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Abstract. Suppose that, to assess the joint distribution of a random vector

(X1, . . . , Xn), one selects the kernels Q1, . . . , Qn with Qi to be regarded as

a possible conditional distribution for Xi given (Xj : j 6= i); Q1, . . . , Qn are
compatible if there exists a joint distribution for (X1, . . . , Xn) with condition-

als Q1, . . . , Qn. Similarly, Q1, . . . , Qn are improperly compatible if they can

be obtained, according to the usual rule, with an improper distribution in
place of a probability distribution. In this paper, compatibility and improper

compatibility of Q1, . . . , Qn are characterized under some assumptions on their

functional form. The characterization applies, in particular, if each Qi belongs
to a one parameter exponential family. Special attention is paid to Gaussian

conditional autoregressive models.

1. Introduction

Let I = {1, . . . , n}. For each i ∈ I, let Xi be a Polish space (complete separable
metric space) and Xi an Xi-valued random variable.

Sometimes, every Xi is requested to have an assigned conditional distribution
given (Xj : j 6= i). The main reason is to assess the joint distribution of the vector
(X1, . . . , Xn) by specifying some of its conditionals. Quoting from [18, page 171]:
“It is frequently difficult or impossible in complex situations to specify a model
through formulation of a joint distribution for a complete set of response variables.
Even in the Gaussian case, where it may be possible to write such a joint distribu-
tion, the relative merits of conditional specification versus simultaneous specifica-
tion of a statistical model may lead one to prefer the conditional approach”. Indeed,
such a conditional approach is standard practice in various fields, including spatial
statistics, statistical mechanics, Bayesian image analysis, multiple data imputation
and Gibbs sampling. See e.g. [1]-[3], [7]-[10], [12], [16]-[17], [21].

To handle situations of this type, it is convenient to let X =
∏

i∈I Xi and to take
X1, . . . , Xn to be the canonical projections on X , namely

Xi(x) = xi for i ∈ I and x ∈ X

where x = (x1, . . . , xn) and xi denotes the i-th coordinate of x. Also, for each i ∈ I,
we let

X−i =
∏
j 6=i

Xj

and we fix a function Qi on X−i satisfying
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(i) Qi(y) is a probability measure on B(Xi) for fixed y ∈ X−i,
(ii) y 7→ Qi(y)(B) is measurable for fixed B ∈ B(Xi).

Here and in the sequel, “measurable” stands for “Borel measurable” and B(S)
denotes the Borel σ-field on S for any topological space S.

Depending on the framework, Q1, . . . , Qn are given various names, such as proba-
bility kernels (or merely kernels), putative conditional distributions, full conditional
distributions and conditional autoregressive (CAR) models; see e.g. [1], [3], [6], [7],
[9], [10], [12], [16], [17].

Let P be the set of all probability measures on B(X ). Each Qi should be re-
garded as a conditional distribution of Xi given (Xj : j 6= i). But of course, since
Qi is only subjected to (i)-(ii), it may be that no P ∈ P admits Q1, . . . , Qn as
conditional distributions. In this case, Q1, . . . , Qn are not compatible. Instead,
Q1, . . . , Qn are compatible if they are the conditionals of some P ∈ P. A seminal
paper on compatibility is Besag’s [7]. Some other references, without any claim to
be exhaustive, are [1]-[2], [5]-[12], [14]-[16], [18]-[22].

An improper distribution is an infinite measure on B(X ). Even if Q1, . . . , Qn

are not compatible, it may be that they can be obtained, according to the usual
rule, with an improper distribution in place of a probability distribution. To give
a formal definition, we need some notation. For each i ∈ I, let λi be a σ-finite
measure on B(Xi) and let λ = λ1 × . . . × λn denote the corresponding product
measure on B(X ). Suppose that Qi(y) has a density fi(· | y) with respect to λi,
namely,

Qi(y)(dz) = fi(z | y)λi(dz)(1)

for all i ∈ I and y ∈ X−i. Further, define

x−i = (x1, . . . , xi−1, xi+1, . . . , xn) for all x ∈ X and i ∈ I.

Under (1), we say that Q1, . . . , Qn are improperly compatible if

fi(xi | x−i) =
f(x)∫

Xi
f(x1, . . . , xi−1, z, xi+1, . . . , xn)λi(dz)

(2)

for all i ∈ I and λ-almost all x ∈ X ,

where f is a strictly positive measurable function on X and the integral in the
denominator is finite.

Let Q be the measure on B(X ) with density f with respect to λ. If
∫
X f dλ <∞,

then Q can be normalized to be a probability measure. In this case, Q1, . . . , Qn are
even compatible (and not only improperly compatible). Instead, Q1, . . . , Qn are
improperly compatible but not compatible whenever

∫
X f dλ = ∞. Even in this

case, however, they can be formally obtained by the usual rule starting from the
improper distribution Q.

Since f > 0 everywhere, definition (2) makes sense only if fi > 0 for all i ∈ I,
which is certainly a restrictive condition. As remarked by an anonymous referee,
such definition could be generalized by introducing suitable conventions (such as
0/0 = 0) and allowing for λ(f = 0) > 0. As it stands, however, definition (2)
suffices for our purposes and we do not try to generalize it in this paper.

Improper compatibility is meaningless in probability theory. According to the
latter, Q1, . . . , Qn are either compatible or not compatible, without intermediate
cases. Nevertheless, the improper case is statistically meaningful. It is very popular,
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for instance, in Bayesian statistics; see e.g. [4], [13] and references therein. In that
framework, the prior distribution of a random parameter is often improper, mainly
if such prior is requested to be “non informative” (in some sense). However, though
the literature on improper distributions is virtually endless, improper compatibility
has not been paid much attention to date. Instead, it often occurs in applications.

Example 1. (Gaussian CAR models). For each i ∈ I, let Xi = R and

Qi(y) = N
(∑

j 6=i

wijyj , σ
2
i

)
where σ2

i > 0, wij is any real number and y = (y1, . . . , yi−1, yi+1, . . . , yn) ∈ Rn−1.
Such Q1, . . . , Qn are usually called Gaussian CAR models or Gaussian auto-models;
see e.g. [3], [7], [9], [17]. An important special case, introduced in [9, Section 3],
is that of Gaussian intrinsic CAR models. The latter are precisely those Gauss-
ian CAR models which are improperly compatible but not compatible. Roughly
speaking, intrinsic CAR models can be seen as a limiting form of compatible CAR
models. They are frequently used in real problems, mainly to model spatial random
effects; see e.g. [3, Section 4.3] and [17]. A well known example is

Qi(y) = N
( ∑

j∈Ni
yj

card(Ni)
,

c

card(Ni)

)
where c > 0 is any constant and Ni a non-empty subset of I (to be regarded as the
collection of “neighbors” of i).

In this paper, improper compatibility is explicitly taken into account. Our main
results (Theorem 5 and Corollary 6) complete, unify and slightly extend the material
in [7, Section 4]; see also [18] and [20]. A joint treatment of compatibility and
improper compatibility, for random variables with values in quite general spaces
(such as Polish spaces), is provided. In addition, a class of kernels larger than the
exponential family is covered. Special attention is finally paid to Gaussian CAR
models.

2. Preliminaries

From now on, condition (1) is assumed to hold, namely, Qi(y) admits a density
fi(· | y) with respect to λi. Since B(Xi) is countably generated, fi(z | y) can be
taken to be jointly measurable in z and y (i.e., (z, y) 7→ fi(z | y) is measurable).

Accordingly we fix f1, . . . , fn, jointly measurable and satisfying (1), and we say
that f1, . . . , fn are compatible or improperly compatible to mean that Q1, . . . , Qn

are compatible or improperly compatible. Furthermore,

λ = λ1 × . . .× λn and λ−i = λ1 × . . .× λi−1 × λi+1 × . . .× λn
denote the product measures on B(X ) and B(X−i), respectively.

In the next result, ui is a non-negative function on X−i and

Hi =
{
x ∈ X : ui(x−i) > 0, un(x−n) > 0

}
.

Theorem 2. (Theorem 10 of [6]). f1, . . . , fn are compatible if and only if there
are measurable functions ui : X−i → [0,∞), i ∈ I, such that

fi(xi | x−i) = fn(xn | x−n)ui(x−i)un(x−n) for λ-almost all x ∈ Hi(3)
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and ∫
Hi

fn(xn | x−n)un(x−n)λ(dx) =

∫
{ui>0}

1/ui dλ−i =

∫
X−n

un dλ−n

for all i < n, where 0 <
∫
X−n

un dλ−n <∞.

We have reported Theorem 2 for completeness, but we actually need the following
fact only.

Corollary 3. (Corollary 11 of [6]). Suppose fi > 0 for all i ∈ I. Then, f1, . . . , fn
are compatible if and only if condition (3) holds for some strictly positive measurable
functions ui on X−i, i ∈ I, such that

∫
X−n

un dλ−n <∞.

A simple modification of Corollary 3 allows to characterize improper compati-
bility. As can be expected, it suffices to drop the integrability condition on un.

Theorem 4. Suppose fi > 0 for all i ∈ I. Then, f1, . . . , fn are improperly com-
patible if and only if condition (3) holds for some (strictly positive, measurable)
functions u1, . . . , un.

The proof of Theorem 4, as well as of all other results in this paper, is postponed
to a final appendix.

A last remark is in order. Suppose f1, . . . , fn are improperly compatible, fix
u1, . . . , un satisfying condition (3), and define c =

∫
X−n

un dλ−n. Then, f1, . . . , fn
are compatible if and only if c <∞, and in that case they are the conditional densi-
ties of f(x) = (1/c) fn(xn | x−n)un(x−n), x ∈ X ; see Corollary 3 and forthcoming
Lemma 7. In particular, un/c is the marginal density of (X1, . . . , Xn−1) whenever
c < ∞. As an example, take n = 2, X1 = X2 = R and Q1(y) = Q2(y) = N(y, 1).
Then, Q1 and Q2 are improperly compatible but not compatible. In fact, with λ1 =
λ2 = Lebesgue measure, one obtains f1 = f2. Hence, (3) holds with u1 = u2 = 1
but clearly c =

∫∞
−∞ u2(y) dy =∞.

3. A class of CAR models

In this section, the abbreviation a.e. is always meant with respect to the corre-
sponding product measure. More exactly, suppose X ∗ =

∏
j∈J Xj for some J ⊂ I

and λ∗ =
∏

j∈J λj is the corresponding product measure. Then, a statement on X ∗
is said to hold a.e., or for almost all x ∈ X ∗, provided it holds λ∗-a.e. Moreover, a
point y ∈ X−i is written as y = (y1, . . . , yi−1, yi+1, . . . , yn).

We assume fi to be of the form

fi(z | y) = gi(z)hi(y)
∏
j 6=i

qij(z, yj)(4)

for all i ∈ I, z ∈ Xi and y ∈ X−i, where

gi : Xi → (0,∞), hi : X−i → (0,∞), qij : Xi ×Xj → (0,∞)

are strictly positive measurable functions.
We also need that the ratio qij/qji is either a.e. constant or can not be factorized

as

qij(s, t)

qji(t, s)
= vi(s) vj(t) for almost all (s, t) ∈ Xi ×Xj ,(5)
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where vi : Xi → (0,∞) and vj : Xj → (0,∞) are strictly positive measurable
functions. Precisely, we say that qij/qji is irreducible if condition (5) implies that
qij/qji is a.e. constant.

We begin with the following result.

Theorem 5. Suppose that fi satisfies condition (4) for all i ∈ I and the ratios
qij/qji are irreducible for all i 6= j. Then, f1, . . . , fn are improperly compatible if
and only if

qij(s, t) = cij qji(t, s),(6)

for all i 6= j, some constant cij > 0, and almost all (s, t) ∈ Xi × Xj. Moreover,
f1, . . . , fn are compatible if and only if condition (6) holds and

∫
X−n

un dλ−n <∞,

where

un(y) =
1

hn(y)

∏
j 6=n

gj(yj)
∏
j 6=n

∏
k 6=j,n

√
qjk(yj , yk) for all y ∈ X−n.

A meaningful case of Theorem 5 is when fi belongs to a certain type of expo-
nential family. In fact, condition (4) holds whenever

fi(z | y) = gi(z)hi(y) exp
{
ai(y)bi(z)

}
(7)

where bi : Xi → R is any measurable function and ai : X−i → R can be written as

ai(y) = αi +
∑
j 6=i

βij bj(yj)(8)

for some real numbers αi and βij .

Corollary 6. For each i ∈ I, suppose that fi satisfies conditions (7)-(8) and bi
is not a.e. constant. Then, f1, . . . , fn are improperly compatible if and only if
βij = βji for all i 6= j. Moreover, f1, . . . , fn are compatible if and only if βij = βji
for all i 6= j and

∫
X−n

un dλ−n <∞, where

un(y) =
1

hn(y)

∏
j 6=n

gj(yj) exp
{∑

j 6=n

αjbj(yj) +
1

2

∑
j 6=n

∑
k 6=j,n

βjkbj(yj)bk(yk)
}

for all y ∈ X−n.

Corollary 6 is possibly the most important case of Theorem 5, but there are also
situations where the latter applies while the former does not. An example is

fi(z | y) = hi(y) exp
(
−
∑
j 6=i

βij |z − yj |
)

where Xi = R, λi = Lebesgue measure and the βij are non-negative coefficients.
A neighborhood system is a collection N =

{
Ni : i ∈ I

}
, where Ni is a subset

of I to be regarded as the class of “neighbors” of i. As usual, it is assumed that
i /∈ Ni and i ∈ Nj ⇔ j ∈ Ni. Recall also that a clique is a subset C ⊂ I such that
card(C) = 1 or C consists of sites that are all neighbors of each other.

In Markov Random Fields (also known as Undirected Graphical Models) a neigh-
borhood system N is given and f1, . . . , fn are required to be consistent with N ;
see e.g. [3, page 79]. Consistency means that fi(xi | x−i) does not depend on xj
for every j /∈ Ni ∪{i}. Thus, in Markov Random Fields, f1, . . . , fn can be taken to
satisfy condition (4) when no clique has cardinality greater than 2.
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Theorem 5 and Corollary 6 apply regardless of whether N is given or not. Under
conditions (7)-(8), however, f1, . . . , fn are actually consistent with the neighbor-
hood system Ni =

{
j : j 6= i, βij 6= 0

}
. In fact,

hi(x−i) =
(∫
Xi

gi(z) exp
{
ai(x−i)bi(z)

}
λi(dz)

)−1
for all x ∈ X ,

so that fi(xi | x−i) does not depend on xj if βij = 0.
Some form of condition (8) is quite usual when f1, . . . , fn are from the expo-

nential family; see e.g. [7], [8], [10], [16], [17]. Moreover, under some assumptions,
(8) becomes a necessary condition for compatibility. In fact, (8) holds whenever
f1, . . . , fn are compatible and consistent with a neighborhood system N such that
no clique has cardinality greater than 2; see [7], [18] and [20].

We next turn to Gaussian CAR models, as defined in Example 1. Accordingly,
for each i ∈ I, we let Xi = R, λi = Lebesgue measure, and

fi(z | y) = (2πσ2
i )−1/2 exp

{
−

(z −
∑

j 6=i wijyj)
2

2σ2
i

}
where z ∈ R, y ∈ Rn−1, wij and σ2

i are real numbers and σ2
i > 0. Such fi can be

written as in (7) with

ai(y) =
∑
j 6=i

wij

σ2
i

yj and bi(z) = z.

By Corollary 6, it follows that f1, . . . , fn are improperly compatible if and only if

wij σ
2
j = wji σ

2
i for all i 6= j.(9)

Furthermore, under (9), f1, . . . , fn are compatible if and only if∫
Rn−1

exp
{
−(1/2) y′Ay

}
dy <∞,(10)

where y ∈ Rn−1 denotes here a column vector and A is the symmetric matrix

aii =
1− wniwin

σ2
i

, aij = −wij + winwnj

σ2
i

for i < j.

In fact, λ−n is Lebesgue measure on Rn−1 and the function un of Corollary 6
reduces to un(y) = exp

{
−(1/2) y′Ay

}
(up to a multiplicative constant) because of

condition (9).
Some remarks are in order.
An in-depth discussion of Gaussian CAR models, including compatibility and

the interpretation of wij and σ2
i , is in [3, Section 4.3]. Our treatment of Gaussian

CAR models is actually connected to this reference.
Condition (9) appears in [9, page 734] to make symmetric a certain precision

matrix. We came across (9) for a different purpose (improper compatibility) inde-
pendently of [9].

Usually, the weights wij are non-negative. In principle, however, there might be
(extreme) situations where wij < 0 makes sense. In medical statistics, for instance,
a decrease of the epidemic in site i could be obtained at the expense of site j,
implying competition between i and j.

Condition (10) is equivalent to positive definiteness of the matrix A. Accord-
ingly, Gaussian CAR models are compatible if and only if A is positive definite and
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wij σ
2
j = wji σ

2
i for i 6= j. Though implicit in the existing literature, to our knowl-

edge, this result has not been explicitly stated so far. A few sufficient conditions are
available, but the latter can be quickly deduced from such a result. For instance,
by [9, page 734], Gaussian CAR models are compatible provided the graph induced
by N is connected, wij σ

2
j = wji σ

2
i and wij ≥ 0 for all i 6= j, and∑

j 6=i

wij ≤ 1 for all i ∈ I with strict inequality for at least one i.

In fact, under such conditions, A is easily seen to be positive definite.
Finally, fix a neighborhood system N and define

wij = 1Ni(j)
rij∑

k∈Ni
rik

and σ2
i =

c∑
k∈Ni

rik

where 1Ni
is the indicator function of Ni, the rij are strictly positive numbers

satisfying rij = rji, and c is a strictly positive constant. Then, f1, . . . , fn are
consistent with N and condition (9) holds. As an example, suppose that a covariate
ci is associated to each site i. Then, one could take rij = ϕ(ci, cj) where ϕ is a
symmetric strictly positive function. In particular, if ϕ is identically constant, wij

reduces to

wij =
1Ni

(j)

card(Ni)
.

The latter is the intrinsic CAR model already mentioned in Example 1. Such a
model is quite intuitive and frequently used in applications. However, it is also
subjected to some criticism. Specifically, it is not appropriate for those situations
where neighborhood data are only weakly correlated; see [9] and [17].

Appendix

Proof of Theorem 4. Suppose that f1, . . . , fn are improperly compatible, namely,
condition (2) holds for some strictly positive measurable function f . For y ∈ X−n,
define un(y) =

∫
Xn
f(y, z)λn(dz) if the integral is finite and un(y) = 1 otherwise.

Similarly, for i < n and y ∈ X−i, let

ui(y) =
(∫
Xi

f(y1, . . . , yi−1, z, yi+1, . . . , yn)λi(dz)
)−1

if the integral is finite and ui(y) = 1 otherwise. Exploiting such u1, . . . , un, it is
straightforward to verify condition (3).

Conversely, suppose (3) holds for some strictly positive measurable functions
u1, . . . , un. Define

f(x) = fn(xn | x−n)un(x−n) for all x ∈ X .

For y ∈ X−n, since fn(· | y) is a probability density with respect to λn,∫
Xn

f(y, z)λn(dz) = un(y)

∫
Xn

fn(z | y)λn(dz) = un(y).

Hence,

f(x)∫
Xn
f(x−n, z)λn(dz)

=
fn(xn | x−n)un(x−n)

un(x−n)
= fn(xn | x−n) for all x ∈ X .
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Given i < n, because of (3), there is a set G ∈ B(X ) such that

λ(Gc) = 0 and f(x) = fn(xn | x−n)un(x−n) =
fi(xi | x−i)
ui(x−i)

for all x ∈ G.

Let

Fi =
{
x ∈ X : (x1, . . . , xi−1, z, xi+1, . . . , xn) ∈ G for almost all z ∈ Xi

}
.

Since λ(Gc) = 0, then λ(F c
i ) = 0. Furthermore,

fi(xi | x−i) = ui(x−i) f(x) =
ui(x−i) f(x)∫

Xi
fi(z | x−i)λi(dz)

=
f(x)∫

Xi
f(x1, . . . , xi−1, z, xi+1, . . . , xn)λi(dz)

for all x ∈ Fi ∩G.

Hence, f1, . . . , fn are improperly compatible. �

Proof of Theorem 5. First note that

fi(xi | x−i)
fj(xj | x−j)

=
gi(xi)hi(x−i)

gj(xj)hj(x−j)

∏
k 6=i,j qik(xi, xk)∏
k 6=i,j qjk(xj , xk)

qij(xi, xj)

qji(xj , xi)
(11)

whenever i 6= j and x ∈ X .
Suppose f1, . . . , fn are improperly compatible and fix i 6= j. To make the no-

tation easier, we assume n > 2, i = 1 and j = 2, but exactly the same argument
applies if n = 2 or if (i, j) 6= (1, 2). By (11), one can write

f1(x1 | x−1)

f2(x2 | x−2)
= ψ1(x−1)ψ2(x−2)

q1,2(x1, x2)

q2,1(x2, x1)
for all x ∈ X ,

where ψ1 and ψ2 are suitable functions on X−1 and X−2, respectively. By Theorem
4, condition (3) holds for some strictly positive measurable functions ui on X−i,
i ∈ I. Hence, there is a set G ∈ B(X ) such that λ(Gc) = 0 and

f1(x1 | x−1)

f2(x2 | x−2)
=
u1(x−1)

u2(x−2)
for all x ∈ G.

Therefore,

q1,2(x1, x2)

q2,1(x2, x1)
= ϕ1(x−1)ϕ2(x−2)

for all x ∈ G and suitable functions ϕ1 on X−1 and ϕ2 on X−2. Since λ(Gc) = 0,
there is a point x∗ ∈

∏n
j=3 Xj such that (s, t, x∗) ∈ G for almost all (s, t) ∈ X1×X2.

Fix one such x∗ and define v1(s) = ϕ2(s, x∗) for all s ∈ X1 and v2(t) = ϕ1(t, x∗)
for all t ∈ X2. If (s, t) ∈ X1 ×X2 and (s, t, x∗) ∈ G, then

q1,2(s, t)

q2,1(t, s)
= ϕ1(t, x∗)ϕ2(s, x∗) = v2(t) v1(s).

Hence, q1,2(s, t) = v1(s) v2(t) q2,1(t, s) for almost all (s, t) ∈ X1×X2. By irreducibil-
ity of q1,2/q2,1, there is a constant c1,2 > 0 such that q1,2(s, t) = c1,2 q2,1(t, s) for
almost all (s, t) ∈ X1 ×X2. Thus, condition (6) holds.

Conversely, suppose condition (6) holds. Fix i < n. By (6), there are constants
cij > 0 and a set G ∈ B(X ) such that λ(Gc) = 0 and

qij(xi, xj) = cij qji(xj , xi) whenever j 6= i and x ∈ G.
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Define ci = cin
√∏

j 6=i,n cij and

ui(y) = ci hi(y)
{∏

j 6=i

gj(yj)
∏

j 6=i,n

qnj(yn, yj)
∏

j 6=i,n

∏
k 6=i,j,n

√
qjk(yj , yk)

}−1
where y ∈ X−i. Also, define un as in the statement of the theorem, i.e.

un(y) =
1

hn(y)

∏
j 6=n

gj(yj)
∏
j 6=n

∏
k 6=j,n

√
qjk(yj , yk) for all y ∈ X−n.

Then, for every x ∈ X , a direct calculation shows that

ui(x−i)un(x−n) = ci
gi(xi)hi(x−i)

gn(xn)hn(x−n)

√∏
j 6=i,n qij(xi, xj) qji(xj , xi)∏

j 6=i,n qnj(xn, xj)
.

Further, for every x ∈ G, such an equation can be rewritten as

ui(x−i)un(x−n) =
gi(xi)hi(x−i)

gn(xn)hn(x−n)

∏
j 6=i,n qij(xi, xj)∏
j 6=i,n qnj(xn, xj)

qin(xi, xn)

qni(xn, xi)
=

fi(xi | x−i)
fn(xn | x−n)

.

Thus, condition (3) holds and f1, . . . , fn are improperly compatible by Theorem 4.
In addition, if

∫
X−n

un dλ−n <∞, then f1, . . . , fn are compatible by Corollary 3.

Since compatibility implies improper compatibility, it remains only to show that∫
X−n

un dλ−n < ∞ whenever f1, . . . , fn are compatible. Suppose that f1, . . . , fn
are actually compatible. By Corollary 3, there are strictly positive measurable
functions u∗1, . . . , u

∗
n such that∫

X−n

u∗n dλ−n <∞ and u∗i (x−i)u
∗
n(x−n) =

fi(xi | x−i)
fn(xn | x−n)

for all i < n and almost all x ∈ X . Thus,

ui(x−i)un(x−n) = u∗i (x−i)u
∗
n(x−n) for all i < n and almost all x ∈ X

where ui is defined as above. Such an equation can be rewritten as

φ1(x−1) = . . . = φn(x−n) for almost all x ∈ X ,

where φn = un/u
∗
n and φi = u∗i /ui for i < n. Applying Lemma 7, one obtains

un = c u∗n a.e. for some constant c > 0. Hence,∫
X−n

un dλ−n = c

∫
X−n

u∗n dλ−n <∞.

�

Proof of Corollary 6. First note that fi satisfies condition (4) with qij(s, t) =
exp
{
βij bi(s) bj(t)

}
where (s, t) ∈ Xi×Xj . We have to prove that the ratios qij/qji

are irreducible. Fix i 6= j and suppose that

exp
{

(βij − βji) bi(s) bj(t)
}

=
qij(s, t)

qji(t, s)
= vi(s) vj(t) for almost all (s, t) ∈ Xi ×Xj

and some strictly positive measurable functions vi on Xi and vj on Xj . If βij 6= βji,
one obtains

bi(s) bj(t) = ψi(s) + ψj(t) for almost all (s, t) ∈ Xi ×Xj
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where ψi and ψj are suitable functions on Xi and Xj , respectively. By Lemma 7, it
follows that bi is a.e. constant or bj is a.e. constant, contrary to the assumptions.
Therefore, it must be βij = βji, and in that case qij/qji is trivially constant. Thus,
qij/qji is irreducible. The corollary is now an obvious consequence of Theorem 5
and the fact that qij/qji is a.e. constant if and only if βij = βji.

�

Lemma 7. Let φi : X−i → R and ψi : Xi → R be measurable functions, i ∈ I.

• If φ1(x−1) = . . . = φn(x−n) for almost all x ∈ X , there is a constant c such
that φn = c a.e.
• If i 6= j and ψi(s) + ψj(t) = bi(s) bj(t) for almost all (s, t) ∈ Xi × Xj, then
bi is a.e. constant or bj is a.e. constant.

Proof. Suppose φ1(x−1) = . . . = φn(x−n) for all x ∈ G, where G ∈ B(X ) and
λ(Gc) = 0. For n = 2, this reduces to φ1(t) = φ2(s) for all (s, t) ∈ G. Fix t0 ∈ X2

and define H =
{
s ∈ X1 : (s, t0) ∈ G

}
. Then, φ2(s) = φ1(t0) for all s ∈ H. Further,

since λ(Gc) = 0, the point t0 can be taken such that λ1(Hc) = 0. Thus, the result
is (trivially) true for n = 2. The general case follows by induction on n.

Next, suppose ψi(s) +ψj(t) = bi(s) bj(t) for all (s, t) ∈ B, where B ∈ B(Xi×Xj)
and λi×λj(Bc) = 0. Given s0 ∈ Xi and t0 ∈ Xj , such an equation can be rewritten
as

mi(s) +mj(t) =
{
bi(s)− bi(s0)

}{
bj(t)− bj(t0)

}
for all (s, t) ∈ B

where mi and mj are suitable functions on Xi and Xj . Since λi × λj(B
c) = 0,

the points s0 and t0 can be taken such that (s, t0) ∈ B for almost all s ∈ Xi and
(s0, t) ∈ B for almost all t ∈ Xj . Thus, for s = s0, one obtains mj(t) = −mi(s0)
for almost all t ∈ Xj . Similarly, letting t = t0 yields mi(s) = −mj(t0) for almost
all s ∈ Xi. Hence, the map

(s, t) 7→
{
bi(s)− bi(s0)

}{
bj(t)− bj(t0)

}
is a.e. constant. In turn, this implies that bi is a.e. constant or bj is a.e. constant.

�
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