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1. Notation

• (X ,A) and (Y,B) are measurable spaces and

(X × Y, A⊗ B)

is their product

Essentially everything in this talk holds true for arbitrary (X ,A)
and (Y,B). However, I strongly suggest to keep

(X ,A) = (Y,B) = (R,Borel σ-field)

in your minds. There is no real loss in doing this

• X and Y are the coordinate projections on X × Y:

X(x, y) = x and Y (x, y) = y

for (x, y) ∈ X × Y. A probability law on A⊗ B can be thought of
as a possible distribution for (X,Y )
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• For any probability ν on A⊗B, let ν1 and ν2 be the marginals of

ν, namely

ν1(A) = ν(A× Y) and ν2(B) = ν(X ×B)

for A ∈ A and B ∈ B.

Thus, ν1 is the distribution of X under ν and ν2 the distribution

of Y under ν

• In the sequel, µ and ν are probabilities on A⊗B, α is a probability

on A and β a probability on B



2. The problem

We moved from the following questions. Given a probability µ on
A⊗ B, a probability α on A and a probability β on B,

(a) Is there a probability ν on A⊗ B such that

ν ∼ µ, ν1 = α, ν2 = β ?

(b) Is there a probability ν on A⊗ B such that

ν � µ, ν1 = α, ν2 = β ?

Obvious necessary conditions are

α ∼ µ1 and β ∼ µ2 in case of (a) and

α� µ1 and β � µ2 in case of (b)

Say that α and β are admissible if they meet such conditions
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For X = Y = R, our first (and wrong) intuition was to take ν with
distribution function

Fν = Cµ(Fα, Fβ) where Cµ is a copula for µ.

But it does not work, even if α and β are admissible and we focus on
question (b). Take for instance

µ(diagonal) = 1 and α 6= β

Thus,

• Copulas are not conclusive for our problem

• Such problem becomes more intriguing. It now takes the form:

Give conditions (on µ, α, β) for the existence of ν such that

ν1 = α, ν2 = β and ν ∼ µ or ν � µ
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3. Motivations

WHERE THE PROBLEM COMES FROM

Given the real (bounded) random variables X1, . . . , Xk on the proba-
bility space (Ω,F , P ), is there a probability Q ∼ P such that

EQ(X1) = . . . = EQ(Xk) = 0 ?

The question is closely related to no-arbitrage. In fact, Q exists if and
only if the linear space generated by X1, . . . , Xk satisfies the classical
no-arbitrage condition:

P (X > 0) > 0 ⇐⇒ P (X < 0) > 0

for every linear combination X of X1, . . . , Xk

This answer is (well known and) very nice and intuitive. But we did
not know of any elementary proof (incidentally, we are still ignorant)
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Our naive (and wrong) proof was:

Think of X1, . . . , Xk as coordinate projections on Rk, so that P is

actually a Borel law on Rk

For each 1 ≤ j ≤ k, take a Borel probability Qj on R such that

Qj ∼ Pj and EQj(Xj) = 0

where Pj is the j-th marginal of P

Finally, take Q such that Q ∼ P and Q has marginals Q1, . . . , Qk

Perfect ! Just it does not work, since the third step generally fails,

even if k = 2. Anyhow, our tentative strategy suggested the problem

Incidentally, in this talk I am assuming k = 2, but everything could

be adapted to arbitrary k
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This is how we came across the problem. But such a problem can

be regarded under various sides

Coupling: We are just looking for a coupling ν of α and β satisfying

an additional property (i.e., ν ∼ µ or ν � µ)

Stochastic dependence: Any law on A ⊗ B fixes the stochastic

dependence between the coordinate projections X and Y . Turning

from µ to ν, thus, we are actually changing such dependence. The

new stochastic dependence ν is required to have given marginals α

and β, to preserve the null sets (if ν � µ) or even to have exactly the

same null sets (if ν ∼ µ)

But our favorite view on the problem is optimal transportation
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OPTIMAL TRANSPORTATION

Suppose we pay C(x, y) for moving a unit of some good from x ∈ X
into y ∈ Y. Think of α and β as the initial and final distributions, re-
spectively, of such units. Here, “initial” and “final” stand for before
and after the transportation of the units from X to Y. A trans-
port plan is a probability λ on A ⊗ B with marginals α and β. In
Kantorovich’s formulation, we focus on

infλ Eλ(C)

where inf is over all transport plans λ. In Monge’s formulation, we
only consider those transport plans λf which are supported by the
graph of a measurable function f : X → Y, namely

λf(·) = α{x : (x, f(x)) ∈ ·}

(Think of f as the function on which the transportation is based).
Thus, in Monge’s formulation, we investigate inff Eλf(C)
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In this framework, it is quite natural (and realistic) to impose some

constraint on the transport plan λ

In our problem, such constraint is absolute continuity or equivalence

with respect to a given law µ. As a trivial example, think of a region

X × Y including some lakes. This is modeled by

µ(lake) = 0

Since the lakes can not be crossed, every sound transport plan ν

should satisfy ν(lake) = 0

One more connection between optimal transportation and our prob-

lem is that, in both cases, the transport plans λf (supported by the

graph of some function f) play a special role



4. Results

Say that ν is dominated by µ on rectangles, written

ν �R µ , if

µ(A×B) = 0 =⇒ ν(A×B) = 0 for A ∈ A and B ∈ B

Now, ν �R µ is strictly weaker than ν � µ. Take in fact

µ uniform on the unit square [0,1]2 and

ν(diagonal) = 1 with ν1 = ν2 = m

where m is Lebesgue measure on [0,1]. Then, ν is not dominated by

µ, and yet ν �R µ since

ν(A×B) = m(A ∩B) ≤ m(A) ∧m(B)

9



Under some conditions, however, ν �R µ ⇔ ν � µ

In order to ν �R µ ⇔ ν � µ, it suffices that

• µ is supported by the graph of a continuous function

• At least one marginal of µ is discrete (i.e., µ1 or µ2 is discrete)

• Both µ and ν are dominated by γ and

γ( ∂{f = 0} ) = 0

where γ is a σ-finite measure on A⊗ B and f a density of µ with

respect to γ
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Given the (bounded measurable) functions

f : X → R and g : Y → R

write

α(f) =
∫
f dα, β(g) =

∫
g dβ, and

f ⊕ g(x, y) = f(x) + g(y) for (x, y) ∈ X × Y

THM1 Fix µ, α and β. There is ν such that

ν �R µ, ν1 = α, ν2 = β

if and only if

α(f) + β(g) ≥ inf {λ(f ⊕ g) : λ�R µ}

for all bounded measurable f and g
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• The condition

α(f) + β(g) ≥ inf {λ(f ⊕ g) : λ�R µ}

is basically a coherence condition (in de Finetti’s sense)

• The necessity is obvious

α(f) + β(g) = ν(f ⊕ g) ≥ inf {λ(f ⊕ g) : λ�R µ}

where the equality is because ν has marginals α, β and the in-
equality for ν �R µ

• Checking such condition in real problems looks quite hard. Being
necessary, however, it can not be bypassed

• THM1 is a partial solution only, for it implies ν �R µ but not
ν � µ. Under the conditions listed above, however, one obtains
ν �R µ ⇔ ν � µ, and THM1 becomes a full solution
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Suppose now that only µ is assigned while α and β are allowed to

vary among the admissible laws, namely

α� µ1 and β � µ2

THM2 Given µ, the following statements are equivalent

(i) For all admissible α and β, there is ν such that ν1 = α, ν2 = β

and ν �R µ

(ii) For all admissible α and β, there is a finitely additive probability

ν such that ν1 = α, ν2 = β and ν � µ

(iii) µ1 × µ2 �R µ
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Condition (iii) is unusual (and so potentially intriguing). Roughly,

µ1 × µ2 �R µ

means that the support of µ can not have rectangular holes

Also, under a mild condition on µ, THM2 can be improved

THM3 Suppose

µ� γ and γ( ∂{f = 0} ) = 0

where γ is a σ-finite product measure on A⊗ B and f a density of µ
with respect to γ. Then,

µ1 × µ2 � µ

if and only if

For all admissible α and β, there is ν such that ν1 = α, ν2 = β and
ν � µ
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So far, we were concerned with ν � µ. I next turn to ν ∼ µ .

• Let µ, α and β be given. There is ν such that ν1 = α, ν2 = β and

ν ∼ µ provided

µ1 × µ2 � µ and

aµ1 ≤ α ≤ b µ1, c µ2 ≤ β ≤ dµ2

for some constants a, b, c, d > 0

• Even if µ is not equivalent to a σ-finite product measure,

it may be that, for all admissible α and β, there is ν such that

ν1 = α, ν2 = β and ν ∼ µ. This actually happens for

µ = (1/2) {λ′+ λ′′}

where λ′ is uniform on the unit square and λ′′ is supported by the

diagonal and has uniform marginals
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5. Discussion and possible developments

de Finetti’s coherence principle: Let E : D → R, where D is any

class of real bounded functions on a set Ω. Then, E is coherent if

supω∈Ω
∑n
i=1 ci {Xi(ω)− E(Xi)} ≥ 0

for all n ≥ 1, c1, . . . , cn ∈ R and X1, . . . , Xn ∈ D

Interpretation: Suppose E describes your previsions (e.g., expecta-

tions) on the elements of D. This means that, for each X ∈ D and

c ∈ R, you agree:

to pay cE(X) for receiving cX(ω) if ω ∈ Ω occurs

You are coherent provided you can not be made a sure looser by

a finite combinations of bets (on X1, . . . , Xn with stakes c1, . . . , cn)
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Hahn-Banach theorem: E is coherent if and only if there is a finitely
additive probability P on the power set of Ω such that

E(X) =
∫
X dP = EP (X) for all X ∈ D

So far, D and E were arbitrary. But, if D is a linear space and E a
linear functional, coherence reduces to

supω∈Ω {X(ω)− E(X)} ≥ 0 for all X ∈ D

Letting E = 0 (which is a linear functional) one obtains:

If D is a linear space of bounded functions, there is a finitely additive
probability P such that

EP (X) = 0 for all X ∈ D

if and only if

supω∈Ω X(ω) ≥ 0 for all X ∈ D



Now, under some conditions, such a P can be taken σ-additive

and equivalent to a given reference probability P0

This suggests a possible approach to our problem. Just take

Ω = X × Y, P0 = µ,

and D the collection of those random variables X of the type

X(x, y) = {f(x)− α(f)}+ {g(y)− β(g)}

where f : X → R and g : Y → R are bounded and measurable

Then, for each probability P on A⊗ B,

EP (X) = 0 for all X ∈ D if and only if P has marginals α and β

Thus, it suffices to let ν = P with P as above and satisfying P ∼ P0
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A last remark. In addition to the problem of this talk, many other

issues reduce to existence of a probability P such that

EP (X) = 0 for all X ∈ D

with D a suitable linear space of bounded random variables. Among

other things, we mention:

• Equivalent martingale measures

• Stationary and reversible Markov chains

• Compatibility of conditional distributions
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