EQUIVALENT OR ABSOLUTELY CONTINUOUS PROBABILITY MEASURES WITH GIVEN MARGINALS

Patrizia Berti, Luca Pratelli, Pietro Rigo, Fabio Spizzichino

Univ. Modena e Reggio-Emilia Accademia Navale di Livorno Universita' di Pavia Univ. Roma "La Sapienza"

Firenze, December 18, 2014

OUTLINE

- 1. Notation (just a couple of slides)
- 2. The problem
- 3. Motivations
- 4. Results
- 5. Discussion and possible developments

1. Notation

• $(\mathcal{X}, \mathcal{A})$ and $(\mathcal{Y}, \mathcal{B})$ are measurable spaces and $(\mathcal{X} \times \mathcal{Y}, \mathcal{A} \otimes \mathcal{B})$

is their product

Essentially everything in this talk holds true for **arbitrary** $(\mathcal{X}, \mathcal{A})$ and $(\mathcal{Y}, \mathcal{B})$. However, I strongly suggest to keep

 $(\mathcal{X}, \mathcal{A}) = (\mathcal{Y}, \mathcal{B}) = (\mathcal{R}, \text{Borel } \sigma\text{-field})$

in your minds. There is no real loss in doing this

• X and Y are the coordinate projections on $\mathcal{X} \times \mathcal{Y}$:

X(x,y) = x and Y(x,y) = y

for $(x, y) \in \mathcal{X} \times \mathcal{Y}$. A probability law on $\mathcal{A} \otimes \mathcal{B}$ can be thought of as a possible distribution for (X, Y)

• For any probability ν on $\mathcal{A} \otimes \mathcal{B}$, let ν_1 and ν_2 be the **marginals** of ν , namely

$$\nu_1(A) = \nu(A \times \mathcal{Y})$$
 and $\nu_2(B) = \nu(\mathcal{X} \times B)$

for $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Thus, ν_1 is the distribution of X under ν and ν_2 the distribution of Y under ν

• In the sequel, μ and ν are probabilities on $\mathcal{A} \otimes \mathcal{B}$, α is a probability on \mathcal{A} and β a probability on \mathcal{B}

2. The problem

We moved from the following questions. **Given** a probability μ on $\mathcal{A} \otimes \mathcal{B}$, a probability α on \mathcal{A} and a probability β on \mathcal{B} ,

(a) Is there a probability ν on $\mathcal{A}\otimes\mathcal{B}$ such that

 $\nu \sim \mu$, $\nu_1 = \alpha$, $\nu_2 = \beta$?

(b) Is there a probability ν on $\mathcal{A} \otimes \mathcal{B}$ such that

 $\nu \ll \mu$, $\nu_1 = \alpha$, $\nu_2 = \beta$?

Obvious necessary conditions are

 $\alpha \sim \mu_1$ and $\beta \sim \mu_2$ in case of (a) and

 $\alpha \ll \mu_1$ and $\beta \ll \mu_2$ in case of (b)

Say that α and β are **admissible** if they meet such conditions

For $\mathcal{X} = \mathcal{Y} = \mathcal{R}$, our first (and wrong) intuition was to take ν with distribution function

 $F_{\nu} = C_{\mu}(F_{\alpha}, F_{\beta})$ where C_{μ} is a copula for μ .

But it does not work, even if α and β are admissible and we focus on question (b). Take for instance

 μ (diagonal) = 1 and $\alpha \neq \beta$

Thus,

- Copulas are not conclusive for our problem
- Such problem becomes more intriguing. It now takes the form: **Give conditions** (on μ , α , β) for the existence of ν such that $\boxed{\nu_1 = \alpha, \ \nu_2 = \beta}$ and $\boxed{\nu \sim \mu}$ or $\nu \ll \mu$

3. Motivations

WHERE THE PROBLEM COMES FROM

Given the real (bounded) random variables X_1, \ldots, X_k on the probability space (Ω, \mathcal{F}, P) , is there a probability $Q \sim P$ such that

$$E_Q(X_1) = \ldots = E_Q(X_k) = 0 \quad ?$$

The question is closely related to no-arbitrage. In fact, Q exists if and only if the linear space generated by X_1, \ldots, X_k satisfies the classical no-arbitrage condition:

 $\left| P(X > 0) > 0 \iff P(X < 0) > 0 \right|$

for every linear combination X of X_1, \ldots, X_k

This answer is (well known and) very nice and intuitive. But we did not know of any elementary proof (incidentally, we are still ignorant) Our naive (and wrong) proof was:

Think of X_1, \ldots, X_k as coordinate projections on \mathcal{R}^k , so that P is actually a Borel law on \mathcal{R}^k

For each $1 \leq j \leq k$, take a Borel probability Q_j on \mathcal{R} such that

$$Q_j \sim P_j$$
 and $E_{Q_j}(X_j) = 0$

where P_j is the *j*-th marginal of P

Finally, take Q such that $Q \sim P$ and Q has marginals Q_1, \ldots, Q_k

Perfect ! Just it does not work, since the third step generally fails, even if k = 2. Anyhow, our tentative strategy suggested the problem

Incidentally, in this talk I am assuming k = 2, but everything could be adapted to arbitrary k This is how we came across the problem. But such a problem can be regarded under various sides

Coupling: We are just looking for a coupling ν of α and β satisfying an additional property (i.e., $\nu \sim \mu$ or $\nu \ll \mu$)

Stochastic dependence: Any law on $\mathcal{A} \otimes \mathcal{B}$ fixes the stochastic dependence between the coordinate projections X and Y. Turning from μ to ν , thus, we are actually changing such dependence. The new stochastic dependence ν is required to have given marginals α and β , to preserve the null sets (if $\nu \ll \mu$) or even to have exactly the same null sets (if $\nu \sim \mu$)

But our favorite view on the problem is **optimal transportation**

OPTIMAL TRANSPORTATION

Suppose we pay C(x,y) for moving a unit of some good from $x \in \mathcal{X}$ into $y \in \mathcal{Y}$. Think of α and β as the initial and final distributions, respectively, of such units. Here, "initial" and "final" stand for before and after the transportation of the units from \mathcal{X} to \mathcal{Y} . A **transport plan** is a probability λ on $\mathcal{A} \otimes \mathcal{B}$ with marginals α and β . In Kantorovich's formulation, we focus on

$\inf_{\lambda} E_{\lambda}(C)$

where inf is over all transport plans λ . In Monge's formulation, we only consider those transport plans λ_f which are supported by the graph of a measurable function $f : \mathcal{X} \to \mathcal{Y}$, namely

 $\lambda_f(\cdot) = \alpha\{x : (x, f(x)) \in \cdot\}$

(Think of f as the function on which the transportation is based). Thus, in Monge's formulation, we investigate $\inf_f E_{\lambda_f}(C)$ In this framework, it is quite natural (and realistic) to impose some constraint on the transport plan λ

In our problem, such constraint is absolute continuity or equivalence with respect to a given law μ . As a trivial example, think of a region $\mathcal{X} \times \mathcal{Y}$ including some lakes. This is modeled by

 $\mu(lake) = 0$

Since the lakes can not be crossed, every sound transport plan ν should satisfy $\nu(lake) = 0$

One more connection between optimal transportation and our problem is that, in both cases, the transport plans λ_f (supported by the graph of some function f) play a special role

4. Results

Say that ν is dominated by μ on rectangles, written

 $\overline{
u\ll_R\mu}$, if

 $\mu(A \times B) = 0 \implies \nu(A \times B) = 0$ for $A \in \mathcal{A}$ and $B \in \mathcal{B}$

Now, $\nu \ll_R \mu$ is strictly weaker than $\nu \ll \mu$. Take in fact

 μ uniform on the unit square $[0,1]^2$ and

 ν (diagonal) = 1 with $\nu_1 = \nu_2 = m$

where *m* is Lebesgue measure on [0,1]. Then, ν is not dominated by μ , and yet $\nu \ll_R \mu$ since

$$\nu(A \times B) = m(A \cap B) \le m(A) \land m(B)$$

Under some conditions, however, $\nu \ll_R \mu \Leftrightarrow \nu \ll \mu$

In order to $\nu \ll_R \mu \Leftrightarrow \nu \ll \mu$, it suffices that

- μ is supported by the graph of a continuous function
- At least one marginal of μ is discrete (i.e., μ_1 or μ_2 is discrete)
- Both μ and ν are dominated by γ and

$$\gamma(\partial\{f=0\})=0$$

where γ is a $\sigma\text{-finite}$ measure on $\mathcal{A}\otimes\mathcal{B}$ and f a density of μ with respect to γ

Given the (bounded measurable) functions

$$f: \mathcal{X} \to \mathcal{R} \text{ and } g: \mathcal{Y} \to \mathcal{R}$$

write

$$\alpha(f) = \int f \, d\alpha, \quad \beta(g) = \int g \, d\beta, \text{ and}$$

$$f \oplus g(x, y) = f(x) + g(y) \quad \text{for} \quad (x, y) \in \mathcal{X} \times \mathcal{Y}$$
THM1 Fix μ , α and β . There is μ such that

THM1 Fix μ , α and β . There is ν such that

$$\nu \ll_R \mu, \nu_1 = \alpha, \nu_2 = \beta$$

if and only if

 $\alpha(f) + \beta(g) \ge \inf \left\{ \lambda(f \oplus g) : \lambda \ll_R \mu \right\}$

for all bounded measurable $f \mbox{ and } g$

• The condition

 $\alpha(f) + \beta(g) \ge \inf \left\{ \lambda(f \oplus g) : \lambda \ll_R \mu \right\}$

is basically a coherence condition (in de Finetti's sense)

• The necessity is obvious

 $\alpha(f) + \beta(g) = \nu(f \oplus g) \ge \inf \{\lambda(f \oplus g) : \lambda \ll_R \mu\}$

where the equality is because ν has marginals $\alpha,\,\beta$ and the inequality for $\nu\ll_R\,\mu$

- Checking such condition in real problems looks quite hard. Being necessary, however, it can not be bypassed
- THM1 is a partial solution only, for it implies $\nu \ll_R \mu$ but not $\nu \ll \mu$. Under the conditions listed above, however, one obtains $\nu \ll_R \mu \Leftrightarrow \nu \ll \mu$, and THM1 becomes a full solution

Suppose now that only μ is assigned while α and β are allowed to vary among the admissible laws, namely

 $\alpha \ll \mu_1$ and $\beta \ll \mu_2$

THM2 Given μ , the following statements are equivalent

- (i) For all admissible α and β , there is ν such that $\nu_1 = \alpha$, $\nu_2 = \beta$ and $\nu \ll_R \mu$
- (ii) For all admissible α and β , there is a **finitely additive** probability ν such that $\nu_1 = \alpha$, $\nu_2 = \beta$ and $\nu \ll \mu$

(iii)
$$\mu_1 \times \mu_2 \ll_R \mu$$

Condition (iii) is unusual (and so potentially intriguing). Roughly,

 $\mu_1 \times \mu_2 \ll_R \mu$

means that the support of $\boldsymbol{\mu}$ can not have rectangular holes

Also, under a mild condition on μ , THM2 can be improved

THM3 Suppose

 $\mu \ll \gamma$ and $\gamma(\partial \{f=0\}) = 0$

where γ is a σ -finite product measure on $\mathcal{A}\otimes\mathcal{B}$ and f a density of μ with respect to γ . Then,

$\mu_1 \times \mu_2 \ll \mu$

if and only if

For all admissible α and $\beta,$ there is ν such that $\nu_1=\alpha,\ \nu_2=\beta$ and $\nu\ll\mu$

So far, we were concerned with $\nu \ll \mu$. I next turn to $\nu \sim \mu$.

• Let μ , α and β be given. There is ν such that $\nu_1 = \alpha$, $\nu_2 = \beta$ and $\nu \sim \mu$ provided

 $\mu_1 imes \mu_2 \ll \mu$ and

 $a \mu_1 \le \alpha \le b \mu_1, \quad c \mu_2 \le \beta \le d \mu_2$

for some constants a, b, c, d > 0

• Even if μ is not equivalent to a σ -finite product measure, it may be that, for all admissible α and β , there is ν such that $\nu_1 = \alpha$, $\nu_2 = \beta$ and $\nu \sim \mu$. This actually happens for

 $\mu = (1/2) \left\{ \lambda' + \lambda'' \right\}$

where λ' is uniform on the unit square and λ'' is supported by the diagonal and has uniform marginals

5. Discussion and possible developments

de Finetti's coherence principle: Let $E : \mathcal{D} \to \mathcal{R}$, where \mathcal{D} is any class of real bounded functions on a set Ω . Then, E is coherent if

 $\sup_{\omega \in \Omega} \sum_{i=1}^{n} c_i \{X_i(\omega) - E(X_i)\} \ge 0$

for all $n \geq 1$, $c_1, \ldots, c_n \in \mathcal{R}$ and $X_1, \ldots, X_n \in \mathcal{D}$

Interpretation: Suppose *E* describes your previsions (e.g., expectations) on the elements of \mathcal{D} . This means that, for each $X \in \mathcal{D}$ and $c \in \mathcal{R}$, you agree:

to pay c E(X) for receiving $c X(\omega)$ if $\omega \in \Omega$ occurs

You are coherent provided you can not be made a sure looser by a finite combinations of bets (on X_1, \ldots, X_n with stakes c_1, \ldots, c_n) **Hahn-Banach theorem:** *E* is coherent if and only if there is a finitely additive probability *P* on the power set of Ω such that

 $E(X) = \int X \, dP = E_P(X)$ for all $X \in \mathcal{D}$

So far, \mathcal{D} and E were arbitrary. But, if \mathcal{D} is a linear space and E a linear functional, coherence reduces to

 $\sup_{\omega \in \Omega} \{ X(\omega) - E(X) \} \ge 0 \text{ for all } X \in \mathcal{D}$

Letting E = 0 (which is a linear functional) one obtains:

If \mathcal{D} is a linear space of bounded functions, there is a finitely additive probability P such that

 $E_P(X) = 0$ for all $X \in \mathcal{D}$

if and only if

 $\sup_{\omega \in \Omega} X(\omega) \geq 0$ for all $X \in \mathcal{D}$

Now, under some conditions, such a P can be taken σ -additive and equivalent to a given reference probability P_0

This suggests a possible approach to our problem. Just take

 $\Omega = \mathcal{X} \times \mathcal{Y}, \quad P_0 = \mu,$

and \mathcal{D} the collection of those random variables X of the type

$$X(x,y) = \{f(x) - \alpha(f)\} + \{g(y) - \beta(g)\}$$

where $f : \mathcal{X} \to \mathcal{R}$ and $g : \mathcal{Y} \to \mathcal{R}$ are bounded and measurable

Then, for each probability P on $\mathcal{A} \otimes \mathcal{B}$,

 $E_P(X) = 0$ for all $X \in \mathcal{D}$ if and only if P has marginals α and β

Thus, it suffices to let $\nu = P$ with P as above and satisfying $P \sim P_0$

A last remark. In addition to the problem of this talk, many other issues reduce to existence of a probability P such that

 $E_P(X) = 0$ for all $X \in \mathcal{D}$

with \mathcal{D} a **suitable** linear space of bounded random variables. Among other things, we mention:

- Equivalent martingale measures
- Stationary and reversible Markov chains
- Compatibility of conditional distributions