A NOTE ON COMPATIBILITY OF CONDITIONAL
AUTOREGRESSIVE MODELS

EMANUELA DREASSI AND PIETRO RIGO

ABSTRACT. Suppose that, to assess the joint distribution of a random vector
(X1,...,Xn), one selects the kernels Q1,...,Qn with Q; to be regarded as

a possible conditional distribution for X; given (X; : j # 4); Q1,...,Qn are
compatible if there exists a joint distribution for (X1, ..., X,) with condition-
als Q1,...,Qn. Similarly, Q1,...,Qn are improperly compatible if they can

be obtained, according to the usual rule, with an improper distribution in
place of a probability distribution. In this paper, compatibility and improper
compatibility of Q1, ..., @y are characterized under some assumptions on their
functional form. The characterization applies, in particular, if each Q; belongs
to a one parameter exponential family. Special attention is paid to Gaussian
conditional autoregressive models.

1. INTRODUCTION

Let I ={1,...,n}. For each i € I, let X; be a Polish space (complete separable
metric space) and X; an X;-valued random variable.

Sometimes, every X; is requested to have an assigned conditional distribution
given (X : j # i). The main reason is to assess the joint distribution of the vector
(X1,...,Xn) by specifying some of its conditionals. Quoting from [18, page 171]:
“It is frequently difficult or impossible in complex situations to specify a model
through formulation of a joint distribution for a complete set of response variables.
Even in the Gaussian case, where it may be possible to write such a joint distribu-
tion, the relative merits of conditional specification versus simultaneous specifica-
tion of a statistical model may lead one to prefer the conditional approach”. Indeed,
such a conditional approach is standard practice in various fields, including spatial
statistics, statistical mechanics, Bayesian image analysis, multiple data imputation
and Gibbs sampling. See e.g. [1]-[3], [7]-[10], [12], [16]-[17], [21].

To handle situations of this type, it is convenient to let X =[]
X1,...,X, to be the canonical projections on X', namely

Xi(z)=2; foriclandxeX

ser <Xi and to take

where z = (21, ...,2,) and z; denotes the i-th coordinate of . Also, for each i € I,
we let
X =11
JF#i

and we fix a function @); on X_; satisfying
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(i) Qi(y) is a probability measure on B(X;) for fixed y € X_;,
(ii) y — Q;i(y)(B) is measurable for fixed B € B(X;).

Here and in the sequel, “measurable” stands for “Borel measurable” and B(S)
denotes the Borel o-field on S for any topological space S.

Depending on the framework, @1, ..., Q, are given various names, such as proba-
bility kernels (or merely kernels), putative conditional distributions, full conditional
distributions and conditional autoregressive (CAR) models; see e.g. [1], [3], [6], [7],
[9], [10], [12], [16], [17].

Let P be the set of all probability measures on B(X). Each Q; should be re-
garded as a conditional distribution of X; given (X; : j # ¢). But of course, since
Q; is only subjected to (i)-(ii), it may be that no P € P admits Q1,...,Q, as
conditional distributions. In this case, @1,...,Q, are not compatible. Instead,
Q1,...,Q, are compatible if they are the conditionals of some P € P. A seminal
paper on compatibility is Besag’s [7]. Some other references, without any claim to
be exhaustive, are [1]-[2], [5]-[12], [14]-][16], [18]-[22].

An improper distribution is an infinite measure on B(X). Even if Q1,...,Q,
are not compatible, it may be that they can be obtained, according to the usual
rule, with an improper distribution in place of a probability distribution. To give
a formal definition, we need some notation. For each i € I, let A; be a o-finite
measure on B(X;) and let A = Ay x ... X A, denote the corresponding product
measure on B(X). Suppose that Q;(y) has a density f;(- | y) with respect to A,
namely,

(1) Qi(y)(dz) = fi(z | y) Ni(dz)
for all : € I and y € X_;. Further, define
;= (1, ., Ti—1,Tit1,-..,Tn) forallze X andiel.

Under (1), we say that Q1,...,Q, are improperly compatible if

f(z)

2 T | T—;) =

( ) f( | ) in f(xl,...,xi,l,z,xiﬂ,...,xn))\i(dz)
for all 7 € I and A-almost all x € X,

where f is a strictly positive measurable function on X and the integral in the
denominator is finite.

Let @ be the measure on B(X) with density f with respect to A. If fX fdX < o0,
then @ can be normalized to be a probability measure. In this case, @1, ...,Q, are
even compatible (and not only improperly compatible). Instead, @Q1,...,Q, are
improperly compatible but not compatible whenever [ v fd\ = co. Even in this
case, however, they can be formally obtained by the usual rule starting from the
improper distribution Q.

Since f > 0 everywhere, definition (2) makes sense only if f; > 0 for all ¢ € I,
which is certainly a restrictive condition. As remarked by an anonymous referee,
such definition could be generalized by introducing suitable conventions (such as
0/0 = 0) and allowing for A(f = 0) > 0. As it stands, however, definition (2)
suffices for our purposes and we do not try to generalize it in this paper.

Improper compatibility is meaningless in probability theory. According to the
latter, Q1,...,Q, are either compatible or not compatible, without intermediate
cases. Nevertheless, the improper case is statistically meaningful. It is very popular,
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for instance, in Bayesian statistics; see e.g. [4], [13] and references therein. In that
framework, the prior distribution of a random parameter is often improper, mainly
if such prior is requested to be “non informative” (in some sense). However, though
the literature on improper distributions is virtually endless, improper compatibility
has not been paid much attention to date. Instead, it often occurs in applications.

Ezample 1. (Gaussian CAR models). For each i € I, let X; =R and
Qi(y) = N(Zwijyj ; 0'2-2)

J#i
where 0?2 > 0, w;; is any real number and y = (y1,...,Yi—1,Yit1,---,Yn) € R*7L.
Such @1, . .., Q, are usually called Gaussian CAR models or Gaussian auto-models;

see e.g. [3], [7], [9], [17]. An important special case, introduced in [9, Section 3],
is that of Gaussian intrinsic CAR models. The latter are precisely those Gauss-
ian CAR models which are improperly compatible but not compatible. Roughly
speaking, intrinsic CAR models can be seen as a limiting form of compatible CAR
models. They are frequently used in real problems, mainly to model spatial random
effects; see e.g. [3, Section 4.3] and [17]. A well known example is

Eje . Jd &
Qily) = N( card](vNZi/) " card(V;) )

where ¢ > 0 is any constant and N; a non-empty subset of I (to be regarded as the
collection of “neighbors” of 7).

In this paper, improper compatibility is explicitly taken into account. Our main
results (Theorem 5 and Corollary 6) complete, unify and slightly extend the material
in [7, Section 4]; see also [18] and [20]. A joint treatment of compatibility and
improper compatibility, for random variables with values in quite general spaces
(such as Polish spaces), is provided. In addition, a class of kernels larger than the
exponential family is covered. Special attention is finally paid to Gaussian CAR
models.

2. PRELIMINARIES

From now on, condition (1) is assumed to hold, namely, Q;(y) admits a density
fi(- | y) with respect to ;. Since B(X;) is countably generated, f;(z | y) can be
taken to be jointly measurable in z and y (i.e., (z,y) — fi(z | y) is measurable).

Accordingly we fix fi,..., fn, jointly measurable and satisfying (1), and we say
that fi1,..., fn are compatible or improperly compatible to mean that Qq,...,Q,
are compatible or improperly compatible. Furthermore,

A=A X ..ox Ay and Ay = A1 X oo X A1 X A1 X .o X Ay

denote the product measures on B(X') and B(X_;), respectively.
In the next result, u; is a non-negative function on A_; and

H, = {m € X iui(z—;) >0, up(x_p) > 0}.

Theorem 2. (Theorem 10 of [6]). f1,..., fn are compatible if and only if there
are measurable functions u; : X_; — [0,00), i € I, such that

(3)  filxi | =) = fuloen | xop) ui(z—i) un(x_p) for A-almost all x € H;
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and

n\+4n —n) Un\L—n Ad = zd)\_z = nd)\—n
/Hif(x |2 ) tn () A(d) /{Wo}l/“ / u

—-n

Jor alli < n, where 0 < [, undA_, < oo.

We have reported Theorem 2 for completeness, but we actually need the following
fact only.

Corollary 3. (Corollary 11 of [6]). Suppose f; > 0 for alli € I. Then, f1,..., fn
are compatible if and only if condition (3) holds for some strictly positive measurable
functions u; on X_;, i € I, such that fX% Up AA_,, < 00.

A simple modification of Corollary 3 allows to characterize improper compati-
bility. As can be expected, it suffices to drop the integrability condition on wu,,.

Theorem 4. Suppose f; > 0 for alli € I. Then, fi,..., fn, are improperly com-
patible if and only if condition (3) holds for some (strictly positive, measurable)
functions uy, ..., up.

The proof of Theorem 4, as well as of all other results in this paper, is postponed
to a final appendix.

A last remark is in order. Suppose fi,..., f, are improperly compatible, fix
Uy, ..., u, satisfying condition (3), and define ¢ = fx,n Up dA_p,. Then, f1,..., fn
are compatible if and only if ¢ < 0o, and in that case they are the conditional densi-
ties of f(z) = (1/c) fu(zn | z—n) un(x_y), € X; see Corollary 3 and forthcoming
Lemma 7. In particular, u,/c is the marginal density of (X1,...,X,_1) whenever
¢ < 0o. As an example, take n = 2, X} = X = R and Q1(y) = Q2(y) = N(y,1).
Then, Q1 and Q5 are improperly compatible but not compatible. In fact, with \; =
A2 = Lebesgue measure, one obtains f; = fo. Hence, (3) holds with u; = ug =1
but clearly ¢ = [*_us(y) dy = oc.

3. A crass or CAR MODELS

In this section, the abbreviation a.e. is always meant with respect to the corre-
sponding product measure. More exactly, suppose X'* = Hj ey Xj for some J C I
and \* = HjeJ A; is the corresponding product measure. Then, a statement on X™
is said to hold a.e., or for almost all x € X*, provided it holds A*-a.e. Moreover, a

point y € X_; is written as ¥ = (Y1, ., Yi—1, Yit1s- -+ Yn)-
We assume f; to be of the form

(4) fi(z [ y) = gi(2) hi(y) HQij(Zayj)
J#i
foralli eI, z € X; and y € X_;, where
gi : X; — (O,OO)7 hi:X_; — (0,00), qij : X; x Xj — (0,00)
are strictly positive measurable functions.
We also need that the ratio ¢;;/q¢;; is either a.e. constant or can not be factorized

as

i 7t
(5) 6is (5, 1) =v;(s)v;(t) for almost all (s,t) € X; x &,
ji(t, s)
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where v; : X; — (0,00) and v; : X; — (0,00) are strictly positive measurable
functions. Precisely, we say that ¢;;/q;; is irreducible if condition (5) implies that
gij/qji is a.e. constant.

We begin with the following result.

Theorem 5. Suppose that f; satisfies condition (4) for all © € I and the ratios
gij/qji are irreducible for all i # j. Then, fi,..., fn are improperly compatible if
and only if

(6) qij(s,t) = cij qji(t, 5),
for all i # j, some constant ¢;; > 0, and almost all (s,t) € X; x X;. Moreover,

f1s--y fn are compatible if and only if condition (6) holds and fX7 Uy, dA_p, < 00,
where

un(y H 95(y;) H H 4k (Y5> Yk) forally e X_,,.
Jj#n J#n k#jn

A meaningful case of Theorem 5 is when f; belongs to a certain type of expo-
nential family. In fact, condition (4) holds whenever

(7) fiz | y) = gi(2) hi(y) exp {ai(y)bi(2)}

where b; : X; — R is any measurable function and a; : X_; — R can be written as

(8) ai(y) = a; + E Bij b (y;)
J#i
for some real numbers a; and §;;.

Corollary 6. For each i € I, suppose that f; satisfies conditions (7)-(8) and b;
is not a.e. constant. Then, f1,...,fn are improperly compatible if and only if
Bij = Bji for alli # j. Moreover, fi,..., fn are compatible if and only if B;; = By
for alli # j and fX Up, dA_, < 00, where

Un ng Yj) eXP{ZO‘J (v5) 2 Z Z Bikb;(y; bk(yk)}

J;ﬁn J#n J#n k#jn
forally e X_,.

Corollary 6 is possibly the most important case of Theorem 5, but there are also
situations where the latter applies while the former does not. An example is

filz 1y) = haly) exp (= 3 Blz = v31)

J#i

where X; = R, \; = Lebesgue measure and the 3;; are non-negative coefficients.

A neighborhood system is a collection N = {Ni NS I}, where NV, is a subset
of I to be regarded as the class of “neighbors” of i. As usual, it is assumed that
i ¢ N;and i € N; & j € N;. Recall also that a clique is a subset C' C I such that
card(C) = 1 or C consists of sites that are all neighbors of each other.

In Markov Random Fields (also known as Undirected Graphical Models) a neigh-
borhood system N is given and fi,..., f, are required to be consistent with N;
see e.g. [3, page 79]. Consistency means that f;(z; | x—;) does not depend on z;
for every j ¢ N; U{i}. Thus, in Markov Random Fields, fi,..., f, can be taken to
satisfy condition (4) when no clique has cardinality greater than 2.
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Theorem 5 and Corollary 6 apply regardless of whether N is given or not. Under
conditions (7)-(8), however, f1,...,f, are actually consistent with the neighbor-
hood system N; = {j 2jF 4 By # 0}. In fact,

hi(x_;) = (/X 9i(2) exp {a;(x_;)bi(2) } \i(dz) )71 for all z € X,

so that f;(x; | x_;) does not depend on z; if §;; = 0.

Some form of condition (8) is quite usual when fi,..., f,, are from the expo-
nential family; see e.g. [7], [8], [10], [16], [17]. Moreover, under some assumptions,
(8) becomes a necessary condition for compatibility. In fact, (8) holds whenever
fi,-.., fn are compatible and consistent with a neighborhood system A such that
no clique has cardinality greater than 2; see [7], [18] and [20].

We next turn to Gaussian CAR models, as defined in Example 1. Accordingly,
for each 7 € I, we let X; = R, \; = Lebesgue measure, and

(z — Zj;éi wijy;)? }

2
20;

filz |y) = @mo?) ™2 exp{ =

where z € R, y € R"™!, w;; and o? are real numbers and o7 > 0. Such f; can be
written as in (7) with
Wis
j#i ot
By Corollary 6, it follows that f1,..., f,, are improperly compatible if and only if

(9) w07 =wj;o7  for all i # j.
Furthermore, under (9), fi,..., fn are compatible if and only if
(10) / exp{—(l/?) y/Ay} dy < o0,

Rn—l
where y € R"™! denotes here a column vector and A is the symmetric matrix

1 — W sw: g ) .
Q;; — 7“]72”101”, aij = —711}” + U;znwn] fOI’ ’L < j
9; i

In fact, A_, is Lebesgue measure on R"~! and the function u, of Corollary 6
reduces to u,(y) = exp {—(1/2) 4/ Ay} (up to a multiplicative constant) because of
condition (9).

Some remarks are in order.

An in-depth discussion of Gaussian CAR models, including compatibility and
the interpretation of w;; and o2, is in [3, Section 4.3]. Our treatment of Gaussian
CAR models is actually connected to this reference.

Condition (9) appears in [9, page 734] to make symmetric a certain precision
matrix. We came across (9) for a different purpose (improper compatibility) inde-
pendently of [9].

Usually, the weights w;; are non-negative. In principle, however, there might be
(extreme) situations where w;; < 0 makes sense. In medical statistics, for instance,
a decrease of the epidemic in site 7 could be obtained at the expense of site 7,
implying competition between ¢ and j.

Condition (10) is equivalent to positive definiteness of the matrix A. Accord-
ingly, Gaussian CAR models are compatible if and only if A is positive definite and
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Wi 0]2- = wj; 0 for i # j. Though implicit in the existing literature, to our knowl-
edge, this result has not been explicitly stated so far. A few sufficient conditions are
available, but the latter can be quickly deduced from such a result. For instance,
by [9, page 734], Gaussian CAR models are compatible provided the graph induced

by N is connected, wi; 07 = wj; 0} and w;; > 0 for all i # j, and

Z wi; <1 for all 7 € I with strict inequality for at least one 1.
J#i
In fact, under such conditions, A is easily seen to be positive definite.
Finally, fix a neighborhood system A and define

; Tij 2 ¢
wij =1n,(j) = and o0} = =
ZkeN,i Tik ’ ZkeNi Tik
where 1y, is the indicator function of IV;, the r;; are strictly positive numbers
satisfying r;; = 7;;, and c is a strictly positive constant. Then, fi,..., f, are

consistent with A" and condition (9) holds. As an example, suppose that a covariate
¢; is associated to each site ¢. Then, one could take r;; = ¢(c;,c;) where ¢ is a
symmetric strictly positive function. In particular, if ¢ is identically constant, w;;
reduces to

7 card(N;)
The latter is the intrinsic CAR model already mentioned in Example 1. Such a
model is quite intuitive and frequently used in applications. However, it is also

subjected to some criticism. Specifically, it is not appropriate for those situations
where neighborhood data are only weakly correlated; see [9] and [17].

APPENDIX

Proof of Theorem 4. Suppose that fi,..., f,, are improperly compatible, namely,
condition (2) holds for some strictly positive measurable function f. For y € X_,,,
define u,(y) = an f(y, 2) An(dz) if the integral is finite and wu,(y) = 1 otherwise.
Similarly, for ¢ < n and y € X_;, let

ui(y) = (/X Fis e ¥ic1, 2, Yit1y -+ YUn) )\i(dz)>_1

if the integral is finite and wu;(y) = 1 otherwise. Exploiting such wuy, ..., u,, it is
straightforward to verify condition (3).

Conversely, suppose (3) holds for some strictly positive measurable functions
UL, ..., Uy,. Define

f@)=folzn | x—p)up(z_y) forallx e X.

For y € X_,,, since f,(- | y) is a probability density with respect to A,,

/ F (2 2) Mn(d2) = 1 (y) / Falz 1 9) Mnld2) = un ().
X, X,

Hence,

f(z) _ fol@n | 2_p) un(z_p)
an f(x—na Z) An(dz) un(x,n)

= fu(xy |2_p) forall x e X.
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Given i < n, because of (3), there is a set G € B(X) such that

MG) =0 and f(z)= fo(zn|z-n)un(z-pn) = fq(f(xl_:c))

Let

for all z € G.

F = {55 eX: (x1,...,Ti-1,2 Tit1,- .., &) € G for almost all z € Xi}.
Since A\(G°) = 0, then A\(Ff) = 0. Furthermore,
ui(z-) f(x)
filwi | @) = wi(w—) f(x) =
Ja, filz [ 2-3) Mi(dz)

f(x)
= for all x € F; N G.
f)(if(xlv'"7mi—17zazi+1a"'axn)>\i( Z) ’
Hence, fi,..., fn are improperly compatible. O

Proof of Theorem 5. First note that
(11) Jilxi | —3) _ gi(w;) hi(x_;) Hk;ﬁi,j ik (T3, Th) qij (i, )
fitwila—y)  gi(xy) hj(x—;) Ty ain(zs 2n) qsilzs, i)

whenever 7 # j and ¢ € X.

Suppose f1,..., fn are improperly compatible and fix ¢ # j. To make the no-
tation easier, we assume n > 2, ¢ = 1 and j = 2, but exactly the same argument
applies if n = 2 or if (i,7) # (1,2). By (11), one can write

filzy | z—1) q12(x1, 22)

— < =y (x_ T_g) "=

f2($2 | CL2) wl( 1)¢2( 2> Q2,1($27$1)

where 17 and 1), are suitable functions on X_; and X_s, respectively. By Theorem

4, condition (3) holds for some strictly positive measurable functions u; on X_;,
i € I. Hence, there is a set G € B(X) such that A(G®) = 0 and

fley [z1)  w(za)

folza [ zo2)  uz(z—2)

for all x € X,

for all z € G.

Therefore,
q1,2(z1, 22)
q2,1(72,21)
for all € G and suitable functions ¢; on X_; and ps on X_5. Since A(G€) = 0,
there is a point z* € H?::a X; such that (s,t,2*) € G for almost all (s,t) € &} x Xs.
Fix one such z* and define vy (s) = @a(s,x*) for all s € X} and va(t) = 1 (¢, z*)
for all t € Xs. If (s,t) € X1 x Ay and (s,t,2*) € G, then
q1,2(s,1)
q2.1(t, 8)
Hence, g1,2(s,t) = v1(s) v2(t) g2,1(¢, s) for almost all (s,t) € X1 x Xy. By irreducibil-
ity of q1,2/¢2,1, there is a constant ¢; 2 > 0 such that ¢1,2(s,t) = c12¢2.1(¢t, s) for
almost all (s,t) € X1 x Xa. Thus, condition (6) holds.

Conversely, suppose condition (6) holds. Fix ¢ < n. By (6), there are constants
¢i; > 0 and a set G € B(X) such that A\(G®) = 0 and

¢ij(xi, xj) = cij gji(x;,2;) whenever j # ¢ and x € G.

= p1(r-1) p2(r_2)

= @1(t,27) pa(s, 27) = va(t) v1(s).
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Define ¢; = ¢ 4 /Hj?,ém1 ¢i; and
—1
ui(y) = {ng vi) I eiwnow) TI 1T v aiw(irve) }

VE) JjFin Jj#i,n k#i,j,n
where y € X_;. Also define u,, as in the statement of the theorem, i.e.

U (y H 9;(y;) H H gk (Y, yk) forallye X_,.

j#n J#n k#jn
Then, for every x € X, a direct calculation shows that

gi () h(z—s) \/Hj;éi,n Gij (i; 25) 4ji (5, )
’ Gn(Tn) hn(2_p) Hj;éi,n Anj (Tn, xj) .
Further, for every = € GG, such an equation can be rewritten as
gi(x) hi(x—s) i @i (%6, 25) qin (i, 20) _ filzi | z—;)
gn(xn) hn(xfn) Hj;ﬁi,n an (xru mj) qni(xru 'Tl) fn(xn ‘ LIT,n)
Thus, condition (3) holds and fi,..., f, are improperly compatible by Theorem 4.
In addition, if fx,, Uy dA_p, < 00, then fi,..., f, are compatible by Corollary 3.
Since compatibility implies improper compatibility, it remains only to show that
fx, Uy dA_, < 00 whenever fi,..., f, are compatible. Suppose that fi,..., f,

are actually compatible. By Corollary 3, there are strictly positive measurable
functions uj,...,u} such that

wi(T_i) up(x_p) =

ui(x_i) up(x_p) =

for all i < n and almost all x € X. Thus,
wi(x_;) up(z—p) = u(x_;)uy(x_,) forall i <n and almost all z € X
where u; is defined as above. Such an equation can be rewritten as
o1(x_1)=...=dn(xz_y,) for almost all x € X,

where ¢, = up/uf and ¢; = uf/u,; for i < n. Applying Lemma 7, one obtains
u, = cu), a.e. for some constant ¢ > 0. Hence,

/ Up dA_,, = C / wy dA_, < oo.

—n —n

Proof of Corollary 6. First note that f; satisfies condition (4) with ¢;;(s,t) =
exp{ﬁij bi(s) bj(t)} where (s,t) € X; x X;. We have to prove that the ratios ¢;;/q;;
are irreducible. Fix ¢ # j and suppose that

i (S, T

exp{(ﬂij — Bji) bi(s) bj(t)} = qjg:; =wv;(s)v;(t) for almost all (s,t) € A; x &
qji\tl, S

and some strictly positive measurable functions v; on &; and v; on X;. If 8;; # By,

one obtains

bi(s)bj(t) = i(s) +¢;(t) for almost all (s,t) € X; x Xj
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where 1); and v; are suitable functions on X; and X}, respectively. By Lemma 7, it
follows that b; is a.e. constant or b; is a.e. constant, contrary to the assumptions.
Therefore, it must be 8;; = f;;, and in that case ¢;;/qg;; is trivially constant. Thus,
gij/q;i is irreducible. The corollary is now an obvious consequence of Theorem 5
and the fact that ¢;;/q;; is a.e. constant if and only if 5;; = ;.

O

Lemma 7. Let ¢; : X_; — R and ¢; : X; — R be measurable functions, © € I.

o Ifp1(x_1) = ... = dn(x_yp) for almost all x € X, there is a constant ¢ such
that ¢, = c a.e.

o Ifi# j and ¥;(s) + ;(t) = bi(s) bj(t) for almost all (s,t) € X; x X, then
b; is a.e. constant or b; is a.e. constant.

Proof. Suppose ¢1(x_1) = ... = ¢p(z_,) for all z € G, where G € B(X) and
A(G€) = 0. For n = 2, this reduces to ¢1(t) = ¢2(s) for all (s,t) € G. Fix ¢y € Xs
and define H = {s € X1 : (s,t0) € G}. Then, ¢2(s) = ¢1(to) for all s € H. Further,
since A(G°) = 0, the point ¢y can be taken such that A;(H¢) = 0. Thus, the result
is (trivially) true for n = 2. The general case follows by induction on n.

Next, suppose ;(s) +1,(t) = b;i(s) b;(¢) for all (s,t) € B, where B € B(X; x &)
and A\; x \;(B¢) = 0. Given sy € &; and tg € X, such an equation can be rewritten
as

mi(s) +m;(t) = {bi(s) — bi(so)} {b;(t) — bj(te)} forall (s,t) € B

where m; and m; are suitable functions on A; and X;. Since A\; x \;(B¢) = 0,
the points sg and to can be taken such that (s,ty) € B for almost all s € X; and
(s0,t) € B for almost all ¢t € X;. Thus, for s = sy, one obtains m;(t) = —m;(so)
for almost all ¢t € X;. Similarly, letting ¢ = ¢ yields m;(s) = —m;(to) for almost
all s € X;. Hence, the map

(s,8) = {bi(s) — bi(s0) } {b;(t) — b;(to) }
is a.e. constant. In turn, this implies that b; is a.e. constant or b; is a.e. constant.
O
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