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Abstract. Let X = {Xt : 0 ≤ t ≤ 1} be a centered Gaussian process with

continuous paths, and In = an
2

∫ 1
0 t

n−1(X2
1−X2

t ) dt where the an are suitable

constants. Fix β ∈ (0, 1), cn > 0 and c > 0 and denote by Nc the centered

Gaussian kernel with (random) variance cX2
1 . Under an Holder condition on

the covariance function of X, there is a constant k(β) such that

‖P
(√
cn In ∈ ·

)
− E

[
Nc(·)

]
‖ ≤ k(β)

( an

n1+α

)β
+
|cn − c|

c
for all n ≥ 1,

where ‖·‖ is total variation distance and α the Holder exponent of the covari-

ance function. Moreover, if an
n1+α → 0 and cn → c, then

√
cn In converges

‖·‖-stably to Nc, in the sense that

‖PF
(√
cn In ∈ ·

)
− EF

[
Nc(·)

]
‖ → 0

for every measurable F with P (F ) > 0. In particular, such results apply
to X = fractional Brownian motion. In that case, they strictly improve the

existing results in [5] and provide an essentially optimal rate of convergence.

1. Introduction

Malliavin calculus is a powerful tool which leads to effective results in a plenty
of frameworks. Being a general approach, however, Malliavin calculus can not
be expected to give optimal results in any specific problem. Indeed, it may be
that (much) stronger results can be obtained through standard methods designedly
shaped to the problem at hand.

This paper provides an example of this fact.
In [5], Nourdin, Nualart and Peccati establish general results on Malliavin op-

erators and then apply such results to some (meaningful) special cases. Following
this route, they get stable limit theorems for quadratic functionals of fractional
Brownian motion.

Let B be a fractional Brownian motion with Hurst parameter H on the proba-
bility space (Ω,F , P ). Define

An =
n1+H

2

∫ 1

0

tn−1(B2
1 −B2

t ) dt.

The asymptotics of An and other analogous functionals (such as weighted power
variations) is investigated in various papers. See e.g. [3], [5], [6] and references
therein. One more reason for dealing with An is that, for H ≥ 1/4,∫ 1

0

tnBt dBt =
An
nH
− H

2H + n
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where the stochastic integral is meant in Skorohod’s sense (it reduces to an Ito
integral if H = 1/2); see [1].

Let c = H Γ(2H) and let Nc be the Gaussian random probability measure with
mean 0 and (random) variance cB2

1 . We denote by E[Nc(·)] the probability measure
on B(R) given by A 7→ E[Nc(A)]. Equivalently, E[Nc(·)] may be regarded as the
probability distribution of

√
cU B1, where U is a standard normal random variable

independent of B1.
In [5, Theorem 3.6] it is shown that, if H ∈ [1/2, 1), then An converges stably

to Nc and

‖P (An ∈ ·)− E[Nc(·)] ‖ ≤ k n−(1−H)/15 for all n ≥ 1,

where ‖·‖ is total variation distance and k a constant independent of n.
In this paper it is proved that, for every H ∈ (0, 1) and β ∈ (0, 1), there is a

constant k(H,β) such that

‖P (An ∈ ·)− E[Nc(·)] ‖ ≤ k(H,β)n−β a(H) for all n ≥ 1(1)

where

a(H) = 1/2− |1/2−H|.
Furthermore, for fixed ε > 0,

‖P (An ∈ ·)− E[Nc(·)] ‖ is not O
(
n−a(H)−ε).(2)

Roughly speaking, ‖P (An ∈ ·)−E[Nc(·)] ‖ can be estimated for every H ∈ (0, 1)
(and not only for H ∈ [1/2, 1)) with a rate arbitrarily close to n−H or n−(1−H)

according to whether H < 1/2 or H ≥ 1/2. Also, in view of (2), such a rate is
quite close to be optimal.

In addition, An converges stably to Nc in a very strong sense. In fact,

‖PF (An ∈ ·)− EF [Nc(·)] ‖ → 0(3)

for every F ∈ F with P (F ) > 0, where PF (·) = P (· | F ) is the probability measure
on F conditional on F and EF denotes expectation under PF .

Both (1) and (3) are proved by standard, elementary tools. Thus, a question is
whether they can be obtained by Malliavin calculus.

A last note is that the class of functionals covered by this paper is actually richer
than it appears so far. In fact, (1) and (3) are strengthened as follows.

(i) Up to replacing n1+H and c with appropriate constants, (1) and (3) are
still true if B is any centered Gaussian process with a suitable covariance
function.

(ii) Let Kt = Bt − E(BtB1)B1 and T = (Kt1 , . . . ,Ktm), where t1, . . . , tm ∈
[0, 1]. Then, inequality (1) generalizes into

‖P
[
(T, An) ∈ ·

]
−Qc(·) ‖ ≤ k n−β a(H) for all n ≥ 1,

where the constant k depends on t1, . . . , tm, H and β while Qc is a suitable
probability measure on B(Rm+1). Further, the pairs (T,An) converge stably
(in the strong sense mentioned above) to the product kernel δT ×Nc.

(iii) Our method of proof allows to handle functionals, more general than An,
such as

A′n =
n1+H

p

∫ 1

0

tn−1(Bp1 −B
p
t ) {1 + g(Kt)} dt
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where K has been defined in (ii), g is a suitable function and p ≥ 2 any in-
teger. In particular, contrary to Malliavin calculus, the rate of convergence
of A′n does not depend on the degree of g when g is a polynomial.

Points (i)-(ii) are developed in Sections 3-4, while point (iii) is only briefly dis-
cussed in Section 5. However, A′n could be managed by exactly the same techniques
used for An.

2. Preliminaries

2.1. Notation. All random elements involved in this paper are defined on a fixed
probability space

(Ω,F , P ).

If F ∈ F and P (F ) > 0, we let PF (A) = P (A ∩ F )/P (F ) for all A ∈ F and we
write EF to denote expectation under PF .

Let X be a topological space. Then, B(X ) denotes the Borel σ-field on X and
P(X ) the collection of probability measures on B(X ). Also, ‖·‖ is the total variation
distance on P(X ), namely,

‖µ− ν‖ = sup
A∈B(X )

|µ(A)− ν(A)| whenever µ, ν ∈ P(X ).

A measurable map L : Ω→ P(X ) is called a random probability measure on X or
a kernel on X . Measurability means that ω 7→ L(ω)(A) is F-measurable for fixed
A ∈ B(X ).

We denote by δx the unit mass at the point x and we write X ∼ µ to mean that
µ is the probability distribution of the random variable X. Further, N (a, b) is the
Gaussian law on B(R) with mean a ∈ R and variance b ≥ 0 (with N (a, 0) = δa).
Finally, the standard normal density is denoted by φ, namely,

φ(x) = (2π)−1/2 exp
(
−(1/2)x2

)
.

2.2. A (natural) extension of stable convergence. Let G ⊂ F be a sub-σ-field.
For each U ⊂ F , write

U+ = {F ∈ U : P (F ) > 0}.

Also, let X be a separable metric space, L a random probability measure on X and
Xn a sequence of X -valued random variables.

Then, Xn converges to L stably with respect to G if

PG(Xn ∈ ·)
weakly−→ EG[L(·)]

as n → ∞ for all G ∈ G+. Here, EG[L(·)] stands for the probability measure on
B(X ) given by A 7→ EG[L(A)].

Stable convergence can be extended, consistently with Renyi’s original ideas [7],
as follows. Fix a distance d on P(X ) and say that Xn converges to L, d-stably with
respect to G, if

d
(
PG(Xn ∈ ·), EG[L(·)]

)
→ 0

as n→∞ for all G ∈ G+. Such a definition reduces to the previous one if d is any
distance metrizing weak convergence of probability measures.
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In the sequel, we let

G = F and d = ‖·‖ = total variation distance.

Since G = F , for simplicity, G is not mentioned at all. Hence, Xn is said to converge
‖·‖-stably to L if

lim
n
‖PF (Xn ∈ ·)− EF [L(·)] ‖ = 0(4)

for all F ∈ F+.
A last note is that, to prove ‖·‖-stable convergence, it suffices to get (4) for

certain conditioning events F .

Lemma 1. Let U ⊂ F be such that: (i) Ω ∈ U ; (ii) U is closed under finite
intersections; (iii) σ(U) ⊃ σ(L,X1, X2, . . .). If condition (4) holds for all F ∈ U+,
then Xn converges ‖·‖-stably to L.

Proof. By (i)-(ii) and the inclusion-exclusion formulae, condition (4) holds for each
F in the field generated by U . Hence, it can be assumed that U is a field. Note
also that, for any F, G ∈ F+,

‖PF (Xn ∈ ·)− EF [L(·)] ‖ ≤ 2P (F∆G) + ‖PG(Xn ∈ ·)− EG[L(·)] ‖
P (F )

.

Next, fix F ∈ σ(U)+ and ε > 0. Since U is a field, there is G ∈ U+ such that
2P (F∆G)/P (F ) < ε. Thus, condition (4) holds for all F ∈ σ(U)+. It follows that

sup
A∈B(X )

∣∣∣E(1{Xn∈A}V
)
− E

(
L(A)V

)∣∣∣→ 0

provided the random variable V is bounded and σ(U)-measurable. Therefore, be-
cause of (iii), for each F ∈ F+ one obtains

‖PF (Xn ∈ ·)− EF [L(·)] ‖ =

=
1

P (F )
sup

A∈B(X )

∣∣∣E(1{Xn∈A}E(1F | σ(U))
)
− E

(
L(A)E(1F | σ(U))

)∣∣∣→ 0.

�

2.3. Technical lemmas. A few simple facts are needed to prove our main result
(Theorem 6). They are most probably known, but we provide proofs since we are
not aware of any reference.

Lemma 2. Let Xn and X be real random variables. If

E(|Xn|p) = O(1) and ‖P (Xn ∈ ·)− P (X ∈ ·)‖ = O(n−b),

for all p > 0 and some b > 0, then

|E(Xn)− E(X)| = O
(
n−b+ε

)
for all ε > 0.

Proof. First note that E(|X|) ≤ lim infnE(|Xn|) <∞. Up to considering positive
and negative parts, it can be assumed Xn ≥ 0 and X ≥ 0. Then, for all n ≥ 1,
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t0 > 0 and p > 1, one obtains

|E(Xn)− E(X)| =
∣∣∣∫ ∞

0

{
P (Xn > t)− P (X > t)

}
dt
∣∣∣

≤ t0 ‖P (Xn ∈ ·)− P (X ∈ ·)‖+

∫ ∞
t0

{
P (Xn > t) + P (X > t)

}
dt

≤ t0 c n−b +

∫ ∞
t0

E(Xp
n) + E(Xp)

tp
dt

≤ t0 c n−b +

∫ ∞
t0

cp
tp
dt = t0 c n

−b + cp
t1−p0

p− 1

where c and cp are suitable constants. Thus, given ε > 0, it suffices to take t0 = nε

and p > max(1, b/ε). �

Lemma 3. If a1, a2 ∈ R, 0 ≤ b1 ≤ b2 and b2 > 0, then

‖N (a1, b1)−N (a2, b2)‖ ≤ 1−
√
b1
b2

+
|a1 − a2|√

2π b2
.

Proof. The lemma is trivially true if b1 = 0. Hence, it can be assumed b1 > 0. Let
u =

√
b1/b2. Since u ≤ 1, then φ(x) ≤ φ(ux) for each x ≥ 0. Thus,

‖N (a1, b1)−N (a1, b2)‖ = ‖N (0, b1)−N (0, b2)‖

=
1

2

∫ ∞
−∞

∣∣∣ 1√
b1
φ
( x√

b1

)
− 1√

b2
φ
( x√

b2

)∣∣∣ dx =

∫ ∞
0

|φ(x)− uφ(ux)| dx

≤ (1− u)

∫ ∞
0

φ(x) dx+ u

∫ ∞
0

(
φ(ux)− φ(x)

)
dx

=
(1− u)

2
+

1

2
− u

2
= 1− u.

Letting α = (a1 − a2)/
√
b2, one also obtains

‖N (a1, b2)−N (a2, b2)‖ = ‖N (α, 1)−N (0, 1)‖

=
1

2

∫ ∞
−∞
|φ(x− α)− φ(x)| dx =

∫ |α|
2

− |α|2
φ(x) dx ≤ |α|√

2π
.

Therefore,

‖N (a1, b1)−N (a2, b2)‖ ≤ ‖N (a1, b1)−N (a1, b2)‖+ ‖N (a1, b2)−N (a2, b2)‖

≤ 1− u+
|α|√
2π

.

�

If a1 = a2, Lemma 3 is well known; see e.g. [4, Proposition 3.6.1]. In this case,
one trivially obtains

‖N (a, b1)−N (a, b2)‖ ≤ |b1 − b2|
bi

for each i such that bi > 0.

As already pointed out, Lemma 3 is most probably known even if a1 6= a2, but we
do not know of any reference.

In the next result, U, T1, . . . , Tm are real random variables and T = (T1, . . . , Tm).
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Lemma 4. Let λ and µ be the probability distributions of T and (T,U), respectively,
and

ν = λ×N (0, b) where b > 0.

If (T,U) has a centered Gaussian distribution, then

‖µ− ν‖ ≤ r√
b

{
|
√
b−

√
E(U2)|+

m∑
i=1

|E(UTi)|
}

where the constant r depends only on λ.

Proof. Throughout this proof, each x ∈ Rm is regarded as a column vector, x′ is
the transpose of x and

‖x‖∗ =

m∑
i=1

|xi|.

Let Σ be the covariance matrix of T . If rank(Σ) = 0, then T1 = . . . = Tm = 0
a.s. and the lemma is trivially true because of Lemma 3. If 0 < rank(Σ) < m, there
is a subvector T0 of T and a (linear) function h such that T = h(T0) a.s. and T0

has non-singular covariance matrix. In that case, denoting by V a random variable
independent of T such that V ∼ N (0, b), one obtains

‖µ− ν‖ = ‖P
(
(T,U) ∈ ·

)
− P

(
(T, V ) ∈ ·

)
‖ = ‖P

(
(h(T0), U) ∈ ·

)
− P

(
(h(T0), V ) ∈ ·

)
‖

≤ ‖P
(
(T0, U) ∈ ·

)
− P

(
(T0, V ) ∈ ·

)
‖.

Thus, up to replacing T with T0, it can be assumed rank(Σ) = m.
Let C ′ =

(
E(UT1), . . . , E(UTm)

)
. For t ∈ Rm, define

µt = N
(
C ′Σ−1t, E(U2)− C ′Σ−1C

)
.

Then, {µt : t ∈ Rm} is a version of the conditional distribution of U given T . By
Lemma 3,

‖µt −N (0, b)‖ ≤ 1√
b

(∣∣∣√b−√E(U2)− C ′Σ−1C
∣∣∣+ |C ′Σ−1t|

)
≤ 1√

b

(
|
√
b−

√
E(U2)|+

√
C ′Σ−1C + |C ′Σ−1t|

)
.

Hence, there is a constant r0 depending only on Σ such that

‖µt −N (0, b)‖ ≤ r0√
b

(
|
√
b−

√
E(U2)|+ ‖C‖∗ + ‖C‖∗‖Σ−1t‖∗

)
.

Define

r = r0

(
1 +

∫
‖Σ−1t‖∗ λ(dt)

)
(recall that λ is the probability distribution of T ). Then,

‖µ− ν‖ ≤
∫
‖µt −N (0, b)‖λ(dt)

≤ r0√
b

(
|
√
b−

√
E(U2)|+ ‖C‖∗ + ‖C‖∗

∫
‖Σ−1t‖∗ λ(dt)

)
≤ r√

b

(
|
√
b−

√
E(U2)|+ ‖C‖∗

)
.

�
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The last lemma plays a key role in proving Theorem 6.

Lemma 5. Let U be a standard normal random variable and D = {U > x}, where
x ∈ R ∪ {−∞}. Then, there is a constant q ≥ 1 (independent of x) such that

‖PD
(
rU2 + yU + z ∈ ·

)
− PD

(
yU ∈ ·

)
‖ ≤ min

(
1,

q

P (D)

|r|+ |z|
|y|

)
for all r, y, z ∈ R with y 6= 0.

Proof. On noting that

‖PD
(
rU2 + yU + z ∈ ·

)
− PD

(
yU ∈ ·

)
‖ = ‖PD

( r
y
U2 + U +

z

y
∈ ·
)
− PD(U ∈ ·)‖,

it can be assumed y = 1.
By Lemma 3, ‖P (U + z ∈ ·)− P (U ∈ ·)‖ ≤ |z|. Hence,

‖P
(
rU2 + U + z ∈ ·

)
− P

(
U ∈ ·

)
‖ ≤ ‖P

(
rU2 + U + z ∈ ·

)
− P

(
U + z ∈ ·

)
‖+ |z|

= ‖P
(
rU2 + U ∈ ·

)
− P

(
U ∈ ·

)
‖+ |z|.

Define

η = P
(
{U > x}∆{rU2 + U + z > x}

)
.

Then,

P (D) ‖PD
(
rU2 + U + z ∈ ·

)
− PD

(
U ∈ ·

)
‖

≤ η + ‖P
(
rU2 + U + z ∈ ·

)
− P

(
U ∈ ·

)
‖

≤ η + |z|+ ‖P
(
rU2 + U ∈ ·

)
− P

(
U ∈ ·

)
‖.

Since {U+z > x} ⊂ {rU2+U+z > x} if r > 0 and {rU2+U+z > x} ⊂ {U+z > x}
if r < 0, one also obtains

η ≤ P
(
{U > x}∆{U + z > x}

)
+ P

(
{U + z > x}∆{rU2 + U + z > x}

)
≤ |z|+

∣∣∣P (U + z > x
)
− P

(
rU2 + U + z > x

)∣∣∣
≤ |z|+ ‖P (rU2 + U ∈ ·)− P (U ∈ ·)‖.

In addition, since −U ∼ U ,

‖P
(
−rU2 + U ∈ ·

)
− P

(
U ∈ ·

)
‖ = ‖P

(
rU2 + U ∈ ·

)
− P

(
U ∈ ·

)
‖.

To summarize, to prove the lemma, it suffices to see that there is a constant
q ≥ 1 such that

‖P
(
r U2 + U ∈ ·

)
− P

(
U ∈ ·

)
‖ ≤ q r for each r ∈ (0, 1].(5)

We finally prove (5). Define

q = 7 + 6

∫ ∞
0

u3 φ
( 2u

1 +
√

1 + 4u

)
du

and fix r ∈ (0, 1]. Let g be the density of r U2+U with respect to Lebesgue measure.
Then, g(u) = 0 if u ≤ −1/4r and g(u) = φ1(u) + φ2(u) if u > −1/4r, where

φ1(u) = φ
(−1 +

√
1 + 4ru

2r

) 1√
1 + 4ru

, φ2(u) = φ
(
−1 +

√
1 + 4ru

2r

) 1√
1 + 4ru

.
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On noting that P
(
U < −(1/c)

)
≤ c for all c > 0 and∫ ∞

− 1
4r

φ2(u) du =

∫ − 1
2r

−∞
φ(u) du = P

(
U < − 1

2r

)
,

one obtains

2 ‖P
(
r U2 + U ∈ ·

)
− P

(
U ∈ ·

)
‖ =

∫ ∞
−∞
|g(u)− φ(u)| du ≤ 6r +

∫ ∞
− 1

4r

|φ1(u)− φ(u)| du

≤ 6r +

∫ ∞
− 1

4r

φ
(−1 +

√
1 + 4ru

2r

) 4r|u|√
1 + 4ru

du+

∫ ∞
− 1

4r

∣∣∣φ(−1 +
√

1 + 4ru

2r

)
− φ(u)

∣∣∣ du.
Since r ≤ 1,∫ ∞
− 1

4r

φ
(−1 +

√
1 + 4ru

2r

) 4r|u|√
1 + 4ru

du = 4r

∫ ∞
− 1

2r

|ru2 + u|φ(u) du ≤ 4r E
{
U2 + |U |

}
≤ 8r.

Since

−1 +
√

1 + 4ru

2r
=

2u

1 +
√

1 + 4ru
and

∣∣∣ 2u

1 +
√

1 + 4ru
− u
∣∣∣ ≤ 4ru2,

the Lagrange theorem yields∫ ∞
− 1

4r

∣∣∣φ(−1 +
√

1 + 4ru

2r

)
− φ(u)

∣∣∣ du ≤
≤
∫ 0

− 1
4r

4ru2 2|u|
1 +
√

1 + 4ru
φ(u) du +

∫ ∞
0

4ru2 uφ
( 2u

1 +
√

1 + 4ru

)
du

≤ 8r

∫ 0

− 1
4r

|u|3 φ(u) du + 4r

∫ ∞
0

u3 φ
( 2u

1 +
√

1 + 4u

)
du

≤ 12r

∫ ∞
0

u3 φ
( 2u

1 +
√

1 + 4u

)
du.

Collecting all these facts together,

‖P
(
r U2 + U ∈ ·

)
− P

(
U ∈ ·

)
‖ ≤ 3r + 4r + 6r

∫ ∞
0

u3φ
( 2u

1 +
√

1 + 4u

)
du = q r.

Thus, condition (5) holds, and this concludes the proof. �

Even if conceptually simple, the above proof is quite cumbersome. As suggested
by an anonymous referee, such a proof could be notably shortened by exploiting
Stein’s method to get (5). However, as noted in Section 1, one goal of this paper is
to use elementary tools only. Thus, we have not adopted this shorter proof.

3. Results

From now on, X = {Xt : 0 ≤ t ≤ 1} is a centered Gaussian process with
continuous paths and covariance function

f(s, t) = E
(
XsXt

)
.

We assume f(1, 1) = E(X2
1 ) = 1. More importantly, we assume that there are two

constants α > 0 and γ > 0 such that

|f(s, t)− f(s, 1)| ≤ γ (1− t)α for all s, t ∈ [0, 1].(6)

Note that, since the X-paths are continuous, condition (6) implies continuity of f .
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Let

Kt = Xt − f(t, 1)X1.

The process K is a sort of Brownian bridge based on X. In particular, K is
independent of X1. In the sequel, we fix m ≥ 1, t1, . . . , tm ∈ [0, 1], and we let

T = (Kt1 , . . . ,Ktm).

We aim to investigate

In =
an
2

∫ 1

0

tn−1(X2
1 −X2

t ) dt,

where n ≥ 1 and the constant an is given by

an =
(
E
[(∫ 1

0

tn−1f(t, 1)Kt dt
)2])−1/2

.

The expectation involved in an is finite but may be null. Thus, the convention
1/0 =∞ is adopted.

For each c ≥ 0,

Nc = N
(
0, cX2

1

)
denotes the centered Gaussian kernel with variance cX2

1 . Also, Qc is the product
probability measure on B

(
Rm+1

)
given by

Qc = P (T ∈ ·)× E[Nc(·)].
We are now able to state our main result.

Theorem 6. Let X be a centered Gaussian process with continuous paths and
covariance function satisfying (6). Fix m ≥ 1, t1, . . . , tm ∈ [0, 1], and define T =
(Kt1 , . . . ,Ktm). Then, for all β ∈ (0, 1), cn > 0 and c > 0, one obtains

‖P
[
(T,
√
cn In) ∈ ·

]
−Qc(·) ‖ ≤

|cn − c|
c

+ k
( an
n1+α

)β
for all n ≥ 1

where k is a constant depending on t1, . . . , tm and β. Moreover, if an
n1+α → 0 and

cn → c, then

(T,
√
cn In) converges ‖·‖-stably to the product kernel δT ×Nc.

Based on Theorem 6, if an
n1+α → 0 and cn → c, a conjecture is that (K,

√
cn In)

converges ‖·‖-stably to δK×Nc, where K is regarded as a random element with val-
ues continuous functions on [0, 1]. This is not true, however, as shown by Example
9.

Theorem 6 is actually a consequence of the following lemma, which has possible
independent interest.

Lemma 7. Let D = {X1 > x}, where x ∈ R ∪ {−∞}, and let Q1,D be the product
probability measure on B

(
Rm+1

)
given by

Q1,D = P (T ∈ ·)× ED[N1(·)].

(Note that Q1,Ω = Q1). For every β ∈ (0, 1) there is constant k, depending on
x, t1, . . . , tm and β, such that

‖PD
[
(T, In) ∈ ·

]
−Q1,D(·) ‖ ≤ k

( an
n1+α

)β
for all n ≥ 1.
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Finally, Theorem 6 implies the results mentioned in Section 1, which in turn
largely improve [5, Theorem 3.6].

Recall that a fractional Brownian motion is a centered Gaussian process with
covariance function

f(s, t) =
|s|2H + |t|2H − |s− t|2H

2
,

where the Hurst parameter H ranges in (0, 1). Such f satisfies condition (6) with

α = min(1, 2H).

Corollary 8. Let B be a fractional Brownian motion with Hurst parameter H.
Define

c = H Γ(2H), a(H) = 1/2− |1/2−H|, An =
n1+H

2

∫ 1

0

tn−1(B2
1 −B2

t ) dt,

T = (Kt1 , . . . ,Ktm) for some m ≥ 1 and t1, . . . , tm ∈ [0, 1].

Then, (T,An) converges ‖·‖-stably to the product kernel δT ×Nc. In addition, for
each H ∈ (0, 1) and β ∈ (0, 1), one obtains

‖P
[
(T, An) ∈ ·

]
−Qc(·) ‖ ≤ k n−β a(H) for all n ≥ 1

where k is a constant depending on H, t1, . . . , tm and β.

As noted in Section 1 (see condition (2)) the rate of convergence provided by
Corollary 8 is nearly optimal.

4. Proofs

Our proofs rely on two simple facts. First, In can be written as

In = rnX
2
1 + YnX1 + Zn,(7)

where the rn are constants and (Yn, Zn) random variables independent of X1. Sec-
ond, because of Lemma 5, the asymptotic behavior of In essentially agrees with
that of YnX1.

To prove (7), just note that, since Xt = Kt + f(t, 1)X1,

In = (an/2)

∫ 1

0

tn−1
(

(1− f(t, 1)2)X2
1 − 2f(t, 1)KtX1 −K2

t

)
dt.

Thus, one obtains (7) and (Yn, Zn) independent of X1 by letting

rn = (an/2)

∫ 1

0

tn−1(1− f(t, 1)2) dt,

Yn = −an
∫ 1

0

tn−1f(t, 1)Kt dt,

Zn = −(an/2)

∫ 1

0

tn−1K2
t dt.

Two more remarks are in order. First, up to replacing k with max
(
k, 1

)
, the

inequalities in Theorem 6 and Lemma 7 are trivially true if an > n1+α (in particular,
if an =∞). Accordingly, in the sequel, we assume that

an ≤ n1+α for each n ≥ 1.



TOTAL VARIATION BOUNDS 11

Second, for each ε > 0, Stirling formula implies

n1+ε

Γ(ε+ 1)

∫ 1

0

tn−1(1− t)ε dt =
nε n!

Γ(n+ ε+ 1)
= 1 + O(n−1).(8)

4.1. Proof of Lemma 7. Let β ∈ (0, 1). Denote by λn and λ∗n the probability
distributions of (Yn, Zn) and (T, Yn, Zn), respectively. Since In = rnX

2
1 +YnX1+Zn

and X1 is independent of (T, Yn, Zn), one obtains

‖PD
[
(T, In) ∈ ·

]
− PD

[
(T, YnX1) ∈ ·

]
‖ ≤

≤
∫
‖PD

[
(t, rnX

2
1 + yX1 + z) ∈ ·

]
− PD

[
(t, yX1) ∈ ·

]
‖λ∗n(dt, dy, dz)

≤
∫
‖PD

(
rnX

2
1 + yX1 + z ∈ ·

)
− PD

(
yX1 ∈ ·

)
‖λn(dy, dz)

≤
∫

min
(
1,

q

P (D)

|rn|+ |z|
|y|

)
λn(dy, dz)

= E
(

min
(
1,

q

P (D)

|rn|+ |Zn|
|Yn|

))
where q is a constant and the last inequality depends on Lemma 5. Thus, to prove
Lemma 7, it suffices to see that

E
(

min
(
1,

q

P (D)

|rn|+ |Zn|
|Yn|

))
= O

(( an
n1+α

)β)
(9)

and

‖PD
[
(T, YnX1) ∈ ·

]
−Q1,D(·)‖ = O

(( an
n1+α

)β)
.(10)

We begin with (9). Fix an integer m ≥ 1 and define

δ = sup
t

(1 + |f(t, 1)|) and µn(dt) = n 1[0,1](t) t
n−1 dt.

By condition (6), |1− f(t, 1)| ≤ γ(1− t)α. By Stirling formula (8),

n

∫ 1

0

tn−1(1− t)mα dt ≤ b n−mα

for some constant b. Hence,

|2 rn|m = amn

∣∣∣(1/n)

∫ 1

0

(1− f(t, 1)2)µn(dt)
∣∣∣m ≤ (an/n)m

∫ 1

0

|1− f(t, 1)2|m µn(dt)

≤ (an/n)m δm
∫ 1

0

|1− f(t, 1)|m µn(dt) ≤ (an/n)m (γ δ)m
∫ 1

0

(1− t)mα µn(dt)

= (an/n)m (γ δ)m n

∫ 1

0

tn−1(1− t)mα dt ≤ b (γ δ)m
( an
n1+α

)m
.

As to Zn, first note that Kt is a centered Gaussian random variable with variance

E(K2
t ) = f(t, t)− f(t, 1)2 ≤ |1− f(t, t)|+ |1− f(t, 1)2|

≤ δ
(
|f(t, 1)− f(t, t)|+ 2 |1− f(t, 1)|

)
≤ 3 γ δ (1− t)α,

where the last inequality is by (6). Since X1 ∼ N (0, 1),

E(K2m
t ) = E(X2m

1 )E(K2
t )m ≤ E(X2m

1 ) (3 γ δ)m (1− t)mα.
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Therefore,

E
(
|2Zn|m

)
≤ (an/n)mE

(∫ 1

0

K2m
t µn(dt)

)
= (an/n)m

∫ 1

0

E(K2m
t )µn(dt)

≤ E(X2m
1 ) (3 γ δ)m (an/n)m n

∫ 1

0

tn−1(1− t)mα dt ≤ bE(X2m
1 ) (3 γ δ)m

( an
n1+α

)m
.

Hence, for each fixed m ≥ 1, there is a constant b(m) such that

E
(

(|rn|+ |Zn|)m
)
≤ (1/2)

(
|2 rn|m + E(|2Zn|m)

)
≤ b(m)

( an
n1+α

)m
.

Next, take m > β/(1−β). On noting that min(1, u) ≤ uβ for every u ≥ 0 (since
0 < β < 1) one obtains

E
(

min
(
1,

q

P (D)

|rn|+ |Zn|
|Yn|

))
≤
( q

P (D)

)β
E
(

(|rn|+ |Zn|)β |Yn|−β
)

≤
( q

P (D)

)β
E
(

(|rn|+ |Zn|)m
) β
m

E
(
|Yn|

−mβ
m−β

)m−β
m

where the second inequality depends on Schwartz-Holder inequality with exponent
p = m/β. Further,

E
(
|Yn|

−mβ
m−β

)m−β
m = E

(
|X1|

−mβ
m−β

)m−β
m <∞

since Yn ∼ N (0, 1) ∼ X1 and mβ < m− β. Thus, one finally obtains

E
(

min
(
1,

q

P (D)

|rn|+ |Zn|
|Yn|

))
≤ b∗

( an
n1+α

)β
for some constant b∗.

It remains to prove (10). For each u ∈ R \ {0}, let νu be the product probability
measure on B(Rm+1) given by

νu = P (T ∈ ·)×N (0, u2).

Recalling that T = (Kt1 , . . . ,Ktm) and Ynu ∼ N (0, u2), Lemma 4 implies

‖P
[
(T, Ynu) ∈ ·

]
− νu(·)‖ ≤ r

|u|

m∑
i=1

|E(KtiYnu)| = r

m∑
i=1

|E(KtiYn)|

where the constant r depends only on the distribution of T . Conditioning on X1,
it follows that

‖PD
[
(T, YnX1) ∈ ·

]
−Q1,D(·)‖ ≤ 1

P (D)

∫ ∞
x

‖P
[
(T, Ynu) ∈ ·

]
− νu(·)‖φ(u) du

≤ r

P (D)

m∑
i=1

|E(KtiYn)|.

On the other hand,

−E(KtiYn) = anE
(∫ 1

0

tn−1f(t, 1)Kti Kt dt
)

= an

∫ 1

0

tn−1f(t, 1)E
(
Kti Kt

)
dt

= an

∫ 1

0

tn−1f(t, 1)
{
f(ti, t)− f(ti, 1)f(t, 1)} dt.
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By condition (6),∣∣∣f(t, 1)
{
f(ti, t)− f(ti, 1)f(t, 1)}

∣∣∣ ≤ γ δ (δ − 1) (1− t)α.

Therefore, using (8) again, there is a constant b∗∗ such that

‖PD
[
(T, YnX1) ∈ ·

]
−Q1,D(·)‖ ≤ mr γ δ (δ − 1)

P (D)
an

∫ 1

0

tn−1 (1− t)α dt ≤ b∗∗ an
n1+α

.

Finally, since an ≤ n1+α and β ∈ (0, 1), one also obtains

‖PD
[
(T, YnX1) ∈ ·

]
−Q1,D(·)‖ ≤ b∗∗

( an
n1+α

)β
.

Thus, condition (10) holds, and this concludes the proof of Lemma 7.

4.2. Lemma 7 implies Theorem 6. First note that ‖µ−ν‖ = ‖µ◦h−1−ν ◦h−1‖
whenever µ and ν are probability laws on B(Rm+1) and h : Rm+1 → Rm+1 is
bijective and Borel. Given a constant b > 0, take

h(u, v) = (u,
v√
b
) for u ∈ Rm and v ∈ R.

On noting that Qb ◦ h−1 = Q1, one obtains

‖P
[
(T,
√
b In) ∈ ·

]
−Qb(·)‖ = ‖P

[
(T, In) ∈ ·

]
−Q1(·)‖.

Fix β ∈ (0, 1), cn > 0 and c > 0. By Lemma 7,

‖P
[
(T,
√
cn In) ∈ ·

]
−Qcn(·)‖ = ‖P

[
(T, In) ∈ ·

]
−Q1(·)‖ ≤ k

( an
n1+α

)β
for some constant k and every n ≥ 1. By Lemma 3,

‖Qcn(·)−Qc(·)‖ ≤ E
{
‖N (0, cnX

2
1 )−N (0, cX2

1 )‖
}
≤ |cn − c|

c
.

Therefore,

‖P
[
(T,
√
cn In) ∈ ·

]
−Qc(·)‖ ≤

|cn − c|
c

+ k
( an
n1+α

)β
for all n ≥ 1.

Next, suppose an
n1+α → 0 and cn = c = 1. We have to show that (T, In) converges

‖·‖-stably to δT × N1. To this end, because of Lemma 1, we can restrict to those
conditioning events F of the type

F =
{
S ∈ A, X1 > x

}
where S = (Ks1 , . . . ,Ksp) for some p ≥ 1 and s1, . . . , sp ∈ [0, 1], A ∈ B(Rp) and
x ∈ R∪ {−∞}. Take one such F , with P (F ) > 0, and write D = {X1 > x}. Then,

PF
[
(T, In) ∈ ·

]
=
PD
[
S ∈ A, (T, In) ∈ ·

]
P (S ∈ A)

and

EF
[
δT ×N1(·)

]
=
ED
[
1{S∈A} δT ×N1(·)

]
P (S ∈ A)

.

Let T ∗ = (S, T ) and Q∗1,D = P (T ∗ ∈ ·)×ED[N1(·)]. By Lemma 7, applied with T ∗

and Q∗1,D in the place of T and Q1,D, there is a constant k such that

‖PF
[
(T, In) ∈ ·

]
− EF

[
δT ×N1(·)

]
‖ ≤
‖PD

[
(T ∗, In) ∈ ·

]
−Q∗1,D(·)‖

P (S ∈ A)
≤
k
(

an
n1+α

)β
P (S ∈ A)

.
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Hence, (T, In) converges ‖·‖-stably to δT ×N1 since an
n1+α → 0.

Finally, suppose an
n1+α → 0 and cn → c. Fix F ∈ F+. Arguing as above,

‖PF
[
(T,
√
cn In) ∈ ·

]
− EF

[
δT ×Ncn(·)

]
‖ = ‖PF

[
(T, In) ∈ ·

]
− EF

[
δT ×N1(·)

]
‖.

Thus,

‖PF
[
(T,
√
cn In) ∈ ·

]
− EF

[
δT ×Nc(·)

]
‖ ≤

≤ ‖PF
[
(T, In) ∈ ·

]
− EF

[
δT ×N1(·)

]
‖+ ‖EF

[
δT ×Ncn(·)

]
− EF

[
δT ×Nc(·)

]
‖

≤ ‖PF
[
(T, In) ∈ ·

]
− EF

[
δT ×N1(·)

]
‖+
|cn − c|

c
→ 0.

Therefore, (T,
√
cn In) converges ‖·‖-stably to δT ×Nc, and this concludes the proof

of the implication ”Lemma 7 ⇒ Theorem 6”.

4.3. Theorem 6 implies Corollary 8. Define c = H Γ(2H), a(H) = 1/2−|1/2−
H| and recall that α = min(1, 2H) and An = n1+H

an
In. In view of Theorem 6, it

suffices to show that (n1+H

an

)2

= c + O
(
n−a(H)

)
.(11)

To prove (11), first note that

a−2
n = E

[(∫ 1

0

tn−1f(t, 1)Kt dt
)2]

= E
(∫ 1

0

∫ 1

0

(s t)n−1f(s, 1) f(t, 1)KsKt ds dt
)

=

∫ 1

0

∫ 1

0

(s t)n−1f(s, 1) f(t, 1)E(KsKt) ds dt

=

∫ 1

0

∫ 1

0

(s t)n−1f(s, 1) f(t, 1)
{
f(s, t)− f(s, 1)f(t, 1)

}
ds dt.

On the other hand,

f(s, t)− f(s, 1)f(t, 1) = f(s, t)− f(s, 1)− f(t, 1) + 1− (1− f(s, 1))(1− f(t, 1))

and conditions (6) and (8) yield∫ 1

0

∫ 1

0

(s t)n−1f(s, 1) f(t, 1) (1− f(s, 1))(1− f(t, 1)) ds dt

=
(∫ 1

0

tn−1f(t, 1) (1− f(t, 1)) dt
)2

≤ γ2
(∫ 1

0

tn−1(1− t)α dt
)2

≤ b γ2 n−2−2α

for some constant b. Similarly,∣∣∣∫ 1

0

∫ 1

0

(s t)n−1
{
f(s, 1)f(t, 1)− 1

}{
f(s, t)− f(s, 1)− f(t, 1) + 1

}
ds dt

∣∣∣
≤ 2 γ

∫ 1

0

∫ 1

0

(s t)n−1 |(1− f(s, 1))− f(s, 1)(f(t, 1)− 1)| (1− t)α ds dt

≤ 2 γ2

∫ 1

0

∫ 1

0

(s t)n−1
{

(1− s)α + (1− t)α
}

(1− t)α ds dt ≤ b∗ γ2 n−2−2α
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for some constant b∗. It follows that

a−2
n =

∫ 1

0

∫ 1

0

(s t)n−1
{
f(s, t)− f(s, 1)− f(t, 1) + 1

}
ds dt + O(n−2−2α)

= (1/2)

∫ 1

0

∫ 1

0

(s t)n−1
{

(1− s)2H + (1− t)2H − |s− t|2H
}
ds dt + O(n−2−2α)

=

∫ 1

0

tn−1 dt

∫ 1

0

sn−1(1− s)2H ds−
∫ 1

0

tn−1

∫ t

0

sn−1(t− s)2H ds dt + O(n−2−2α)

=
(n− 1)! Γ(2H + 1)

nΓ(n+ 2H + 1)
−
∫ 1

0

t2n+2H−1 dt

∫ 1

0

sn−1(1− s)2H ds + O(n−2−2α)

=
(n− 1)! Γ(2H + 1)

nΓ(n+ 2H + 1)
− (n− 1)! Γ(2H + 1)

(2n+ 2H) Γ(n+ 2H + 1)
+ O(n−2−2α).

On noting that Γ(2H + 1) = 2 c and a(H) = α−H, one finally obtains

n2+2Ha−2
n = n2+2H (n− 1)! Γ(2H + 1)

Γ(n+ 2H + 1)

n+ 2H

2n (n+H)
+ O(n−2(α−H))

= c n2H n!

Γ(n+ 2H + 1)

n+ 2H

n+H
+ O(n−2a(H))

=
c n2H n!

Γ(n+ 2H + 1)
+

cH n2H n!

(n+H) Γ(n+ 2H + 1)
+ O(n−2a(H))

= c + c
( n2H n!

Γ(n+ 2H + 1)
− 1
)

+ O(n−1) + O(n−2a(H))

= c + O(n−1) + O(n−2a(H)) = c + O(n−2a(H)).

This concludes the proof of (11). Thus, Corollary 8 is actually a consequence of
Theorem 6.

5. Concluding remarks

The techniques of Section 4 yield something more than the results stated in
Section 3. The latter could be actually generalized as follows.

• T = (Kt1 , . . . ,Ktm) could be replaced by

T =
(∫

Kt ν1(dt) , . . . ,

∫
Kt νm(dt)

)
where ν1, . . . , νm are probability measures on B([0, 1]). In this way, even if
in a different framework, it is possible to obtain results formally analogous
to [2], [3] and [5, Sections 5-6].
• In could be replaced by

In =
an
2

∫ 1

0

tn−1(X2
1 −X2

t ) {1 + g(Kt)} dt

where g : R → R is locally Lipschitz with at most exponential growth and
g(0) = 0. In particular, if g is a polynomial, the rate of convergence of In
is not affected by the degree of g. Using Malliavin calculus, instead, such a
rate depends on the degree of g.
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• Up to replacing Nc = N
(
0, cX2

1

)
with N

(
0, cX2p−2

1

)
, where p ≥ 2 is any

integer, In could be replaced by

In =
an
p

∫ 1

0

tn−1(Xp
1 −X

p
t ) dt.

We close the paper by making precise a couple of points raised in the previous
sections. We begin with the conjecture stated after Theorem 6.

Example 9. Let C be the set of real continuous functions on [0, 1], equipped with
uniform distance, and Q the product probability measure on B

(
C × R

)
given by

Q = P (K ∈ ·)× E[N1(·)].

Suppose an
n1+α → 0. Toward a contradiction, suppose also that P

[
(K, In) ∈ ·

]
converges to Q in total variation distance.

Using Lemma 5 and arguing as in the proof of Lemma 7,

‖P
[
(K, In) ∈ ·

]
− P

[
(K, YnX1) ∈ ·

]
‖ → 0.

Hence, P
[
(K, YnX1) ∈ ·

]
also converges to Q in total variation. Write K = σ(K)

and take a standard normal random variable U , independent of (K,X1), and a
bounded non-negative Borel function h : R→ R. On noting that (K, UX1) ∼ Q,

sup
A∈B(C)

∣∣∣∫ 1A(K)
{
E[h(YnX1) | K]− E[h(UX1) | K]

}
dP
∣∣∣

= sup
A∈B(C)

∣∣∣∫ 1A(K)
{
h(YnX1)− h(UX1)

}
dP
∣∣∣

≤ suph ‖P
[
(K, YnX1) ∈ ·

]
−Q(·)‖ → 0.

Hence,

lim
n
E
∣∣∣E[h(YnX1) | K

]
− E

[
h(UX1) | K

] ∣∣∣ = 0.

On the other hand, letting hb(x) = |x| 1[−b,b](x), one obtains

E
∣∣∣E[|YnX1| | K

]
− E

[
|UX1| | K

]∣∣∣ ≤ E∣∣∣E[hb(YnX1) | K
]
− E

[
hb(UX1) | K

]∣∣∣+
+E

(
|YnX1| 1{|YnX1|>b}

)
+ E

(
|UX1| 1{|UX1|>b}

)
= E

∣∣∣E[hb(YnX1) | K
]
− E

[
hb(UX1) | K

]∣∣∣ + 2E
(
|UX1| 1{|UX1|>b}

)
for all b > 0. This fact implies

lim
n
E
∣∣∣E[|YnX1| | K]− E[|UX1| | K]

∣∣∣ = 0.

But this is a contradiction. In fact, Yn is K-measurable, and thus

E
[
|YnX1| | K

]
= |Yn|E[|X1|] and E

[
|UX1| | K

]
= E[|UX1|] a.s.

To sum up, P
[
(K, In) ∈ ·

]
does not converge to Q in total variation. As a

consequence, (K, In) does not converge ‖·‖-stably to δK ×N1.
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Finally, in (2), we claimed that ‖P (An ∈ ·) − E[Nc(·)‖ is not O
(
n−a(H)−ε) for

every fixed ε > 0. To prove this fact, in view of Lemma 2, it suffices to see that∣∣∣E(An)− E
(∫

uNc(du)
)∣∣∣ = |E(An)| ≥ b n−a(H)

for some constant b > 0 and every n ≥ 1. In fact, if H ≥ 1/2, then

E(An) =
n1+H

2

∫ 1

0

tn−1E(B2
1 −B2

t ) dt =
n1+H

2

∫ 1

0

tn−1(1− t2H) dt

=
H nH

n+ 2H
≥ H

1 + 2H
n−(1−H) =

H

1 + 2H
n−a(H).

If H < 1/2, the proof of (2) is not straightforward and we omit the explicit calcu-
lations. We just note that, if D = {B1 > x} for some x ∈ (1,∞), one obtains∣∣∣ED(An)− ED

(∫
uNc(du)

)∣∣∣ = |ED(An)| ≥ bx n−H = bx n
−a(H)

for every H ∈ (0, 1/2) and some constant bx > 0.
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