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Abstract. Let L be a convex cone of real random variables on the probability

space (Ω,A, P0). The existence of a probability P on A such that

P ∼ P0, EP |X| <∞ and EP (X) ≤ 0 for all X ∈ L
is investigated. Two types of results are provided, according to P is finitely

additive or σ-additive. The main results concern the latter case (i.e., P is a
σ-additive probability). If L is a linear space then −X ∈ L whenever X ∈ L,

so that EP (X) ≤ 0 turns into EP (X) = 0. Hence, the results apply to various

significant frameworks, including equivalent martingale measures, equivalent
probability measures with given marginals, stationary Markov chains and con-

ditional moments.

1. Introduction

Throughout, (Ω,A, P0) is a probability space and L a convex cone of real random
variables on (Ω,A, P0). We focus on those probabilities P on A such that

(1) P ∼ P0, EP |X| <∞ and EP (X) ≤ 0 for all X ∈ L.

Our main concern is the existence of one such P . Two types of results are provided.
In the first, P is a finitely additive probability, while P is σ-additive in the second.
The reference probability P0 is σ-additive.

In economic applications, for instance, L could be a collection of random variables

dominated by stochastic integrals of the type
∫ 1

0
H dS, where the semimartingale

S describes the stock-price process, and H is a predictable S-integrable process
ranging in some class of admissible trading strategies; see [20].

However, even if our results apply to any convex cone L, this paper has been
mostly written having a linear space in mind. In fact, if L is a linear space, since
−X ∈ L whenever X ∈ L, condition (1) yields

EP (X) = 0 for all X ∈ L.

Therefore, the addressed problem can be motivated as follows.
Let S = (St : t ∈ T ) be a real process on (Ω,A, P0) indexed by T ⊂ R. Suppose

S is adapted to a filtration G = (Gt : t ∈ T ) and St0 is a constant random variable
for some t0 ∈ T . A classical problem in mathematical finance is the existence of an
equivalent martingale measure, that is, a σ-additive probability P on A such that
P ∼ P0 and S is a G-martingale under P . But, with a suitable choice of the linear
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space L, an equivalent martingale measure is exactly a σ-additive solution P of (1).
It suffices to take L as the linear space generated by the random variables

IA (Su − St) for all u, t ∈ T with u > t and A ∈ Gt.

Note also that, if L is taken to be the convex cone generated by such random
variables, a σ-additive solution P of (1) is an equivalent super-martingale measure.

Equivalent martingale measures are usually requested to be σ-additive, but their
economic interpretation is preserved if they are only finitely additive. Thus, to look
for finitely additive equivalent martingale measures seems to be reasonable. We
refer to [4]-[5] and the beginning of Section 3 for a discussion on this point.

Equivalent martingale measures (both σ-additive and finitely additive) are the
obvious motivation for our problem, and this explains the title of this paper. But
they are not the only motivation. Indeed, various other issues can be reduced
to the existence of a probability P satisfying condition (1) for a suitable linear
space L (possibly without requesting P ∼ P0). Examples are stationary Markov
chains and equivalent probability measures with given marginals; see Examples 14
and 15. Other possible examples (not discussed in this paper) are compatibility
of conditional distributions and de Finetti’s coherence principle; see [1], [6] and
references therein.

This paper provides two types of results and a long final section of examples.
For definiteness, let us denote

S =
{

finitely additive probabilities P on A satisfying condition (1)
}
,

T =
{
σ-additive probabilities P on A satisfying condition (1)

}
.

Clearly, T ⊂ S and S may be empty. The members of S and T are also called
equivalent separating probabilities; see Section 2. In particular, a (σ-additive)
equivalent martingale measure is an equivalent separating measure for a suitable
choice of L.

Firstly, the existence of P ∈ S is investigated. In Theorem 2, under the assump-
tion that each X ∈ L is bounded, S 6= ∅ is given various characterizations. As an
example, S 6= ∅ if and only if{

P0(X ∈ ·) : X ∈ L, X ≥ −1 a.s.
}

is a tight collection of probability laws on the real line. Such condition already
appears in some previous papers; see e.g. [10], [14], [15], [16]. What is new in
Theorem 2 is that this tightness condition exactly amounts to S 6= ∅. Furthermore,
under some assumptions, Theorem 2 also applies when the elements of L are not
bounded; see Corollary 5.

Secondly (and more importantly) we focus on the existence of P ∈ T. Our
main results are those obtained in this framework (i.e., when P is requested to be
σ-additive). No assumption on the convex cone L is required.

According to Lemma 6, T 6= ∅ if and only if

EQ|X| <∞ and EQ(X) ≤ k EQ(X−)

for all X ∈ L, some constant k ≥ 0 and some σ-additive probability Q such that
Q ∼ P0. Note that, if k = 0, then Q ∈ T. Apparently, thus, the scope of Lemma
6 is quite little (it just implies T 6= ∅ even if k > 0). Instead, sometimes, Lemma
6 and its consequences play a role in proving T 6= ∅. The main purpose of the
examples in Section 5 is just to validate this claim.
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Typically, Lemma 6 helps when P ∈ T is requested some additional property,
such as to have a bounded density with respect to P0. This is made precise by
Corollary 7 and Theorems 8-9. Theorem 8 extends to any convex cone L a previous
result by [6, Theorem 5]. We next summarize these results.

There is P ∈ T such that r P0 ≤ P ≤ s P0, for some constants 0 < r ≤ s, if and
only if the condition of Lemma 6 holds with Q = P0. Similarly, if EP0 |X| <∞ for
all X ∈ L, there is P ∈ T with bounded density with respect to P0 if and only if

EP0

(
X IAn

)
≤ knEP0(X−) for all n ≥ 1 and X ∈ L,

where kn ≥ 0 is a constant, An ∈ A and limn P0(An) = 1. Finally, under some
conditions, the sequence (An) is essentially unique and well known.

The main advantage of Corollary 7 and Theorems 8-9, as opposite to Lemma 6,
is that they do not require the choice of Q.

2. Notation

In the sequel, as in Section 1, L is a convex cone of real random variables on the
fixed probability space (Ω,A, P0). Thus,

n∑
j=1

λj Xj ∈ L for all n ≥ 1, λ1, . . . , λn ≥ 0 and X1, . . . , Xn ∈ L.

We let P denote the set of finitely additive probabilities on A and P0 the subset
of those P ∈ P which are σ-additive. Recall that P0 ∈ P0.

Sometimes, L is identified with a subset of Lp for some 0 ≤ p ≤ ∞, where

Lp = Lp(Ω,A, P0).

In particular, L can be regarded as a subset of L∞ if each X ∈ L is bounded.
For every real random variable X, we let

ess sup(X) = inf{x ∈ R : P0(X > x) = 0} where inf ∅ =∞.

Given P, T ∈ P, we write P � T to mean that P (A) = 0 whenever A ∈ A and
T (A) = 0. Also, P ∼ T stands for P � T and T � P .

Let P ∈ P and X a real random variable. We write

EP (X) =

∫
XdP

whenever X is P -integrable. Every bounded random variable is P -integrable. If X
is unbounded but X ≥ 0, then X is P -integrable if and only if infn P (X > n) = 0
and supn

∫
X I{X≤n} dP <∞. In this case,∫

X dP = sup
n

∫
X I{X≤n} dP.

An arbitrary real random variable X is P -integrable if and only if X+ and X− are
both P -integrable, and in this case

∫
XdP =

∫
X+dP −

∫
X−dP .

In the sequel, a finitely additive solution P of (1) is said to be an equivalent
separating finitely additive probability (ESFA). We let S denote the (possibly empty)
set of ESFA’s. Thus, P ∈ S if and only if

P ∈ P, P ∼ P0, X is P -integrable and EP (X) ≤ 0 for each X ∈ L.
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Similarly, a σ-additive solution P of (1) is an equivalent separating measure (ESM).
That is, P is an ESM if and only if P ∈ P0 ∩ S. Recall that, if L is a linear space
and P is an ESFA or an ESM, then EP (X) = 0 for all X ∈ L.

Finally, it is convenient to recall the classical no-arbitrage condition

(NA) L ∩ L+
0 = {0} or equivalently (L− L+

0 ) ∩ L+
0 = {0}.

3. Equivalent separating finitely additive probabilities

In [4]-[5], ESFA’s are defended via the following arguments.

• The finitely additive probability theory is well founded and developed, even
if not prevailing. Among its supporters, we mention B. de Finetti, L.J.
Savage and L.E. Dubins.
• It may be that ESFA’s are available while ESM’s fail to exist.
• In option pricing, when L is a linear space, ESFA’s give arbitrage-free prices

just as ESM’s. More generally, the economic motivations of martingale
probabilities, as discussed in [11, Chapter 1], do not depend on whether
they are σ-additive or not.
• Each ESFA P can be written as P = δ P1 + (1 − δ)Q, where δ ∈ [0, 1),
P1 ∈ P, Q ∈ P0 and Q ∼ P0. Thus, when ESM’s fail to exist, one might be
content with an ESFA P with δ small enough. Extreme situations of this
type are exhibited in [5, Example 9] and [6, Example 11]. In such examples,
ESM’s do not exist, and yet, for each ε > 0, there is an ESFA Pε with δ < ε.

ESFA’s suffer from some drawbacks as well. They are almost never unique and
do not admit densities with respect to P0. In a finitely additive setting, conditional
expectations are not uniquely determined by the assessment of an ESFA P , and
this makes problematic to conclude that ”the stock-price process is a martingale
under P”. Further, it is unclear how to prescribe the dynamics of prices, needed
for numerical purposes.

Anyhow, this section deals with ESFA’s. Two distinct situations (the members
of L are, or are not, bounded) are handled separately.

3.1. The bounded case. In this Subsection, L is a convex cone of real bounded
random variables. Hence, the elements of L are P -integrable for any P ∈ P.

We aim to prove a sort of portmanteau theorem, that is, a result which collects
various characterizations for the existence of ESFA’s. To this end, the following
technical lemma is needed.

Lemma 1. Let C be a convex class of real bounded random variables, φ : C → R
a linear map, and E ⊂ A a collection of nonempty events such that A ∩ B ∈ E
whenever A, B ∈ E. There is P ∈ P satisfying

φ(X) ≤ EP (X) and P (A) = 1 for all X ∈ C and A ∈ E

if and only if

sup
A
X ≥ φ(X) for all X ∈ C and A ∈ E .

Proof. This is basically [4, Lemma 2] and so we just give a sketch of the proof. The
“only if” part is trivial. Suppose supAX ≥ φ(X) for all A ∈ E and X ∈ C. Fix
A ∈ E and define CA = {X|A− φ(X) : X ∈ C}, where X|A denotes the restriction
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of X on A. Then, CA is a convex class of bounded functions on A and supA Z ≥ 0
for each Z ∈ CA. By [12, Lemma 1], there is a finitely additive probability T on
the power set of A such that ET (Z) ≥ 0 for each Z ∈ CA. Define

PA(B) = T (A ∩B) for B ∈ A.

Then, PA ∈ P, PA(A) = 1 and EPA(X) = ET (X|A) ≥ φ(X) for each X ∈ C.
Next, let Z be the set of all functions from A into [0, 1], equipped with the product
topology, and let

FA =
{
P ∈ P : P (A) = 1 and EP (X) ≥ φ(X) for all X ∈ C

}
for A ∈ E .

Then, Z is compact and {FA : A ∈ E} is a collection of closed sets satisfying the
finite intersection property. Hence,

⋂
A∈E FA 6= ∅, and this concludes the proof. �

We next state the portmanteau theorem for ESFA’s. Conditions (a)-(b) are
already known while conditions (c)-(d) are new. See [8, Theorem 2], [19, Theorem
2.1] for (a) and [4, Theorem 3], [20, Corollary 1] for (b); see also [21]. Recall that
S denotes the (possibly empty) set of ESFA’s and define

Q = {Q ∈ P0 : Q ∼ P0}.

Theorem 2. Let L be a convex cone of real bounded random variables. Each of
the following conditions is equivalent to S 6= ∅.

(a) L− L+
∞ ∩ L+

∞ = {0}, with the closure in the norm-topology of L∞;

(b) There are Q ∈ Q and a constant k ≥ 0 such that

EQ(X) ≤ k ess sup(−X) for each X ∈ L;

(c) There are events An ∈ A and constants kn ≥ 0, n ≥ 1, such that

lim
n
P0(An) = 1 and

EP0

(
X IAn

)
≤ kn ess sup(−X) for all n ≥ 1 and X ∈ L;

(d)
{
P0(X ∈ ·) : X ∈ L, X ≥ −1 a.s.

}
is a tight collection of probability laws.

Moreover, under condition (b), an ESFA is

P =
Q+ k P1

1 + k
for a suitable P1 ∈ P.

Proof. First note that each of conditions (b)-(c)-(d) implies (NA), which in turn
implies

ess sup(X−) = ess sup(−X) > 0 whenever X ∈ L and P0(X 6= 0) > 0.

(b) ⇒ (c). Suppose (b) holds. Define kn = n (k + 1) and An = {n f ≥ 1},
where f is a density of Q with respect to P0. Since f > 0 a.s., then P0(An) → 1.
Further, condition (b) yields

EP0

(
X IAn

)
≤ EP0

(
X+ IAn

)
= EQ

{
X+ (1/f) IAn

}
≤ nEQ(X+)

= n
{
EQ(X) + EQ(X−)

}
≤ n

{
k ess sup(−X) + ess sup(X−)

}
= kn ess sup(−X) for all n ≥ 1 and X ∈ L.
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(c) ⇒ (d). Suppose (c) holds and define D = {X ∈ L : X ≥ −1 a.s.}. Up to
replacing kn with kn + 1, it can be assumed kn ≥ 1 for all n. Define

u =
( ∞∑
n=1

P0(An)

kn 2n

)−1

and Q(·) = u

∞∑
n=1

P0(· ∩An)

kn 2n
.

Then, Q ∈ Q. Given X ∈ D, since ess sup(−X) ≤ 1 and X + 1 ≥ 0 a.s., one
obtains

EQ|X| ≤ 1 + EQ(X + 1) = 2 + u

∞∑
n=1

EP0

(
X IAn

)
kn 2n

≤ 2 + u

∞∑
n=1

ess sup(−X)

2n
≤ 2 + u.

Thus,
{
Q(X ∈ ·) : X ∈ D

}
is tight. Since Q ∼ P0, then

{
P0(X ∈ ·) : X ∈ D

}
is

tight as well.
(d) ⇒ (b). Suppose (d) holds. By a result of Yan [24], there is Q ∈ Q such

that k := supX∈D EQ(X) < ∞, where D is defined as above. Fix X ∈ L with
P0(X 6= 0) > 0 and let Y = X/ess sup(−X). Since Y ∈ D, one obtains

EQ(X) = EQ(Y ) ess sup(−X) ≤ k ess sup(−X).

Thus, (b)⇔ (c)⇔ (d). This concludes the proof of the first part of the theorem,
since it is already known that (b) ⇔ (a) ⇔ S 6= ∅.

Finally, suppose (b) holds for some Q ∈ Q and k ≥ 0. It remains to show that
P = (1 + k)−1(Q + k P1) ∈ S for some P1 ∈ P. If k = 0, then Q ∈ S and P = Q.
Thus, suppose k > 0 and define

C = {−X : X ∈ L}, φ(Z) = −(1/k)EQ(Z) for Z ∈ C, E = {A ∈ A : P0(A) = 1}.

Given A ∈ E and Z ∈ C, since −Z ∈ L condition (b) yields

φ(Z) = (1/k)EQ(−Z) ≤ ess sup(Z) ≤ sup
A
Z.

By Lemma 1, there is P1 ∈ P such that P1 � P0 and EP1
(X) ≤ −(1/k)EQ(X)

for all X ∈ L. Since Q ∼ P0 and P1 � P0, then P = (1 + k)−1(Q + k P1) ∼ P0.
Further,

(1 + k)EP (X) = EQ(X) + k EP1(X) ≤ 0 for all X ∈ L.

�

Since L ⊂ L∞, condition (NA) can be written as (L− L+
∞) ∩ L+

∞ = {0}. Thus,
condition (a) can be seen as a no-arbitrage condition. One more remark is in order.
Let σ(L∞, L1) denote the topology on L∞ generated by the maps Z 7→ EP0

(
Y Z)

for all Y ∈ L1. In the early eighties, Kreps and Yan proved that the existence of
an ESM amounts to

(a*) L− L+
∞ ∩ L+

∞ = {0} with the closure in σ(L∞, L1);

see [18], [23] and [24]. But the geometric meaning of σ(L∞, L1) is not so transparent
as that of the norm-topology. Hence, a question is what happens if the closure is
taken in the norm-topology, that is, if (a*) is replaced by (a). The answer, due to
[8, Theorem 2] and [19, Theorem 2.1], is reported in Theorem 2.
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Note also that, since L ⊂ L∞, condition (a) agrees with the no free lunch with
vanishing risk condition of Delbaen and Schachermayer

(L− L+
0 ) ∩ L∞ ∩ L+

∞ = {0} with the closure in the norm-topology;

see [10] and [14]. However, Theorem 2 applies to a different framework. In fact,
in [10] and [14], L is of the form L = {YT : Y ∈ Y} where Y is a suitable class
of real processes indexed by [0, T ]. Instead, in Theorem 2, L is any convex cone
of bounded random variables. Furthermore, the equivalence between S 6= ∅ and
the no free lunch with vanishing risk condition is no longer true when L includes
unbounded random variables; see Example 13.

Let us turn to (b). Once Q ∈ Q has been selected, condition (b) provides a
simple criterion for S 6= ∅. However, choosing Q is not an easy task. The obvious
choice is perhaps Q = P0.

Corollary 3. Let L be a convex cone of real bounded random variables. Condition
(b) holds with Q = P0, that is

EP0
(X) ≤ k ess sup(−X) for all X ∈ L and some constant k ≥ 0,

if and only if there is P ∈ S such that P ≥ r P0 for some constant r > 0.

Proof. Let P ∈ S be such that P ≥ r P0. Fix X ∈ L. Since EP (X) ≤ 0, then
EP (X+) ≤ EP (X−) and ess sup(X−) = ess sup(−X). Hence,

EP0
(X) ≤ EP0

(X+) ≤ (1/r)EP (X+) ≤ (1/r)EP (X−)

≤ (1/r) ess sup(X−) = (1/r) ess sup(−X).

Conversely, if condition (b) holds with Q = P0, Theorem 2 implies that
P = (1 + k)−1(P0 + kP1) ∈ S for suitable P1 ∈ P. Thus, P ≥ (1 + k)−1P0. �

Condition (c) is in the spirit of Corollary 3 (to avoid the choice of Q). It is a
sort of localized version of (b), where Q is replaced by a suitable sequence (An) of
events. See also [5, Theorem 5].

As shown in Section 4, if suitably strengthened, both conditions (b) and (c)
become equivalent to existence of ESM’s (possibly, with bounded density with
respect to P0).

We finally turn to (d). Some forms of condition (d) have been already involved
in connection with the fundamental theorem of asset pricing; see e.g. [10], [14], [15],
[16]. What is new in Theorem 2 is only that condition (d) amounts to existence of
ESFA’s. According to us, condition (d) has some merits. It depends on P0 only and
has a quite transparent meaning (mainly, for those familiar with weak convergence
of probability measures). Moreover, it can be naturally regarded as a no-arbitrage
condition. Indeed, basing on [7, Lemma 2.3], it is not hard to see that (d) can be
rewritten as:

For each Z ∈ L+
0 , P0(Z > 0) > 0, there is a constant a > 0 such that

P0

(
X + 1 < aZ

)
> 0 whenever X ∈ L and X ≥ −1 a.s.

Such condition is a market viability condition, called no-arbitrage of the first kind,
investigated by Kardaras in [15]-[16]. In a sense, Theorem 2-(d) can be seen as a
generalization of [15, Theorem 1] (which is stated in a more economic framework).
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3.2. The unbounded case. In dealing with ESFA’s, it is crucial that L ⊂ L∞. In
fact, all arguments (known to us) for existence of ESFA’s are based on de Finetti’s
coherence principle, but the latter works nicely for bounded random variables only.
More precisely, the existing notions of coherence for unbounded random variables
do not grant a (finitely additive) integral representation; see [2] and [3]. On the
other hand, L ⊂ L∞ is certainly a restrictive assumption. In this Subsection, we
try to relax such assumption.

Our strategy for proving S 6= ∅ is to exploit condition (d) of Theorem 2. To this
end, we need a dominance condition on L, such as

(2) for each X ∈ L, there is λ > 0 such that |X| ≤ λY a.s.

where Y is some real random variable. We can (and will) assume Y ≥ 1.
Condition (2) is less strong than it appears. For instance, it is always true when

L is countably generated. In fact, if L is the convex cone generated by a sequence
(Xn : n ≥ 1) of real random variables, it suffices to let Yn =

∑n
i=1|Xi| in the

following lemma.

Lemma 4. If Y1, Y2, . . . are non negative real random variables satisfying

for each X ∈ L, there are λ > 0 and n ≥ 1 such that |X| ≤ λYn a.s.,

then condition (2) holds for some real random variable Y .

Proof. For each n ≥ 1, take an > 0 such that P0(Yn > an) < 2−n and define
A =

⋃∞
n=1

{
Yj ≤ aj for each j ≥ n

}
. Then,

P0(A) = 1 and Y := 1 +

∞∑
n=1

Yn
2nan

<∞ on A.

Also, condition (2) holds trivially, since 2nan Y > Yn on A for each n ≥ 1. �

Next result applies to those convex cones L satisfying condition (2). It provides
a sufficient (sometimes necessary as well) criterion for S 6= ∅.

Corollary 5. Suppose condition (2) holds for some convex cone L and some ran-
dom variable Y with values in [1,∞). Then, S 6= ∅ provided

for each ε > 0, there is c > 0 such that(3)

P0

(
|X| > cY

)
< ε whenever X ∈ L and X ≥ −Y a.s.

Conversely, condition (3) holds if S 6= ∅ and Y is P -integrable for some P ∈ S.

Proof. First note that Theorem 2 is still valid if each member of the convex cone
is essentially bounded (even if not bounded). Let L∗ = {X/Y : X ∈ L}. Then,
L∗ is a convex cone of essentially bounded random variables and condition (3) is
equivalent to tightness of

{
P0(Z ∈ ·) : Z ∈ L∗, Z ≥ −1 a.s.

}
. Suppose (3) holds.

By Theorem 2-(d), L∗ admits an ESFA, i.e., there is T ∈ P such that T ∼ P0 and
ET (Z) ≤ 0 for all Z ∈ L∗. As noted at the beginning of this Section, such a T can
be written as T = δ P1 + (1 − δ)Q, where δ ∈ [0, 1), P1 ∈ P and Q ∈ Q. Since
Y ≥ 1,

0 < (1− δ)EQ(1/Y ) ≤ ET (1/Y ) ≤ 1.

Accordingly, one can define

P (A) =
ET
(
IA/Y

)
ET (1/Y )

for all A ∈ A.
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Then, P ∈ P, P ∼ P0, each X ∈ L is P -integrable, and

EP (X) =
ET
(
X/Y

)
ET (1/Y )

≤ 0 for all X ∈ L.

Thus, P ∈ S. Next, suppose S 6= ∅ and Y is P -integrable for some P ∈ S. Define

T (A) =
EP
(
IA Y

)
EP (Y )

for all A ∈ A.

Again, one obtains T ∈ P, T ∼ P0 and ET (Z) ≤ 0 for all Z ∈ L∗. Therefore,
condition (3) follows from Theorem 2-(d). �

By Corollary 5, S 6= ∅ amounts to condition (3) when L is finite dimensional.
In fact, if L is the convex cone generated by the random variables X1, . . . , Xd,

condition (2) holds with Y = 1 +
∑d
i=1|Xi| and such Y is certainly P -integrable if

P ∈ S. The case of L finite dimensional, however, is better addressed in forthcoming
Example 10.

4. Equivalent separating measures

If suitably strengthened, some of the conditions of Theorem 2 become equivalent
to existence of ESM’s. One example is condition (a) (just replace it by (a*)). Other
examples, as we prove in this section, are conditions (b) and (c).

Unlike Theorem 2, L is not requested to consist of bounded random variables.

4.1. Main result. Recall the notation Q = {Q ∈ P0 : Q ∼ P0}.

Lemma 6. Let L be a convex cone of real random variables. There is an ESM if
and only if

EQ|X| <∞ and EQ(X) ≤ k EQ(X−), X ∈ L,(b*)

for some Q ∈ Q and some constant k ≥ 0. In particular, under condition (b*),
there is an ESM P satisfying

Q

k + 1
≤ P ≤ (k + 1)Q.

Proof. If there is an ESM, say P , condition (b*) trivially holds with Q = P and
any k ≥ 0. Conversely, suppose (b*) holds for some k ≥ 0 and Q ∈ Q. Define
t = k + 1 and

K =
{
P ∈ P0 : (1/t)Q ≤ P ≤ tQ

}
.

If P ∈ K, then P ∈ P0, P ∼ Q ∼ P0 and EP |X| ≤ t EQ|X| < ∞ for all X ∈ L.
Thus, it suffices to see that EP (X) ≤ 0 for some P ∈ K and all X ∈ L.

We first prove that, for each X ∈ L, there is P ∈ K such that EP (X) ≤ 0. Fix
X ∈ L and define P (A) = EQ

{
f IA

}
for all A ∈ A, where

f =
I{X≥0} + t I{X<0}

Q(X ≥ 0) + tQ(X < 0)
.

Since EQ(f) = 1 and (1/t) ≤ f ≤ t, then P ∈ K. Further, condition (b*) implies

EP (X) = EQ
{
f X

}
=

EQ(X+)− t EQ(X−)

Q(X ≥ 0) + tQ(X < 0)
=

EQ(X)− k EQ(X−)

Q(X ≥ 0) + tQ(X < 0)
≤ 0.
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Next, let Z be the set of all functions from A into [0, 1], equipped with the
product topology. Then,

K is compact and {P ∈ K : EP (X) ≤ 0} is closed for each X ∈ L.(4)

To prove (4), we fix a net (Pα) of elements of Z converging to P ∈ Z, that is,
Pα(A) → P (A) for each A ∈ A. If Pα ∈ K for each α, one obtains P ∈ P and
(1/t)Q ≤ P ≤ tQ. Since Q ∈ P0 and P ≤ tQ, then P ∈ P0, i.e., P ∈ K. Hence,
K is closed, and since Z is compact, K is actually compact. If X ∈ L, Pα ∈ K and
EPα(X) ≤ 0 for each α, then P ∈ K (for K is closed). Thus, EP |X| < ∞. Define
the set Ac = {|X| ≤ c} for c > 0. Since Pα and P are in K, it follows that

|EPα(X)− EP (X)| ≤
≤ |EPα

{
X −X IAc

}
|+ |EPα

{
X IAc

}
− EP

{
X IAc

}
|+ |EP

{
X IAc −X

}
|

≤ EPα
{
|X| I{|X|>c}

}
+ |EPα

{
X IAc

}
− EP

{
X IAc

}
|+ EP

{
|X| I{|X|>c}

}
≤ 2 t EQ

{
|X| I{|X|>c}

}
+ |EPα

{
X IAc

}
− EP

{
X IAc

}
|.

Since X IAc is bounded, EP
{
X IAc

}
= limαEPα

(
X IAc

)
. Thus,

lim sup
α
|EPα(X)− EP (X)| ≤ 2 t EQ

{
|X| I{|X|>c}

}
for every c > 0.

As c→∞, one obtains EP (X) = limαEPα(X) ≤ 0. Hence, {P ∈ K : EP (X) ≤ 0}
is closed.

Because of (4), to conclude the proof it suffices to see that{
P ∈ K : EP (X1) ≤ 0, . . . , EP (Xn) ≤ 0

}
6= ∅(5)

for all n ≥ 1 and X1, . . . , Xn ∈ L. Our proof of (5) is inspired to [17, Theorem 1].
Given n ≥ 1 and X1, . . . , Xn ∈ L, define

C =
⋃
P∈K

{
(a1, . . . , an) ∈ Rn : EP (Xj) ≤ aj for j = 1, . . . , n

}
.

Then, C is a convex closed subset of Rn. To prove C closed, suppose

(a
(m)
1 , . . . , a(m)

n )→ (a1, . . . , an), as m→∞, where (a
(m)
1 , . . . , a(m)

n ) ∈ C.

For each m, take Pm ∈ K such that EPm(Xj) ≤ a(m)
j for all j. Since K is compact,

Pα → P for some P ∈ K and some subnet (Pα) of the sequence (Pm). Hence,

aj = lim
α
a

(α)
j ≥ lim

α
EPα(Xj) = EP (Xj) for j = 1, . . . , n.

Thus (a1, . . . , an) ∈ C, that is, C is closed.
Since C is convex and closed, C is the intersection of all half-planes {f ≥ u}

including it, where u ∈ R and f : Rn → R is a linear functional. Fix f and u such
that C ⊂ {f ≥ u}. Write f as f(a1, . . . , an) =

∑n
j=1 λj aj , where λ1, . . . , λn are

real coefficients. If (a1, . . . , an) ∈ C, then (a1 + b, a2, . . . , an) ∈ C for b > 0, so that

b λ1 + f(a1, . . . , an) = f(a1 + b, a2, . . . , an) ≥ u for all b > 0.

Hence, λ1 ≥ 0. By the same argument, λj ≥ 0 for all j, and this implies
f(X1, . . . , Xn) ∈ L. Take P ∈ K such that EP

{
f(X1, . . . , Xn)

}
≤ 0. Since(

EP (X1), . . . , EP (Xn)
)
∈ C ⊂ {f ≥ u}, it follows that

u ≤ f
((
EP (X1), . . . , EP (Xn)

))
= EP

{
f(X1, . . . , Xn)

}
≤ 0 = f(0, . . . , 0).

This proves (0, . . . , 0) ∈ C and concludes the proof.
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�

Basically, Lemma 6 turns the original problem into a (slightly) simpler one. In
order that EP (X) ≤ 0 for all X ∈ L and some P ∈ Q, which is the goal, it is
enough that EQ(X) ≤ k EQ(X−) for all X ∈ L, some constant k ≥ 0 and some
Q ∈ Q. Apparently, the gain is really small. Sometimes, however, such a gain is
not trivial and allows to address the problem. Subsection 4.2 and Section 5 are
mostly devoted to validate this claim.

We finally note that, if L is a linear space, condition (b*) can be written as

EQ|X| <∞ and |EQ(X) | ≤ cEQ|X|(b**)

for all X ∈ L, some Q ∈ Q and some constant c < 1. In fact, (b*) implies (b**)
with c = k/(k + 2) while (b**) implies (b*) with k = 2c/(1 − c). However, (b**)
is stronger than (b*) if L is not a linear space. For instance, (b*) holds and (b**)
fails for the convex cone L = {Xb : b ≤ 0}, where Xb(ω) = b for all ω ∈ Ω.

4.2. Equivalent separating measures with bounded density. As in case of
condition (b) of Theorem 2, to apply Lemma 6 one has to choose Q ∈ Q and a
(natural) choice is Q = P0. This is actually the only possible choice if the density of
the ESM is requested to be bounded, from above and from below, by some strictly
positive constants.

Corollary 7. Let L be a convex cone of real random variables. There is an ESM
P such that

r P0 ≤ P ≤ s P0,

for some constants 0 < r ≤ s, if and only if

EP0
|X| <∞ and EP0

(X) ≤ k EP0
(X−)

for all X ∈ L and some constant k ≥ 0.

Proof. The “if” part follows from Lemma 6. Conversely, let P be an ESM such
that r P0 ≤ P ≤ s P0. Given X ∈ L, one obtains EP0

|X| ≤ (1/r)EP |X| <∞ and

EP0
(X) ≤ EP0

(X+) ≤ (1/r)EP (X+) ≤ (1/r)EP (X−) ≤ (s/r)EP0
(X−).

�

Suppose now that the density of the ESM is only asked to be bounded (from
above). This situation can be characterized through an obvious strengthening of
condition (c). Thus, from a practical point of view, the choice of Q ∈ Q is replaced
by that of a suitable sequence (An) of events. Sometimes, however, the choice of
(An) is essentially unique.

Suppose L ⊂ L1 and

EP0

(
X IAn

)
≤ knEP0(X−) for all n ≥ 1 and X ∈ L,(c*)

where kn ≥ 0 is a constant, An ∈ A and limn P0(An) = 1. If L is a linear space,
as shown in [6, Theorem 5], condition (c*) amounts to existence of an ESM with
bounded density. Here, we prove that (c*) works for a convex cone as well.

Theorem 8. Suppose EP0 |X| < ∞ for all X ∈ L, where L is a convex cone of
real random variables. There is an ESM P such that P ≤ s P0, for some constant
s > 0, if and only if condition (c*) holds.
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Proof. Let P be an ESM such that P ≤ s P0. Define kn = ns and An = {n f ≥ 1},
where f is a density of P with respect to P0. Then, limn P0(An) = P0(f > 0) = 1.
For X ∈ L, one also obtains

EP0

(
X IAn

)
≤ EP0

(
X+ IAn

)
= EP

{
X+ (1/f) IAn

}
≤ nEP (X+) ≤ nEP (X−) ≤ knEP0

(X−).

Conversely, suppose condition (c*) holds for some kn and An. It can be assumed
kn ≥ 1 for all n (otherwise, just replace kn with kn + 1). Define

u =
( ∞∑
n=1

P0(An)

kn 2n

)−1

and Q(·) = u

∞∑
n=1

P0(· ∩An)

kn 2n
.

Then, Q ∈ Q. For any random variable Y ≥ 0,

EQ(Y ) = u

∞∑
n=1

EP0

(
Y IAn

)
kn 2n

≤ uEP0(Y ).

Thus, Q(A) ≤ uP0(A) and EQ|X| ≤ uEP0 |X| < ∞ whenever A ∈ A and X ∈ L.
Similarly, condition (c*) implies EQ(X) ≤ uEP0(X−) for all X ∈ L.

Define

K =
{
P ∈ P0 : (u+ 1)−1Q ≤ P ≤ Q+ uP0

}
.

If P ∈ K, then EP |X| ≤ EQ|X|+ uEP0 |X| ≤ 2uEP0 |X| <∞ for all X ∈ L. Also,
P ∈ Q and P ≤ 2uP0. Hence, it suffices to show that EP (X) ≤ 0 for all X ∈ L
and some P ∈ K.

For each X ∈ L, there is P ∈ K such that EP (X) ≤ 0. Fix in fact X ∈ L. If
EQ(X) ≤ 0, just take P = Q ∈ K. If EQ(X) > 0, take a density h of Q with
respect to P0 and define

f =
EQ(X) I{X<0} + EP0(X−)h

EQ(X)P0(X < 0) + EP0
(X−)

and P (A) = EP0

(
f IA

)
for A ∈ A.

Since EQ(X) ≤ uEP0(X−), then (u+ 1)−1h ≤ f ≤ h+ u. Hence, P ∈ K and

EP (X) = EP0

(
f X

)
=
−EQ(X)EP0

(X−) + EP0
(X−)EQ(X)

EQ(X)P0(X < 0) + EP0(X−)
= 0.

From now on, the proof agrees exactly with that of Lemma 6. In fact, K is com-
pact and {P ∈ K : EP (X) ≤ 0} is closed for each X ∈ L (under the same topology
as in the proof of Lemma 6). In addition, for each finite subset {X1, . . . , Xn} ⊂ L,
one obtains EP (X1) ≤ 0, . . . , EP (Xn) ≤ 0 for some P ∈ K. This concludes the
proof. �

Theorem 8 provides a necessary and sufficient condition for an ESM with bounded
density to exist. This condition looks practically usable, but still requires to select
the sequence (An). However, under some assumptions on Ω and if the ESM is
requested an additional requirement, there is essentially a unique choice for (An).
Further, such a choice is usually known.

Theorem 9. Let Ω be a topological space, A the Borel σ-field and L a convex cone
of real random variables. Suppose EP0

|X| <∞ for all X ∈ L and

Ω = ∪nBn,
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where (Bn) is an increasing sequence of open sets with compact closure. Then,
condition (c*) holds with An = Bn if and only if there is an ESM P such that

sup
ω∈Ω

f(ω) <∞ and inf
ω∈K

f(ω) > 0(6)

for each compact K ∈ A with P0(K) > 0,

where f is a density of P with respect to P0.

Proof. Let P be an ESM satisfying (6). Since Bn has compact closure,

vn := inf
ω∈Bn

f(ω) > 0 whenever P0(Bn) > 0.

Letting kn = v−1
n supω∈Ω f(ω), it follows that

EP0

(
X IBn

)
≤ EP0

(
X+ IBn

)
= EP

{
X+ (1/f) IBn

}
≤ (1/vn)EP (X+) ≤ (1/vn)EP (X−) ≤ knEP0

(X−)

for all X ∈ L. Conversely, suppose (c*) holds with An = Bn. It can be assumed
kn ≥ 1 for all n. Define Q(A) = EP0

(
h IA

)
for all A ∈ A, where

h =

∞∑
n=1

u

kn 2n
IBn with u > 0 a normalizing constant.

Such h is bounded, strictly positive and lower semi-continuous (for the Bn are
open). Thus, infω∈K h(ω) > 0 whenever K is compact and nonempty. Arguing as
in the proof of Theorem 8, there is an ESM P such that (u+1)−1Q ≤ P ≤ Q+uP0.
Fix a density g of P with respect to P0 and define A = {(u+ 1)−1h ≤ g ≤ h+ u}
and f = IA g + IAc . Then, f satisfies condition (6). Since P0(A) = 1, further, f is
still a density of P with respect to P0. �

As an example, if Ω = {ω1, ω2, . . .} is countable, there is an ESM with bounded
density if and only if condition (c*) holds with An = {ω1, . . . , ωn}. Or else, if
Ω = Rd, there is an ESM satisfying (6) if and only if condition (c*) holds with
An the ball of center 0 and radius n. We finally note that condition (6) is not so
artificial. It holds, for instance, whenever f is bounded, strictly positive and lower
semi-continuous.

5. Examples

In this Section, L is a linear space. Up to minor changes, however, most exam-
ples could be adapted to a convex cone L. Recall that, since L is a linear space,
EP (X) = 0 whenever X ∈ L and P is an ESFA or an ESM.

Example 10. (Finite dimensional spaces). Let X1, . . . , Xd be real random
variables on (Ω,A, P0). Is there a σ-additive probability P ∈ P0 such that

P ∼ P0, EP |Xj | <∞ and EP (Xj) = 0 for all j ?

The question looks natural and the answer is intuitive as well. Such a P exists if
and only if L ∩ L+

0 = {0}, that is (NA) holds, with

L = linear space generated by X1, . . . , Xd.

This is a known result. It follows from [9, Theorem 2.4] and a (nice) probabilis-
tic argument is in [13]. However, to our knowledge, such result does not admit
elementary proofs. We now deduce it as an immediate consequence of Corollary 7.
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Up to replacing Xj with Yj =
Xj

1+
∑d
i=1|Xi|

, it can be assumed EP0 |Xj | <∞ for all

j. Let K = {X ∈ L : EP0
|X| = 1}, equipped with the L1-norm. If L ∩ L+

0 = {0},
then |EP0

(X) | < 1 for each X ∈ K. Since K is compact and X 7→ EP0
(X) is

continuous, supX∈K |EP0(X) | < 1. Thus, condition (b**) holds with Q = P0 and
Corollary 7 applies. (Recall that (b**) amounts to (b*) when L is a linear space).

Two remarks are in order. First, if EP0
|Xj | <∞ for all j (so that the Xj should

not be replaced by the Yj) the above argument implies that P can be taken to
satisfy r P0 ≤ P ≤ s P0 for some 0 < r ≤ s. Second, Corollary 7 also yields a
reasonably simple proof of [9, Theorem 2.6], i.e., the main result of [9].

Example 11. (A question by Rokhlin and Schachermayer). Suppose that
EP0(Xn) = 0 for all n ≥ 1, where the Xn are real bounded random variables. Let
L be the linear space generated by the sequence (Xn : n ≥ 1) and

Pf (A) = EP0

(
f IA

)
, A ∈ A,

where f is a strictly positive measurable function on Ω such that EP0(f) = 1.
Choosing P0, f and Xn suitably, in [20, Example 3] it is shown that

(i) There is a bounded finitely additive measure T on A such that

T � P0, T (A) ≥ Pf (A) and

∫
X dT = 0 for all A ∈ A and X ∈ L;

(ii) No measurable function g : Ω→ [0,∞) satisfies

g ≥ f a.s., EP0
(g) <∞ and EP0

(
g X

)
= 0 for all X ∈ L.

In [20, Example 3], L is spanned by a (infinite) sequence. Thus, at page 823, the
question is raised of whether (i)-(ii) can be realized when L is finite dimensional.

We claim that the answer is no, even if one aims to achieve (ii) alone. Suppose
in fact that L is generated by the bounded random variables X1, . . . , Xd. Since
Pf ∼ P0 and EP0(X) = 0 for all X ∈ L, then L ∩ L+

0 = {0} under Pf as well.
Arguing as in Example 10, one obtains EQ(X) = 0, X ∈ L, for some Q ∈ P0 such
that r Pf ≤ Q ≤ s Pf , where 0 < r ≤ s. Therefore, a function g satisfying the
conditions listed in (ii) is g = ψ/r, where ψ is a density of Q with respect to P0.

Example 12. (Example 7 of [5] revisited). Let L be the linear space generated
by the random variables X1, X2, . . ., where each Xn takes values in {−1, 1} and

(7) P0

(
X1 = x1, . . . , Xn = xn

)
> 0 for all n ≥ 1 and x1, . . . , xn ∈ {−1, 1}.

Every X ∈ L can be written as X =
∑n
j=1 bjXj for some n ≥ 1 and b1, . . . , bn ∈ R.

By (7),

ess sup(X) = |b1|+ . . .+ |bn| = ess sup(−X).

Hence, condition (b) is trivially true, and Theorem 2 implies the existence of an
ESFA. However, ESM’s can fail to exist. To see this, let P0(Xn = −1) = (n+ 1)−2

and fix P ∈ Q. Under P0, the Borel-Cantelli lemma yields Xn
a.s.−→ 1. Hence,

Xn
a.s.−→ 1 under P as well, and P fails to be an ESM for EP (Xn)→ 1.

This is basically Example 7 of [5]. We now modify such example, preserving
the possible economic meaning (provided the Xn are regarded as asset prices) but
allowing for ESM’s to exist.
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Let N be a random variable, independent of the sequence (Xn), with values in
{1, 2, . . .}. To fix ideas, suppose P0(N = n) > 0 for all n ≥ 1. Take L to be the
collection of X of the type

X =

N∑
j=1

bjXj

for all real sequences (bj) such that
∑
j |bj | < ∞. Then, L is a linear space of

bounded random variables. Given n ≥ 1, define Ln to be the linear space spanned
by X1, . . . , Xn. Because of (7) and the independence between N and (Xn), for each
X ∈ Ln one obtains

P0

(
X > 0 | N = n

)
> 0 ⇐⇒ P0

(
X < 0 | N = n

)
> 0.

Hence, condition (NA) holds with P0

(
· | N = n

)
and Ln in the place of P0 and L.

Arguing as in Example 10, it follows that EPn(X) = 0 for all X ∈ Ln and some
Pn ∈ P0 such that Pn ∼ P0

(
· | N = n

)
. Since Pn(N = n) = 1, then EPn(X) = 0

for all X ∈ L. Thus, an ESM is P =
∑∞
n=1 2−nPn.

Incidentally, in addition to be an ESM for L, such a P also satisfies

EP

(N∧n∑
j=1

bjXj

)
= 0 for all n ≥ 1 and b1, . . . , bn ∈ R.

Example 13. (No free lunch with vanishing risk). It is not hard to see that
S 6= ∅ implies

(L− L+
0 ) ∩ L∞ ∩ L+

∞ = {0} with the closure in the norm-topology of L∞.

Unlike the bounded case (see the remarks after Theorem 2), however, the converse
is not true.

Let Z be a random variable such that Z > 0 and P0(a < Z < b) > 0 for all
0 ≤ a < b. Take L to be the linear space generated by (Xn : n ≥ 0), where

X0 = Z
∑
k≥0

(−1)kI{k≤Z<k+1} and

Xn = I{Z<n} + Z
∑
k≥n

(−1)kI{k+2−n≤Z<k+1} for n ≥ 1.

Also, fix P ∈ P such that Xn is P -integrable for each n ≥ 0 and P = δ P1 +(1−δ)Q
for some δ ∈ [0, 1), P1 ∈ P and Q ∈ Q. From the definition of P -integrability
(recalled in Section 2) one obtains

EP (Xn) = P (Z < n) +
∑
k≥n

(−1)kEP

{
Z I{k+2−n≤Z<k+1}

}
for n ≥ 1.

Since Z = |X0| is P -integrable, then∣∣∣∑
k≥n

(−1)kEP

{
Z I{k+2−n≤Z<k+1}

}∣∣∣ ≤∑
k≥n

EP

{
Z I{k≤Z<k+1}

}
= EP

{
Z I{Z≥n}

}
−→ 0 as n→∞.

It follows that

lim inf
n

EP (Xn) = lim inf
n

P (Z < n) ≥ (1− δ) lim inf
n

Q(Z < n) = (1− δ) > 0.
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Hence P /∈ S, and this implies S = ∅ since each member of S should satisfy the
requirements asked to P . On the other hand, it is easily seen that

ess sup(X) = ess sup(−X) =∞ for each X ∈ L with P0(X 6= 0) > 0.

Thus, (L− L+
0 ) ∩ L∞ = −L+

∞ which trivially implies

(L− L+
0 ) ∩ L∞ ∩ L+

∞ = (−L+
∞) ∩ L+

∞ = (−L+
∞) ∩ L+

∞ = {0}.

Together with Example 10, the next examples aim to support the results in
Section 4. In addition to equivalent martingale measures, in fact, many other
existence-problems can be tackled by such results. See also Section 1 of [6].

Example 14. (Stationary Markov chains). Let S(A) be the set of simple
functions on (Ω,A). A kernel on (Ω,A) is a function K on Ω × A such that
K(ω, ·) ∈ P0 for ω ∈ Ω and ω 7→ K(ω,A) is measurable for A ∈ A. A station-
ary distribution for the kernel K is a (σ-additive) probability P ∈ P0 such that
EP (f) =

∫
K(ω, f)P (dω) for all f ∈ S(A), where

K(ω, f) =

∫
f(x)K(ω, dx).

Let K be a kernel on (Ω,A). Then, K admits a stationary distribution P , satisfying
P ∼ P0 and P ≤ s P0 for some constant s > 0, if and only if

EP0

{
IAn

(
K(·, f)− f

)}
≤ knEP0

{(
K(·, f)− f

)−}
(8)

for all n ≥ 1 and f ∈ S(A), where kn ≥ 0 is a constant, An ∈ A and limn P0(An) =
1. This follows directly from Theorem 8, applied to the linear space

L =
{
K(·, f)− f : f ∈ S(A)

}
.

Condition (8) looks potentially useful, for the usual criteria for the existence of
stationary distributions are not very simple to work with. Also, by Theorem 9,
if Ω = {ω1, ω2, . . .} is countable one can take An = {ω1, . . . , ωn}. In this case,
condition (8) turns into

n∑
j=1

P0{ωj}
{
K(ωj , f)− f(ωj)

}
≤ kn

∞∑
j=1

P0{ωj}
{
K(ωj , f)− f(ωj)

}−
.

Example 15. (Equivalent probability measures with given marginals).
Let

Ω = Ω1 × Ω2 and A = A1 ⊗A2

where (Ω1,A1) and (Ω2,A2) are measurable spaces. Fix a (σ-additive) probability
Ti on Ai for i = 1, 2. Is there a σ-additive probability P ∈ P0 such that

(9) P ∼ P0 and P
(
· × Ω2

)
= T1(·), P

(
Ω1 × ·

)
= T2(·) ?

Again, the question looks natural (to us). Nevertheless, as far as we know, such a
question has been neglected so far. For instance, the well known results by Strassen
[22] do not apply here, for Q fails to be closed in any reasonable topology on P0.
However, a possible answer can be manufactured through the results in Section 4.
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Let Mi be a class of bounded measurable functions on Ωi, i = 1, 2. Suppose each
Mi is both a linear space and a determining class, in the sense that, if µ and ν are
(σ-additive) probabilities on Ai then

µ = ν ⇐⇒ Eµ(f) = Eν(f) for all f ∈Mi.

Define L to be the class of random variables X on Ω = Ω1 × Ω2 of the type

X(ω1, ω2) =
{
f(ω1)− ET1(f)

}
+
{
g(ω2)− ET2(g)

}
for all f ∈M1 and g ∈M2. Then, L is a linear space of bounded random variables.
Furthermore, there is P ∈ P0 satisfying (9) if and only if L admits an ESM. In
turn, by Lemma 6, the latter fact amounts to EQ(X) ≤ k EQ(X−) for all X ∈ L
and some Q ∈ Q and k ≥ 0.

To fix ideas, we discuss a particular case. Let

R1(·) = P0(· × Ω2), R2(·) = P0(Ω1 × ·), R = R1 ×R2 and T = T1 × T2.

Thus, R1 and R2 are the marginals of P0, R and T are product probabilities on
A = A1 ⊗ A2 and R has the same marginals as P0. Then, condition (9) holds for
some P ∈ P0 provided

R� P0, Ti � Ri and Ri ≤ bi Ti
for i = 1, 2 and some constants b1 > 0 and b2 > 0.

Define in fact P ∗ = (1/2) (P0 +T ). Then, P ∗ has marginals R∗i = (1/2) (Ri+Ti)
for i = 1, 2. Furthermore,

P ∗ ∼ P0, Ti ≤ 2R∗i ≤ (1 + bi)Ti, R∗1 ×R∗2 � P ∗.

Thus, up to replacing P0 with P ∗, it can be assumed

R� P0 and ai Ti ≤ Ri ≤ bi Ti
where i = 1, 2 and both ai > 0 and bi > 0 are constants. Under such assumptions,
take a density of R with respect to P0, say f , and define

c = EP0
(f ∨ 1) and Q(A) = (1/c)EP0

{
(f ∨ 1) IA

}
for A ∈ A.

Observe now that ET (X) = 0 for all X ∈ L (since T has marginals T1 and T2) and

(b1 b2)−1R ≤ T ≤ (a1 a2)−1R.

By Corollary 7, applied with R in the place of P0, one obtains ER(X) ≤ uER(X−),
X ∈ L, for some constant u ≥ 0. Given Y ∈ L, it follows that

EP0
(Y ) = ER(Y ) ≤ uER(Y −) = uEP0

(
f Y −

)
≤ uEP0

{
(f ∨ 1)Y −

}
= c uEQ(Y −)

where the first equality is because P0 and R have the same marginals. Letting
h = 1/(f ∨ 1) and noting that h ≤ 1, one also obtains

(1/c)EP0
(Y ) = EQ

(
hY
)

= EQ
(
hY +

)
− EQ

(
hY −

)
≥ EQ

(
hY +

)
− EQ(Y −).

Hence, EQ
(
hY +

)
≤ (u + 1)EQ(Y −). Finally, let An = {f ≤ n}. On noting that

nh ≥ 1 on An, one obtains

EQ
(
IAn Y

)
≤ EQ

(
IAn Y

+
)
≤ nEQ

{
IAn hY

+
}

≤ nEQ
(
hY +

)
≤ n (u+ 1)EQ(Y −).
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Further, limnQ(An) = 1. By Theorem 8, applied with Q in the place of P0, there
is P ∈ P0 such that P ∼ Q and EP (X) = 0 for all X ∈ L. Since Q ∼ P0, such a P
satisfies condition (9).

Example 16. (Conditional moments). Let G ⊂ A be a sub-σ-field and U, V
real random variables satisfying EP0

{
|U |k + |V |k

}
< ∞ for some integer k ≥ 1.

Suppose we need a σ-additive probability P ∈ P0 such that

P ∼ P0, EP
{
|U |k + |V |k

}
<∞, and

EP
(
U j | G

)
= EP

(
V j | G

)
a.s. for 1 ≤ j ≤ k.

For such a P to exist, it suffices to prove condition (c*) for the linear space L
generated by IA(U j − V j) for all A ∈ G and 1 ≤ j ≤ k. In this case in fact, by
Theorem 8, there is an ESM P such that P ≤ s P0 for some constant s > 0. Hence,
EP
{
|U |k + |V |k

}
≤ sEP0

{
|U |k + |V |k

}
<∞, and EP

(
U j −V j | G

)
= 0 a.s. follows

from EP
{
IA (U j − V j)

}
= 0 for all A ∈ G.

Let C be the collection of X ∈ L of the form X =
∑k
j=1 qj (U j − V j) with

q1, . . . , qk rational numbers. Define

W = sup
X∈C

EP0
(X | G)

EP0
(X− | G)

,

with the conventions 0/0 = 0 and x/0 = sgn(x) · ∞ if x 6= 0, and suppose

P0(W <∞) = 1.

Fix X ∈ L. Then, X can be written as X =
∑k
j=1 Yj (U j − V j) where Y1, . . . , Yk

are G-measurable random variables. Basing on this fact and P0(W <∞) = 1, one
obtains EP0

(X | G) ≤W EP0
(X− | G) a.s. Let An = {W ≤ n}. Since An ∈ G,

EP0

(
X IAn

)
= EP0

{
IAn EP0

(X | G)
}
≤ EP0

{
IAnW EP0

(X− | G)
}

≤ nEP0

{
EP0

(X− | G)
}

= nEP0
(X−).

On noting that limn P0(An) = P0(W <∞) = 1, thus, condition (c*) holds.
As a concrete example, suppose k = 1. Then, C = {q (U − V ) : q rational} and

P0(W <∞) = 1 can be written as

EP0(U − V | G)

EP0

{
(U − V )− | G

} <∞ and
EP0(U − V | G)

EP0

{
(U − V )+ | G

} > −∞ a.s.

or equivalently

|EP0
(U − V | G) |

EP0

{
|U − V | | G

} < 1 a.s.

Under such condition, one obtains EP
(
U | G

)
= EP

(
V | G

)
a.s. for some P ∈ P0

such that P ∼ P0.
A last remark is in order. Suppose that P0(W < ∞) = 1 is weakened into

P0(W < ∞) > 0. Then, EP
(
U j | G

)
= EP

(
V j | G

)
a.s., 1 ≤ j ≤ k, for some

P ∈ P0 such that P � P0. In fact, letting Q(·) = P0(· | W < ∞), the above
argument implies EQ

(
X IAn

)
≤ nEQ(X−) for all n ≥ 1 and X ∈ L. Hence, P can

be taken such that P ∼ Q� P0.
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Example 17. (Translated Brownian motion). Let

St = Bt −
∫ t

0

Ys ds,

where B = (Bt : 0 ≤ t ≤ 1) is a standard Brownian motion and Y = (Yt : 0 ≤ t ≤ 1)
a real measurable process on (Ω,A, P0). Suppose that almost all Y -paths satisfy∫ 1

0

|Yt| dt ≤ b and Y = 0 on [δ, 1]

with b > 0 and δ ∈ (0, 1) constants. Then, for any sequence 0 = t1 < t2 < t3 < . . .
with supn tn = 1, there is a σ-additive probability P ∈ P0 such that

r P0 ≤ P ≤ s P0 and EP (Stn) = 0(10)

for all n ≥ 1 and some constants 0 < r ≤ s.
We next prove (10). Let L be the linear space generated by {Stj+1

−Stj : j ≥ 1}
and let n0 ≥ 1 be such that tj ≥ δ for all j > n0. Fix X ∈ L, say

X =

n∑
j=1

cj (Stj+1 − Stj ) where c1, . . . , cn ∈ R and cj 6= 0 for some j.

Then,

|EP0
(X) | =

∣∣∣ n∧n0∑
j=1

cj EP0

(∫ tj+1

tj

Ys ds
) ∣∣∣ ≤ b n∧n0∑

j=1

|cj |.

Define

u =

√√√√ n∑
j=1

c2j (tj+1 − tj), V =

n∑
j=1

(cj/u)
{
Btj+1

−Btj
}
, a = min{tj+1 − tj : 1 ≤ j ≤ n0}.

On noting that (1/u2)
∑n∧n0

j=1 c2j (tj+1 − tj) ≤ 1, one obtains

X/u = V − (1/u)

n∧n0∑
j=1

cj
√
tj+1 − tj

∫ tj+1

tj
Ys ds

√
tj+1 − tj

≤ V +

√√√√√(1/u2)

n∧n0∑
j=1

c2j (tj+1 − tj)
n∧n0∑
j=1

(∫ tj+1

tj
Ys ds

)2
tj+1 − tj

≤ V +

√√√√(1/a)

n∧n0∑
j=1

(∫ tj+1

tj

|Ys| ds
)2

≤ V +

√√√√(1/a)
(n∧n0∑
j=1

∫ tj+1

tj

|Ys| ds
)2

≤ V +
√
b2/a.

On the other hand,

u2 ≥ a
n∧n0∑
j=1

c2j ≥
a

n ∧ n0

(n∧n0∑
j=1

|cj |
)2

≥ a

b2n0

(
EP0

(X)
)2

.
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Thus,

EP0(X−) = uEP0

{
(X/u)−

}
≥ uEP0

{(
V +

√
b2/a

)−}
≥
√

a

b2n0
EP0

{(
V +

√
b2/a

)−} |EP0
(X) |.

Since V has standard normal distribution under P0, then EP0

{(
V +

√
b2/a

)−}
> 0.

Therefore, to get condition (10), it suffices to apply Corollary 7 with

k =
b
√
n0

√
aEP0

{(
V +

√
b2/a

)−} .
Finally, we make two remarks. Fix a filtration G = (Gt : 0 ≤ t ≤ 1), satisfying the

usual conditions, and suppose that B is a standard Brownian motion with respect

to G as well. A conclusion much stronger than (10) can be drawn if
∫ 1

0
Y 2
t dt <∞

a.s., Y is G-adapted, and the process

Zt = exp
(∫ t

0

Ys dBs − (1/2)

∫ t

0

Y 2
s ds

)
is a G-martingale. In this case, in fact, Girsanov theorem implies that S is a
standard Brownian motion with respect to G under Q, where Q(A) = EP0

(
Z1 IA

)
for A ∈ A. Unlike Girsanov theorem, however, condition (10) holds even if Y is
not G-adapted and/or Z fails to be a G-martingale.

The second remark is that the above argument applies under (various) different
assumptions. For instance, such an argument works if B is replaced by any sym-
metric α-stable Levy process. Or else, if the constant δ is replaced by a (suitable)
(0, 1)-valued random variable.
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