever An is a
monotonic sequence and A = A∗ = A∗.
Proof. Suppose A ⊂ A∗ and (3) holds. Define

V B
n (ω) = sup

H∈An

∣∣∣µ(ω)(B ∩H)− µ(ω)(B)µ(ω)(H)
∣∣∣, n ≥ 1, B ∈ B, ω ∈ Ω,

and let B0 be a countable field such that B = σ(B0). It is enough proving that:

There are a subsequence (nj) and a set A0 ∈ A such that(5)

P (A0) = 1 and lim
j

V B
nj

(ω) = 0 for all ω ∈ A0 and B ∈ B0.

Suppose in fact (5) holds. Fix ω ∈ A0, B ∈ B and ε > 0. Since B0 is a field
which generates B, there is B0 ∈ B0 such that µ(ω)(B∆B0) < ε. Hence,

V B
n (ω) ≤ sup

H∈An

∣∣∣µ(ω)(B ∩H)− µ(ω)(B0 ∩H)
∣∣∣+

+ sup
H∈An

∣∣∣µ(ω)(B0 ∩H)− µ(ω)(B0)µ(ω)(H)
∣∣∣ + sup

H∈An

∣∣∣µ(ω)(B0)µ(ω)(H)− µ(ω)(B)µ(ω)(H)
∣∣∣

≤ V B0
n (ω) + 2µ(ω)(B∆B0) < V B0

n (ω) + 2ε for all n.
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Since ω ∈ A0 and B0 ∈ B0, condition (5) yields

lim sup
j

V B
nj

(ω) ≤ 2ε + lim sup
j

V B0
nj

(ω) = 2ε.

Thus, limj V B
nj

(ω) = 0 for all B ∈ B and ω ∈ A0. Denote C =
⋃

n≥1

⋂
j≥nAj and

fix ω ∈ A0 and A ∈ C. If A ∈ Ak for some k, then

|µ(ω)(A)− µ(ω)(A)2| ≤ sup
H∈Ak

∣∣∣µ(ω)(A ∩H)− µ(ω)(A)µ(ω)(H)
∣∣∣ = V A

k (ω).

Since A ∈ C, there is n such that A ∈ Ak for each k ≥ n, so that

|µ(ω)(A)− µ(ω)(A)2| ≤ lim
j

V A
nj

(ω) = 0.

Therefore, µ(ω) is 0-1 on C, which implies that µ(ω) is 0-1 on σ(C) = A∗. Since
A ⊂ A∗, condition (1) holds.

It remains to prove condition (5). The proof is split into three steps.

(i) Fix n and take νn and Cn as in condition (4). Since Cn ∈ An and P (Cn) = 1,
up to modifying νn on Cc

n, it can be assumed that νn(ω) is 0-1 on An for all ω ∈ Ω.
We now prove that, for each ω in some set Mn ∈ A with P (Mn) = 1, one has

µ(ω)(B ∩H) =
∫

{νn(H)=1}
νn(x)(B)µ(ω)(dx) for all H ∈ An and B ∈ B

where {νn(H) = 1} denotes the set {x : νn(x)(H) = 1}. Define

µn(ω)(B) =
∫

νn(x)(B)µ(ω)(dx), ω ∈ Ω, B ∈ B.

Since B is countably generated and µn is a r.c.d. for P given A, there is Mn ∈ A
such that P (Mn) = 1 and µn(ω) = µ(ω) for all ω ∈ Mn. Let H ∈ An, B ∈ B and
ω ∈ Mn. Since νn(·)(H) ∈ {0, 1}, then νn(x)(B ∩H) = νn(x)(B)I{νn(H)=1}(x) for
all x ∈ Ω. Thus,

µ(ω)(B ∩H) = µn(ω)(B ∩H) =
∫

νn(x)(B ∩H)µ(ω)(dx)

=
∫

{νn(H)=1}
νn(x)(B)µ(ω)(dx).

(ii) We next prove that, for each ω ∈ Mn ∩ T , where T ∈ A and P (T ) = 1, one
also has

µ(ω)(B)µ(ω)(H) =
∫

{νn(H)=1}
µ(x)(B)µ(ω)(dx) for all H ∈ An and B ∈ B.

Let σ(µ) be the σ-field generated by µ(·)(B) for all B ∈ B. Then, σ(µ) ⊂ A and
σ(µ) is countably generated since B is countably generated. Hence, there is T ∈ A
with P (T ) = 1 and µ(ω)(D) = ID(ω) for all D ∈ σ(µ) and ω ∈ T . Given C ∈ B
and a bounded σ(µ)-measurable function h : Ω → R, it follows that

∫

C

h(x)µ(ω)(dx) = h(ω)µ(ω)(C) whenever ω ∈ T.
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Fix ω ∈ Mn ∩ T , H ∈ An and B ∈ B. Letting h(x) = µ(x)(B) and C = {νn(H) =
1}, one obtains

µ(ω)(B)µ(ω)(H) = µ(ω)(B)µ(ω)
(
νn(H) = 1

)
since ω ∈ Mn

=
∫

{νn(H)=1}
µ(x)(B)µ(ω)(dx) since ω ∈ T.

(iii) Since B0 is countable, by (3) and a diagonalization argument, there is a
subsequence (nj) such that

E
(
IB | Anj

) a.s.→ E
(
IB | A)

, as j →∞, for all B ∈ B0.

Define ZB
n (·) = νn(·)(B) − µ(·)(B) . If B ∈ B0, then ZB

nj

a.s.→ 0 as j → ∞, and
|ZB

nj
| ≤ 1 for all j. Hence,

∫
|ZB

nj
(x)|µ(·)(dx) = E

(|ZB
nj
| | A) a.s.→ 0.

Define further

S = {ω : lim
j

∫
|ZB

nj
(x)|µ(ω)(dx) = 0 for each B ∈ B0} and A0 =

⋂
n

(Mn∩S∩T ).

Then, A0 ∈ A and P (A0) = 1. Given B ∈ B0 and ω ∈ A0, points (i)-(ii) yield:

V B
nj

(ω) = sup
H∈Anj

∣∣∣µ(ω)(B ∩H)− µ(ω)(B)µ(ω)(H)
∣∣∣

= sup
H∈Anj

∣∣∣
∫

{νnj
(H)=1}

νnj (x)(B)µ(ω)(dx)−
∫

{νnj
(H)=1}

µ(x)(B)µ(ω)(dx)
∣∣∣

= sup
H∈Anj

∣∣∣
∫

{νnj
(H)=1}

ZB
nj

(x)µ(ω)(dx)
∣∣∣

≤
∫
|ZB

nj
(x)|µ(ω)(dx) → 0 as j →∞.

Thus (5) holds, and this concludes the proof in case A ⊂ A∗ and (3) holds.
Finally, suppose A ⊂ A∗ and (3*) holds. By using (3*) instead of (3), in point

(iii) there is no need of taking a subsequence (nj), and one obtains limn V B
n (ω) = 0

for all B ∈ B0 and ω in a set A0 ∈ A with P (A0) = 1. Arguing as at the beginning
of this proof, this in turn implies limn V B

n (ω) = 0 for all B ∈ B and ω ∈ A0. Denote
L =

⋂
n≥1

⋃
j≥nAj and fix ω ∈ A0 and A ∈ L. Since A ∈ L, there is a subsequence

(mj) (possibly depending on A) such that A ∈ Amj for all j. Hence,

|µ(ω)(A)− µ(ω)(A)2| ≤ sup
H∈Amj

∣∣∣µ(ω)(A ∩H)− µ(ω)(A)µ(ω)(H)
∣∣∣ = V A

mj
(ω) → 0.

Therefore, µ(ω) is 0-1 on L, which implies that µ(ω) is 0-1 on σ(L) = A∗. Since
A ⊂ A∗, this concludes the proof. ¤

For Theorem 8 to apply, it is useful to have some condition implying existence of
r.c.d.’s whatever the sub-σ-field is. One such condition is: P admits a r.c.d. given
G, for any sub-σ-field G ⊂ B, provided P is perfect and B countably generated; see
[8]. We recall that P is perfect in case each B-measurable function f : Ω → R meets
P (f ∈ I) = 1 for some real Borel set I ⊂ f(Ω). For P to be perfect, it is enough
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that Ω is a universally measurable subset of a Polish space (in particular, a Borel
subset) and B the Borel σ-field on Ω.

Thus, Theorem 8 applies whenever P is perfect, An is a decreasing sequence of
countably generated σ-fields, and A =

⋂
nAn. This particular case, where A is a

tail σ-field, has been already proved in Theorem 15 of [2]. But Theorem 8 covers
various other real situations.

Example 9. (Increasing unions of tail σ-fields) Let (Xi,j : i, j = 1, 2, . . .) be
an array of real random variables on (Ω,B, P ) and

Z(n)
m = (Xm,1, . . . , Xm,n), An =

⋂
m

σ(Z(n)
m , Z

(n)
m+1, . . .).

Then, A1 ⊂ A2 ⊂ . . . and, for each n, An is the tail σ-field of the sequence
(Z(n)

m : m ≥ 1). Thus, An meets condition (4) as far as B is countably generated
and P perfect. In that case, by Theorem 8, condition (1) holds for A = σ(∪nAn).

Example 10. (Increasing unions of finite groups) Let
F1 ⊂ F2 ⊂ . . . be an increasing sequence of finite groups of measurable functions of
Ω into itself, and

A = AS
n Fn

=
⋂
n

AFn .

Suppose B is countably generated and P perfect. Then, Theorems 6 and 8 imply
that µ(ω) is 0-1 on A for each ω ∈ A0, where A0 ∈ A and P (A0) = 1.

Finally, as a last and most important example, we mention the symmetric σ-field.

Example 11. (Symmetric σ-field) As in Example 7, let (Ω,B) = (X∞,U∞)
where (X ,U) is a measurable space and U is countably generated. Denoting Fn the
group of permutations of order n, the symmetric σ-field is

A = {B ∈ B : f−1B = B for all f ∈
⋃
n

Fn} =
⋂
n

AFn .

This is just a case of Example 10. If P is perfect, thus, there is A0 ∈ A such that
P (A0) = 1 and µ(ω) is 0-1 on A for each ω ∈ A0.
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