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Abstract. Let P be the collection of Borel probability measures on R, equipped

with the weak topology, and let µ : [0, 1]→ P be a continuous map. Say that

µ is presentable if Xt ∼ µt, t ∈ [0, 1], for some real process X with continuous
paths. It may be that µ fails to be presentable. Hence, firstly, conditions for

presentability are given. For instance, µ is presentable if µt is supported by an

interval (possibly, by a singleton) for all but countably many t. Secondly, as-
suming µ presentable, we investigate whether the quantile process Q induced

by µ has continuous paths. The latter is defined, on the probability space
((0, 1),B(0, 1),Lebesgue measure), by

Qt(α) = inf
{
x ∈ R : µt(−∞, x] ≥ α

}
for all t ∈ [0, 1] and α ∈ (0, 1).

A few open problems are discussed as well.

1. Introduction

In what follows, a process is always meant as a real valued stochastic process
indexed by [0, 1]. A process is continuous (cadlag) if almost all its paths are con-
tinuous (cadlag). Also, if X and Y are processes, we write X ∼ Y to mean that

(Xt1 , . . . , Xtk) ∼ (Yt1 , . . . , Ytk) for all k ∈ N and t1, . . . , tk ∈ [0, 1].

Let P be the collection of Borel probability measures on R, equipped with the
weak topology (namely, the weakest topology on P which makes continuous the
maps ν ∈ P 7→

∫
f dν for all bounded continuous f : R→ R). We fix a continuous

function µ : [0, 1]→ P and we focus on the problem:

(*) Is there a continuous process X such that Xt ∼ µt for each t ∈ [0, 1] ?

Question (*) arises as a natural generalization of various representation results
for classes of absolutely continuous curves in the space of probability measures en-
dowed with the Kantorovich-Rubinstein-Wasserstein metric, see e.g. [1, Chap. 8]
where applications to the continuity equation and diffusion PDE’s are considered.
In addition, problem (*) is intriguing from a foundational point of view. A positive
answer to (*), for instance, could be regarded as a strong version of Skorohod rep-
resentation theorem; see Section 3. In turn, this type of versions of the Skorohod’s
result are useful when dealing with certain SDE’s; see [4] and [8].

By a result of Blackwell and Dubins, there always exists a process X such that,
for each fixed t, Xt ∼ µt and almost all X-paths are continuous at t; see [2]; see also
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[5] for a detailed proof. Despite this fact, however, the answer to (*) is generally
no. A simple example is

µt = (1− t)δ0 + tδ1

where δx denotes the point mass at x.
Say that µ is presentable if question (*) has a positive answer, namely, Xt ∼ µt

for some continuous process X and all t ∈ [0, 1]. To investigate presentability of µ,
there is an obvious process to work with. Let B be the Borel σ-field on (0, 1), λ the
Lebesgue measure, and

Ft(x) = µt(−∞, x] for all t ∈ [0, 1] and x ∈ R.

Define a process Q on the probability space ((0, 1),B, λ) as

Qt(α) = inf
{
x ∈ R : Ft(x) ≥ α

}
for all t ∈ [0, 1] and α ∈ (0, 1).

Such a Q may be called the ”quantile process” induced by µ and its finite dimen-
sional distributions are

λ
(
Qt1 ≤ x1, . . . , Qtk ≤ xk

)
= min

1≤i≤k
Fti(xi)

where k ∈ N, t1, . . . , tk ∈ [0, 1] and x1, . . . , xk ∈ R. Since Qt ∼ µt for all t, a
sufficient condition for µ to be presentable is continuity of Q.

This note is devoted to problem (*). Our first result is that Q is continuous if
and only if λ(J) = 0, where

J =
{
α ∈ (0, 1) : Ft(x) = Ft(y) = α for some t ∈ [0, 1] and some x < y

}
.

Among other things, this fact provides an useful sufficient condition for presentabil-
ity. Indeed, µ is presentable whenever µt is supported by an interval (possibly, by
a singleton) for all but countably many t.

Next, we focus on the implication

µ presentable ⇒ Q ∼ X for some continuous process X.(1)

We do not know whether (1) is generally true. However, to motivate our concern
about (1), we recall a well known fact. Let Dn = {j/2n : j = 0, 1, . . . , 2n}. Given
any process Y , there is a continuous process X such that Y ∼ X if and only if

(a) Ys −→ Yt in probability, as s→ t, for each t ∈ [0, 1];

(b) For each ε > 0,

inf
δ>0

sup
n

Prob
(
|Ys − Yt| > ε for some s, t ∈ Dn with |s− t| < δ

)
= 0.

Only the finite dimensional distributions of Y are involved in conditions (a)-(b).
Hence, the existence of a continuous version of Y is actually a property of its finite
dimensional distributions. In turn, µ is presentable if and only if the collection
{µt : t ∈ [0, 1]} can be extended to a suitable consistent set of finite dimensional
distributions.

Now, condition (a) is automatically true if Y = Q; see point (i) of Theorem 1.
Thus, µ is presentable if Q satisfies condition (b). If implication (1) holds true, one
obtains the converse, i.e., presentability of µ amounts to condition (b) with Y = Q.
In other terms, under (1), to decide whether µ is presentable reduces to proving
condition (b) with Y = Q. Note also that, since the finite dimensional distributions
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of Q are very popular (see e.g. [7] and references therein), it is quite natural to
investigate whether Q admits a continuous version whenever µ is presentable.

In this note, we prove some weaker versions of (1), namely, we show that Q is
continuous under conditions stronger than presentability of µ. For instance, Q is
continuous if Xt ∼ µt, t ∈ [0, 1], for some process X such that the collection of all
its paths is an equicontinuous subset of C([0, 1],R). Similarly, Q is continuous if µ
is presentable and all the µt have the same support.

Finally, a few open problems (not only the one concerning implication (1)) are
discussed.

2. Results

In the sequel, for each α ∈ (0, 1), we write Q(α) to denote the map t 7→ Qt(α).
In addition,

C = C
(
[0, 1], R

)
is the set of real continuous functions on [0, 1].

For fixed t ∈ [0, 1], the map α 7→ Qt(α) is increasing, left-continuous, and its set
of discontinuity points is

Jt =
{
α ∈ (0, 1) : Qt(α+) 6= Qt(α)

}
=
{
α ∈ (0, 1) : Ft(x) = Ft(y) = α for some x < y

}
.

Define

J = ∪tJt and M =
{

(α, t) ∈ (0, 1)× [0, 1] : Qt(α+) 6= Qt(α)
}
.

Since M is a Borel set and J is the projection of M on (0, 1), then J is a Souslin
set (or equivalently an analytic set). In particular, J is Lebesgue measurable.

If ν is a Borel probability measure on a topological space S, the support of ν is
the intersection of all closed subsets of S with ν-probability 1.

We are now able to state our first result.

Theorem 1. Suppose µ : [0, 1]→ P is continuous. Then:

(i) Q(α) is continuous at t for each α ∈ (0, 1) \ Jt;

(ii) Q is continuous if and only if λ(J) = 0;

(iii) Q is continuous provided the support of µt is connected for all but countably
many t.

Proof. (i) Fix t ∈ [0, 1], α ∈ (0, 1) \ Jt and a continuity point x of Ft. Then,
Ft(x) = lims→t Fs(x) since µ is continuous at t. If x < Qt(α), then Ft(x) < α,
so that Fs(x) < α whenever s is close to t. It follows that Qs(α) > x for each
s close to t, so that lim infs→tQs(α) ≥ x. Suppose now that x > Qt(α). Then,
α /∈ Jt implies Ft(x) > α, and one obtains lim sups→tQs(α) ≤ x by the previous
argument. On noting that the continuity points of Ft are dense in R, one finally
obtains

lim sup
s→t

Qs(α) ≤ Qt(α) ≤ lim inf
s→t

Qs(α).

(ii) If λ(J) = 0, there is A ∈ B with A ∩ J = ∅ and λ(A) = 1. Thus, Q(α) ∈ C
for each α ∈ A, because of (i) and α /∈ J . Conversely, suppose that Q is continuous
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and define

Q∗t (α) = Qt(α+) for t ∈ [0, 1] and α ∈ (0, 1).

It suffices to show that Q∗ is continuous as well. In that case, in fact, there is a set
A ∈ B such that λ(A) = 1, Q(α) ∈ C and Q∗(α) ∈ C for each α ∈ A, where Q∗(α)
denotes the map t 7→ Q∗t (α). Given α ∈ A ∩ J , take t ∈ [0, 1] with α ∈ A ∩ Jt and
a sequence tn ∈ Q ∩ [0, 1] with tn → t. Then,

lim
n

{
Qtn(α+)−Qtn(α)

}
= lim

n

{
Q∗tn(α)−Qtn(α)

}
= Q∗t (α)−Qt(α) > 0,

and this implies α ∈
⋃
u∈Q∩[0,1] Ju. Hence, A ∩ J is countable, so that

λ(J) = λ(A ∩ J) + λ(Ac ∩ J) = λ(A ∩ J) = 0.

It remains to prove that Q∗ is continuous. Since Q is continuous,

lim
δ→0

sup
|u−v|≤δ

∣∣∣Qu(α)−Qv(α)
∣∣∣ = 0 for λ-almost all α ∈ (0, 1).

By Egorov’s theorem, given ε > 0, there is B ∈ B such that λ(B) > 1− ε and

lim
δ→0

sup
α∈B

sup
|u−v|≤δ

∣∣∣Qu(α)−Qv(α)
∣∣∣ = 0.

Such a B can be taken to be closed, and in that case (0, 1) \ B = ∪nIn where the
In are pairwise disjoint open intervals, say In = (an, bn). Letting

Bε = B \ {a1, b1, a2, b2, . . .},
it follows that

(α, β) ∩B 6= ∅ whenever α ∈ Bε and β > α.

Fix α ∈ Bε and take a sequence αn ∈ B ∩ (α, 1) with αn → α. For all s, t ∈ [0, 1],

|Q∗s(α)−Q∗t (α)| = lim
n
|Qs(αn)−Qt(αn)| ≤ sup

β∈B
sup

|u−v|≤|s−t|

∣∣∣Qu(β)−Qv(β)
∣∣∣.

Therefore, Q∗(α) ∈ C for each α ∈ Bε, where λ(Bε) = λ(B) > 1 − ε. To conclude
the proof, it suffices to let H = ∪nB1/n and to note that λ(H) = 1 and Q∗(α) ∈ C
for every α ∈ H.

(iii) Just note that Jt is countable for fixed t and Jt = ∅ if the support of µt is
connected.

�

We next focus on the special case where all µt have the same support, say

support
(
µt

)
= F for all t ∈ [0, 1] and some closed set F ⊂ R.(2)

If F = R, Theorem 1 implies that Q is continuous. Otherwise, the following result
is available.

Theorem 2. Assume condition (2) with F 6= R and write F c = ∪nIn, where the In
are pairwise disjoint open intervals. Letting an = inf In, the following statements
are equivalent:

(i) Q is continuous;

(ii) µ is presentable;
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(iii) Ft(an) = F0(an) for all t ∈ [0, 1] and n ∈ N with an > −∞.

Proof. (i) ⇒ (ii). Obvious.

(ii) ⇒ (iii). Let X be a continuous process on the probability space (Ω,A, P )
such that Xt ∼ µt for all t. Up to modifying X on a null set, it can be assumed that
all the X-paths are continuous. Fix t ∈ [0, 1] and n ∈ N with an > −∞. Define
bn = sup In and

un = P
(
Xs ≤ an for each s ∈ [0, 1]

)
, vn = P

(
Xs ≥ bn for each s ∈ [0, 1]

)
.

Since X is continuous and In is open,

un + vn = P
(
Xs /∈ In for each s ∈ [0, 1]

)
= P

(
Xs /∈ In for each s ∈ Q ∩ [0, 1]

)
= 1.

Hence, if Ft(an) > un, one obtains the contradiction

P
(
Xt /∈ In

)
= Ft(an) + P

(
Xt ≥ bn

)
≥ Ft(an) + vn > un + vn = 1.

Therefore, Ft(an) ≤ un. Since Ft(an) ≥ un (by definition of un) one finally obtains
Ft(an) = un.

(iii) ⇒ (i). If α ∈ J , then α = Ft(an) for some t and n with an > −∞. Hence,
by (iii), J is included in the countable set

{
F0(an) : n ∈ N, an > −∞

}
. Therefore,

λ(J) = 0 and (i) follows from Theorem 1.
�

We now turn to implication (1), namely, we investigate whether presentability
of µ implies Q ∼ X for some continuous process X. As claimed in Section 1, we
do not know whether (1) is generally true, but we have some partial results. One
is Theorem 2 above. In fact, in the special case where all the µt have the same
support, implication (1) is actually true. Another (partial) result is the following.

Theorem 3. Q is continuous provided there is a process X, defined on some prob-
ability space (Ω,A, P ), such that Xt ∼ µt for all t ∈ [0, 1] and{

X(ω) : ω ∈ Ω
}

is an equicontinuous subset of C.

(Here, X(ω) denotes the map t 7→ Xt(ω)).

Proof. Since
{
X(ω) : ω ∈ Ω

}
is equicontinuous,

sup
ω∈Ω

sup
|s−t|<δ

∣∣∣Xs(ω)−Xt(ω)
∣∣∣ ≤ g(δ)

for some function g on (0,∞) such that limδ→0 g(δ) = 0. Fix α ∈ (0, 1), t ∈ (0, 1),
and take δ > 0 such that (t− δ, t+ δ) ⊂ [0, 1]. Then,

Xt(ω)− g(δ) ≤ Xs(ω) ≤ Xt(ω) + g(δ)

for all ω ∈ Ω and s ∈ (t− δ, t+ δ). On noting that such inequality holds for every
ω ∈ Ω, one obtains

Qt(α)− g(δ) ≤ Qs(α) ≤ Qt(α) + g(δ)

for each s ∈ (t− δ, t+ δ), which in turn implies

Qt(α)− g(δ) ≤ lim inf
s→t

Qs(α) ≤ lim sup
s→t

Qs(α) ≤ Qt(α) + g(δ).

Hence, Q(α) is continuous at t (for limδ→0 g(δ) = 0). Up to obvious modifications,
the previous argument works for t = 0 and t = 1 as well. Therefore, Q(α) ∈ C. �
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Among other things, Theorem 3 has the following consequence. For definiteness,
given any map ν : [0, 1] → P, say that ν is canonically presentable if the quantile
process induced by ν is continuous.

Corollary 4. µ is presentable if and only if admits the representation

µt =

∞∑
n=1

cn µ
n
t for all t ∈ [0, 1],(3)

where µn : [0, 1] → P is a canonically presentable map, cn ≥ 0 a constant and∑∞
n=1 cn = 1. In particular, if (3) holds, a continuous process X such that Xt ∼ µt

for all t can be defined on the probability space ((0, 1)2,B2, λ2) as follows

Xt(α, β) =

∞∑
n=1

1(dn−1,dn](β)Qnt (α),

where t ∈ [0, 1], (α, β) ∈ (0, 1)2, d0 = 0, dn =
∑n
i=1 ci and Qn is the quantile

process induced by µn.

Proof. Suppose (3) holds and define X according to the Corollary. Then, X is
continuous and

λ2(Xt ∈ A) =

∫ 1

0

λ
{
α ∈ (0, 1) : Xt(α, β) ∈ A

}
dβ

=

∞∑
n=1

(dn − dn−1)λ
{
α ∈ (0, 1) : Qnt (α) ∈ A

}
=

∞∑
n=1

cn µ
n
t (A) = µt(A)

for all t ∈ [0, 1] and all Borel sets A ⊂ R. Conversely, suppose µ presentable, and
take a continuous process Y on some probability space (Ω,A, P ) such that Yt ∼ µt
for all t. Since Y is continuous,

sup
|s−t|<1/n

|Ys − Yt|
a.s.−→ 0 as n→∞.

By Egorov’s theorem, there is an increasing sequence B1 ⊂ B2 ⊂ . . . of sets in A
such that, for each fixed k ∈ N,

P (Bk) > 1− 1/k and lim
n

sup
ω∈Bk

sup
|s−t|<1/n

|Ys(ω)− Yt(ω)| = 0.

If P (Bk) = 1 for some k, Theorem 3 implies that µ is canonically presentable.
Hence, assume P (Bk) < 1 for all k. To avoid trivialities, assume also that
P
(
Bk \Bk−1

)
> 0 for all k (with B0 = ∅). For fixed n ∈ N, define

Cn = Bn \Bn−1, cn = P (Cn),

Yn(ω) = Y (ω) if ω ∈ Cn and Yn(ω) = 0 if ω /∈ Cn,
µnt (·) = P

(
Yt ∈ · | Cn

)
for all t ∈ [0, 1].

Then, equation (3) is trivially true and, since {Yn(ω) : ω ∈ Ω} is equicontinuous,
µn is canonically presentable because of Theorem 3. �

In Theorems 2 and 3, under suitable conditions, one obtains that µ is canonically
presentable, i.e., Q is continuous. A condition for the weaker conclusion Q ∼ X,
for some continuous process X, follows from the Chentsov-Kolmogorov criterion.
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Proposition 5. Fix the constants a ≥ 1 and b > 1 and suppose
∫
|x|a µt(dx) <∞

for all t ∈ [0, 1]. Then Q ∼ X, for some continuous process X, provided

sup
s6=t

E
{
|Ys − Yt|a

}
|s− t|b

<∞

for some process Y such that Yt ∼ µt for all t ∈ [0, 1].

Proof. Since Yt ∼ Qt ∼ µt and
∫
|x|a µt(dx) <∞, it is well known that

Eλ
{
|Qs −Qt|a

}
≤ E

{
|Ys − Yt|a

}
;

see e.g. [1, Theorem 6.0.2]. Hence,

Eλ
{
|Qs −Qt|a

}
≤ c |s− t|b for all s, t ∈ [0, 1] and some constant c > 0.

Thus, by the Chentsov-Kolmogorov criterion, there is a continuous process X on
((0, 1),B, λ) such that λ

(
Xt 6= Qt

)
= 0 for all t. �

As an example, suppose Y is defined on the probability space (Ω,A, P ) and has
Holder-continuous paths, say

|Ys(ω)− Yt(ω)| ≤ L(ω) |s− t|γ

for all ω ∈ Ω and s, t ∈ [0, 1], where γ ∈ (0, 1] is a constant and L a random variable.
Suppose also that Yt ∼ µt for all t. If supω L(ω) <∞, then Q is continuous because
of Theorem 3. Under the weaker assumption E(La) < ∞, for some a > 1/γ,
Proposition 5 yields Q ∼ X for some continuous process X.

3. Concluding remarks and open problems

Let (νn : n ≥ 0) be a sequence of Borel probability measures on a metric space
S. According to the Skorohod representation theorem, if νn → ν0 weakly and ν0

is separable, there are S-valued random variables Qn, defined on some probability

space, such that Qn ∼ νn for all n ≥ 0 and Qn
a.s.−→ Q0. Furthermore, in case

S = R, it suffices to let

Qn(α) = inf
{
x ∈ R : νn(−∞, x] ≥ α

}
for all n ≥ 0 and α ∈ (0, 1).

In other terms, if S = R, one obtains a Skorohod representation taking Qn
to be the quantile map induced by νn. It is worth noting that this simple fact
implies a Skorohod representation, for any Polish space S, by means of some general
topological results; see [3] and [6]. In a sense, this is one more reason for taking
implication (1) into account.

Let us turn to open problems. The most intriguing is whether implication (1)
is always true. But this is not the only open problem. We next mention a few
possible hints for future research.

One is to replace ”continuous” with ”cadlag” in problem (*). Namely, to assume
µ : [0, 1]→ P cadlag and investigate the problem

(**) Is there a cadlag process X such that Xt ∼ µt for each t ∈ [0, 1] ?

Incidentally, we are not aware of any µ which provides a negative answer to (**).
In particular, if µt = (1− t)δ0 + tδ1, a cadlag process X satisfying Xt ∼ µt for all
t is available. It suffices to let

Xt = 1[U,1](t),
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where the random variable U is uniformly distributed on (0, 1).
Another issue arises if R is replaced with an arbitrary metric space S. More

precisely, let P(S) be the set of Borel probability measures on S, equipped with
the weak topology, and let µ : [0, 1] → P(S) be a continuous map. Then, problem
(*) turns into

(***) Is there a continuous, S-valued process X such that Xt ∼ µt for each
t ∈ [0, 1] ?

If S = R and each µt is supported by an interval, µ is presentable by Theorem 1.
Hence, a question is whether (***) has a positive answer under some assumption
on the supports of the µt. Our last result is an attempt to answer when S = R2

and all the µt have the same marginal on the first coordinate.

Example 6. Suppose S = R2 and

µt
(
· × R

)
= γ(·) for all t ∈ [0, 1] and some probability measure γ ∈ P.

For fixed t, take a regular version{
πt(· | x) : x ∈ R

}
of the conditional distribution of the second coordinate given the first under µt.
This means that

− πt(· | x) ∈ P for each x ∈ R;
− x 7→ πt(B | x) is Borel measurable for each Borel set B ⊂ R;
−
∫
A
πt(B | x) γ(dx) = µt

(
A×B

)
for all Borel sets A, B ⊂ R.

Then, there is a continuous, R2-valued process X such that Xt ∼ µt for all t
provided

t 7→ πt(· | x) is continuous, as a map from [0, 1] into P, for each x ∈ R;(4)

πt(· | x) is supported by an interval for all t ∈ [0, 1] and x ∈ R.(5)

It suffices to let

Xt(α, β) =
(
Y (α), Zt(α, β)

)
for all t ∈ [0, 1] and (α, β) ∈ (0, 1)2

where

Y (α) = inf
{
x ∈ R : γ(−∞, x] ≥ α

}
and

Zt(α, β) = inf
{
x ∈ R : πt

(
(−∞, x] | Y (α)

)
≥ β

}
.

In fact, t 7→ Zt(α, β) is a continuous map because of (4)-(5) and Theorem 1. And,
on the probability space ((0, 1)2,B2, λ2), one obtains

λ2
(
Y ∈ A, Zt ∈ B

)
=

∫ 1

0

λ
{
β ∈ (0, 1) : Y (α) ∈ A, Zt(α, β) ∈ B

}
dα

=

∫ 1

0

1A(Y (α))πt(B | Y (α)) dα =

∫
A

πt(B | x) γ(dx) = µt
(
A×B

)
whenever t ∈ [0, 1] and A, B ⊂ R are Borel sets.
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