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Abstract. Let S be a finite set, (Xn) an exchangeable sequence of S-valued

random variables, and µn = (1/n)
∑n

i=1 δXi the empirical measure. Then,

µn(B)
a.s.−→ µ(B) for all B ⊂ S and some (essentially unique) random proba-

bility measure µ. Denote by L(Z) the probability distribution of any random
variable Z. Under some assumptions on L(µ), it is shown that

a

n
≤ ρ
[
L(µn), L(µ)

]
≤
b

n
and ρ

[
L(µn), L(an)

]
≤

c

nu

where ρ is the bounded Lipschitz metric and an(·) = P
(
Xn+1 ∈ · | X1, . . . , Xn

)
is the predictive measure. The constants a, b, c > 0 and u ∈ ( 1

2
, 1] depend on

L(µ) and card (S) only.

1. Introduction

In the sequel, (Ω,A, P ) is a probability space and (S,B) a measurable space.
Also, P is the set of probability measures on B and Σ the σ-field on P generated
by the maps ν ∈ P 7→ ν(B) for all B ∈ B. A random probability measure (r.p.m.)
on B is a measurable map µ : (Ω,A)→ (P,Σ).

Denote by L(Z) the probability distribution of any random variable Z. If µ is a
r.p.m. on B, thus, L(µ) is the probability measure on Σ defined by

L(µ)(C) = P
{
ω : µ(ω) ∈ C

}
for all C ∈ Σ.

Two remarkable r.p.m.’s are as follows. Suppose (S,B) is nice, say S a Borel
subset of a Polish space and B the Borel σ-field on S. Fix a sequence

X = (Xn : n ≥ 1)

of S-valued random variables on (Ω,A, P ). Then,

µn = (1/n)

n∑
i=1

δXi and an(·) = P
(
Xn+1 ∈ · | X1, . . . , Xn

)
are r.p.m.’s on B. Here, δx denotes the unit mass at x and an is meant as a regular
version of the conditional distribution of Xn+1 given σ(X1, . . . , Xn). Usually, µn is
called the empirical measure and an the predictive measure.

Suppose now that X is exchangeable. Then, a third significant r.p.m. on B is

µ(·) = P
(
X1 ∈ · | τ

)
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where τ is the tail σ-field of X. In a sense, µ is the limit of both µn and an. In
fact, for fixed B ∈ B, one obtains

µn(B)
a.s.−→ µ(B) and an(B)

a.s.−→ µ(B).

There are reasons, both theoretical and practical, to estimate how µn is close
to an for large n. Similarly, it is useful to contrast µn and µ, as well as an and
µ, for large n. We refer to [1]-[8] for such reasons. Here, we mention two different
approaches for comparing r.p.m.’s.

Let α and β be r.p.m.’s on B and let Q denote the set of probability measures on
Σ. To contrast α and β, one can select a (separable) distance d on P and focus on
the random variable ω 7→ d

[
α(ω), β(ω)

]
. Or else, one can evaluate ρ

[
L(α), L(β)

]
for some distance ρ on Q.

Both the approaches make sense and are worthy to be developed. The first,
perhaps more natural, has been followed in [1]-[5] and [7]. In such papers, the as-
ymptotic behavior of the sequence rn d(µn, an) is investigated for suitable constants
rn. The distance d is taken to be the bounded Lipschitz metric, the Wasserstein
distance, or the uniform distance on a subclass D ⊂ B. The constants rn are to
determine the rate of convergence of the random variables d(µn, an). For instance,
in [5, Corollary 3], it is shown that

lim sup
n

√
n

log log n
sup
B∈D
|µn(B)− an(B)| ≤

√
2 sup
B∈D

µ(B) (1− µ(B)) a.s.

under mild conditions on D ⊂ B. Since the right-hand member is finite (it is

actually bounded by 1/
√

2) it follows that

rn sup
B∈D
|µn(B)− an(B)| a.s.−→ 0 whenever rn

√
log log n

n
→ 0.

The main reason for the second approach is that, in most real problems, the
meaningful objects are the probability distributions of random variables, rather
than the random variables themselves. In Bayesian nonparametrics, for instance,
L(µ) is the prior distribution, one of the basic ingredients of the problem. Thus,
the rate at which L(µ) can be approximated by L(µn), or by L(an), is certainly of
interest. Similarly, it is useful to estimate the distance between L(µn) and L(an).
This approach has been carried on in [9]-[10] and partially in [5].

In this paper, inspired by [10], we take the second point of view. Our goal is
to compare L(µn) with L(µ) and L(µn) with L(an). The sequence X is exchange-
able and the distance ρ on Q is the bounded Lipschitz metric. Furthermore, as
a preliminary but significant step, we focus on the special case where S is finite.
Indeed, to our knowledge, all existing results concerning the second approach refer
to S = {0, 1}; see [5], [9] and [10].

Our main results can be summarized as follows. To fix ideas, let S = {0, 1, . . . , d}.
If
(
µ{1}, . . . , µ{d}

)
admits a suitable density with respect to Lebesgue measure,

then

a

n
≤ ρ
[
L(µn), L(µ)

]
≤ b

n
and ρ

[
L(µn), L(an)

]
≤ c

nu
.

The constants a, b, c > 0 and u ∈ ( 1
2 , 1] depend on L(µ) and d only.
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2. Notation and basic assumptions

Let (T, d) be a metric space. Given two Borel probability measures on T , say ν
and γ, the bounded Lipschitz metric is

ρ(ν, γ) = sup
f
|ν(f)− γ(f)|

where sup is over those functions f : T → [−1, 1] such that |f(x)− f(y)| ≤ d(x, y)
for all x, y ∈ T . Note that ρ agrees with the Wasserstein distance whenever T is
separable and d ≤ 1.

A function f : T → R is Holder continuous if there are constants δ ∈ (0, 1] and
r ∈ [0,∞) such that |f(x)− f(y)| ≤ r d(x, y)δ for all x, y ∈ T . In that case, δ and
r are called the exponent and the Holder constant, respectively. If δ = 1, f is also
said to be a Lipschitz function.

Let BV [0, 1] be the set of real functions on [0, 1] with bounded variation. For
f ∈ BV [0, 1], we denote by νf the Borel measure on [0, 1] such that

νf [x, y] = f(y+)− f(x−) for all 0 ≤ x ≤ y ≤ 1

where f(0−) = f(0) and f(1+) = f(1). As usual, |νf | is the total variation measure
of νf . Note that, if f is absolutely continuous on [0, 1], then f ∈ BV [0, 1] and |νf |
has density |f ′| with respect to Lebesgue measure.

In the remainder of this paper, S is a finite set, B the power set of S, and
X = (Xn : n ≥ 1) an exchangeable sequence of S-valued random variables on
the probability space (Ω,A, P ). Exchangeability means that

(
Xπ1 , . . . , Xπn

)
is

distributed as
(
X1, . . . , Xn

)
for all n ≥ 1 and all permutations (π1, . . . , πn) of

(1, . . . , n). Since X is exchangeable and (S,B) is nice, de Finetti’s theorem yields

P (X ∈ A) =

∫
µ(ω)∞(A)P (dω) for A ∈ B∞

where µ is the r.p.m. on B introduced in Section 1 and µ∞ = µ× µ× . . .
For definiteness (and without loss of generality) we take S to be

S = {0, 1, . . . , d}.

We also adopt the following notation

Vj = lim sup
n

µn{j} for each j ∈ S,

Xn =
(
µn{1}, . . . , µn{d}

)
and V =

(
V1, . . . , Vd

)
,

Wn =
(
E(V1 | Gn), . . . , E(Vd | Gn)

)
where Gn = σ(X1, . . . , Xn).

Since X is exchangeable, µ{j} = Vj and an{j} = E
{
µ{j} | Gn

}
= E(Vj | Gn) a.s.

Therefore, V and Wn can be regarded as

V =
(
µ{1}, . . . , µ{d}

)
and Wn =

(
an{1}, . . . , an{d}

)
a.s.

Recall that Q is the collection of probability measures on Σ. The map

ν ∈ P 7→
(
ν{1}, . . . , ν{d}

)
is a bijection from P onto

I =
{
x ∈ Rd : xi ≥ 0 for all i and

d∑
i=1

xi ≤ 1
}
.
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Thus, P can be identified with I and Q with the set of Borel probabilities on I.
More precisely, let P be equipped with the distance

d(ν, γ) =

√√√√ d∑
j=1

(ν{j} − γ{j})2

and let ρ be the corresponding bounded Lipschitz metric on Q. Define also

L =
{
φ ∈ RI : −1 ≤ φ(x) ≤ 1 and |φ(x)− φ(y)| ≤ ‖x− y‖ for all x, y ∈ I

}
where ‖·‖ is the Euclidean norm on Rd. Then, it is not hard to see that

ρ
[
L(µn), L(µ)

]
= sup
φ∈L

∣∣∣E{φ(Xn)
}
− E

{
φ(V )

} ∣∣∣ and

ρ
[
L(µn), L(an)

]
= sup
φ∈L

∣∣∣E{φ(Xn)
}
− E

{
φ(Wn)

} ∣∣∣.
In the sequel, ρ is as above, namely, ρ is the bounded Lipschitz metric on Q.

3. µn versus µ

Because of exchangeability, conditionally on V , the sequence X is i.i.d. with

P (X1 = j | V ) = Vj a.s.

In particular,

E
(
µn{j}

)
= E

{
E
(
µn{j} | V

)}
= E(Vj) and

E
(
µ2
n{j}

)
= E

{
E
(
µ2
n{j} | V

)}
= E

{
V 2
j +

Vj (1− Vj)
n

}
= E(V 2

j ) +
E
{
Vj (1− Vj)

}
n

.

Letting φj(x) = x2
j − xj for all x ∈ I, it follows that

E
{
φj(Xn)

}
− E

{
φj(V )

}
= E

(
µ2
n{j}

)
− E

(
µn{j}

)
− E(V 2

j ) + E(Vj) =
E
{
Vj (1− Vj)

}
n

.

On noting that φj ∈ L for all j, one obtains

ρ
[
L(µn), L(µ)

]
≥ max

j

(
E
{
φj(Xn)

}
− E

{
φj(V )

})
=
a

n

where a = max
j

E
{
Vj (1− Vj)

}
.

This provides a lower bound for ρ
[
L(µn), L(µ)

]
. In fact, a is strictly positive

apart from trivial situations. The rest of this section is devoted to the search of an
upper bound, possibly of order 1/n.

We begin with d = 1. In this case, S = {0, 1} and

Xn = µn{1} = (1/n)

n∑
i=1

Xi and V = V1 = µ{1} a.s.

Theorem 1. Let S = {0, 1} and X exchangeable. Suppose µ{1} admits a density
f , with respect to Lebesgue measure on [0, 1], and f ∈ BV [0, 1]. Then,

a

n
≤ ρ
[
L(µn), L(µ)

]
≤ b

n+ 1
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for each n ≥ 1, where

b = 1 +
1

2

∫ 1

0

x (1− x) |νf |(dx).

(The measure |νf | has been defined in Section 2).

Proof. Note that I = [0, 1] and fix φ ∈ L. Since φn → φ uniformly, for some
sequence φn ∈ L ∩ C1, it can be assumed φ ∈ L ∩ C1. Define

Φ(x) =

∫ x

0

φ(t) dt and Bn(x) =

n∑
j=0

Φ(
j

n
)

(
n
j

)
xj(1− x)n−j .

On noting that

B′n+1(x) =

n∑
j=0

(
n
j

)
(n+ 1)

{
Φ(
j + 1

n+ 1
)− Φ(

j

n+ 1
)
}
xj(1− x)n−j

and
∣∣∣ (n+ 1)

{
Φ(
j + 1

n+ 1
)− Φ(

j

n+ 1
)
}
− φ(

j

n
)
∣∣∣ ≤ 1

n+ 1
,

one obtains∫ 1

0

∣∣∣B′n+1(x)−
n∑
j=0

φ(
j

n
)

(
n
j

)
xj(1− x)n−j

∣∣∣ f(x) dx ≤ 1

n+ 1
.

Since X is exchangeable, it follows that

E
{
φ(Xn)

}
− E

{
φ(V )

}
=

n∑
j=0

φ(
j

n
)P
(
nXn = j

)
− E

{
φ(V )

}
=

n∑
j=0

φ(
j

n
)

(
n
j

) ∫ 1

0

xj(1− x)n−j f(x) dx−
∫ 1

0

φ(x) f(x) dx

≤ 1

n+ 1
+

∫ 1

0

{
B′n+1(x)− Φ′(x)

}
f(x) dx.

Since Bn+1(0) = Φ(0) and Bn+1(1) = Φ(1), an integration by parts yields∫ 1

0

{
B′n+1(x)− Φ′(x)

}
f(x) dx = −

∫ 1

0

{
Bn+1(x)− Φ(x)

}
νf (dx).

Observe now that Bn+1(x) = Ex
{

Φ(Xn+1)
}

, where Ex denotes expectation under
the probability measure Px which makes the sequenceX i.i.d. with Px(X1 = 1) = x.
Hence, since Ex(Xn+1) = x, Taylor formula yields

Bn+1(x)− Φ(x) = Ex

{
Φ(Xn+1)− Φ(x)

}
= (1/2)Ex

{
(Xn+1 − x)2φ′(Zn)

}
for some random variable Zn. Since |φ′| ≤ 1 (due to φ ∈ L ∩ C1) then

|Bn+1(x)− Φ(x)| ≤ (1/2)Ex
{

(Xn+1 − x)2
}

=
x (1− x)

2 (n+ 1)
.

Collecting all these facts together, one finally obtains

E
{
φ(Xn)

}
− E

{
φ(V )

}
≤ 1

n+ 1
+

1

2(n+ 1)

∫ 1

0

x (1− x) |νf |(dx) =
b

n+ 1
.

This concludes the proof.
�
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In view of Theorem 1, the rate of ρ
[
L(µn), L(µ)

]
is 1/n provided S = {0, 1}

and µ{1} admits a suitable density with respect to Lebesgue measure. This fact,
however, is essentially known. In fact, by [10, Theorem 1.2],

a

n
≤ ρ
[
L(µn), L(µ)

]
≤ b∗

n

for a suitable constant b∗ whenever S = {0, 1} and µ{1} has a smooth density f

such that
∫ 1

0
x (1 − x) |f ′(x)| dx < ∞. Note that, if f is absolutely continuous on

[0, 1], then ∫ 1

0

x (1− x) |f ′(x)| dx =

∫ 1

0

x (1− x) |νf |(dx).

Theorem 1 has been actually suggested by [10, Theorem 1.2]. With respect
to the latter, however, Theorem 1 has two little merits. Its proof is remarkably
shorter (and possibly more direct) and it often provides a smaller upper bound.
For instance,

b∗ = 2 b − 1 +
3√

2π e
+

∫ 1

0

{
|1− 2x|+ x2 + (1− x)2

}
f(x) dx

in case f is absolutely continuous on [0, 1].
We next turn to the general case d ≥ 1. Indeed, under an independence assump-

tion, a version of Theorem 1 is available.

Theorem 2. Let S = {0, 1, . . . , d} and X exchangeable. Suppose V0 > 0 a.s. and
define

Rj =
Vj∑j
i=0 Vi

.

Suppose also that R1, . . . , Rd are independent, each Rj (with j > 0) admits a density
fj with respect to Lebesgue measure on [0, 1], and fj ∈ BV [0, 1]. Then,

a

n
≤ ρ
[
L(µn), L(µ)

]
≤ b

n+ 1

for all n ≥ 1, where

b = 1 +
√

2 (d− 1) +
1√
2

d∑
j=1

∫ 1

0

x (1− x) |νfj |(dx).

(The measure |νfj | has been defined in Section 2).

Proof. Since 1/2 < 1/
√

2, the theorem holds true for d = 1. The general case
follows from an induction on d. Here, we deal with d = 2. The inductive step (from
d − 1 to d) can be processed in exactly the same way, but the notation becomes
awful. Hence, the explicit calculations are omitted.

Let d = 2 and let L∗ be the set of functions ψ : [0, 1] → [−1, 1] such that
|ψ(x)−ψ(y)| ≤ |x− y| for all x, y ∈ [0, 1] (namely, L∗ is the class L corresponding
to d = 1). Fix φ ∈ L and define

h(y) =

∫ 1

0

φ
(
x (1− y), y

)
f1(x) dx.
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Since R1 is independent of R2 and V2 = R2 a.s.,

E
{
φ(V )

}
= E

{
φ
(
R1 (1− V2), V2

)}
=

∫ 1

0

∫ 1

0

φ
(
x (1− y), y

)
f1(x) dx f2(y) dy

=

∫ 1

0

h(y) f2(y) dy = E
{
h(V2)

}
.

On the other hand, φ ∈ L implies

|h(y)− h(z)| ≤
∫ 1

0

|φ
(
x (1− y), y

)
− φ

(
x (1− z), z

)
| f1(x) dx

≤ |y − z|
∫ 1

0

√
x2 + 1 f1(x) dx ≤

√
2 |y − z|.

Hence, h/
√

2 ∈ L∗. By this fact and f2 ∈ BV [0, 1], Theorem 1 yields

|E
{
φ(V )

}
− E

{
h(µn{2})

}
| = |E

{
h(V2)

}
− E

{
h(µn{2})

}
|

≤
√

2

n+ 1

{
1 +

1

2

∫ 1

0

x (1− x) |νf2 |(dx)
}
.

Next, define

mj,k = E
{
Rk1(1−R1)n−j−k

}
=

∫ 1

0

xk(1− x)n−j−k f1(x) dx

and note that

E
{
V k1 V

j
2 (1− V1 − V2)n−j−k

}
= E

{
Rk1(1−R1)n−j−kV j2 (1− V2)n−j

}
= E

{
Rk1(1−R1)n−j−k

}
E
{
V j2 (1− V2)n−j

}
= mj,k E

{
V j2 (1− V2)n−j

}
.

Hence, E
{
φ(Xn)

}
can be written as

E
{
φ(Xn)

}
=

n∑
j=0

n−j∑
k=0

φ
(k
n
,
j

n

)
P
(
nXn = (k, j)

)
= φ(0, 1)P

(
µn{2} = 1

)
+

+

n−1∑
j=0

n−j∑
k=0

φ
( k

n− j
(1− j

n
),
j

n

) ( n
j

)(
n− j
k

)
mj,k

∫ 1

0

yj(1− y)n−j f2(y) dy.

Similarly,

E
{
h(µn{2})

}
=

n∑
j=0

h
( j
n

)
P
(
nµn{2} = j

)
= φ(0, 1)P

(
µn{2} = 1

)
+

+

n−1∑
j=0

(
n
j

) ∫ 1

0

φ
(
x (1− j

n
),
j

n

)
f1(x) dx

∫ 1

0

yj(1− y)n−j f2(y) dy.

For j < n, define

φj(x) =
n

n− j

{
φ
(
x (1− j

n
),
j

n

)
− φ

(
0,
j

n

)}
.
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Since f1 ∈ BV [0, 1] and φj ∈ L∗ for each j < n, Theorem 1 implies again∣∣∣ n−j∑
k=0

(
n− j
k

)
φ
( k

n− j
(1− j

n
),
j

n

)
mj,k −

∫ 1

0

φ
(
x (1− j

n
),
j

n

)
f1(x) dx

∣∣∣
=
n− j
n

∣∣∣ n−j∑
k=0

(
n− j
k

)
φj
( k

n− j
)
mj,k −

∫ 1

0

φj(x) f1(x) dx
∣∣∣

≤ n− j
n (n− j + 1)

{
1 +

1

2

∫ 1

0

x (1− x) |νf1 |(dx)
}
.

On noting that n−j
n (n−j+1) ≤

1
n+1 , the previous inequality yields

|E
{
h(µn{2})

}
− E

{
φ(Xn)

}
| ≤ 1

n+ 1

{
1 +

1

2

∫ 1

0

x (1− x) |νf1 |(dx)
}
.

This concludes the proof. In fact,

|E
{
φ(V )

}
− E

{
φ(Xn)

}
| ≤ |E

{
φ(V )

}
− E

{
h(µn{2})

}
|+ |E

{
h(µn{2})

}
− E

{
φ(Xn)

}
|

≤ 1

n+ 1

{
1 +

√
2 +

1√
2

2∑
j=1

∫ 1

0

x (1− x) |νfj |(dx)
}

=
b

n+ 1
.

�

A simple real situation where the assumptions of Theorem 2 make sense is as
follows.

Example 3. Let
{
Yn,j : n ≥ 1, 0 ≤ j < d

}
be an array of random indicators. Define

Tn = min{j : Yn,j = 1}, with the convention min ∅ = d, and Xn = d − Tn. Fix
a random vector R = (R1, . . . , Rd) satisfying 0 < Rj < 1 for all j, and suppose
that, conditionally on R, the Yn,j are independent with P (Yn,j = 1 | R) = Rd−j
a.s. Then, by construction, X = (X1, X2, . . .) is exchangeable and

P
(
Xn = j | R

)
= Rj

d∏
i=j+1

(1−Ri) a.s., where R0 = 1.

Thus, to realize the assumptions of Theorem 2, it suffices to take R1, . . . , Rd inde-
pendent with each Rj having a density fj ∈ BV [0, 1].

A last remark is that Theorems 1-2 can be generalized. Roughly speaking, to get
certain upper bounds (larger than those obtained so far) it suffices that R1, . . . , Rd
are independent but admit BV-densities only locally. Here is an example. We focus
on d = 1 for the sake of simplicity, but analogous results are available for any d ≥ 1.

Theorem 4. Let S = {0, 1} and X exchangeable. Suppose that

P
(
µ{1} ∈ A ∩B

)
=

∫
A

f(x) dx for each Borel set A ⊂ [0, 1],

where B ⊂ [0, 1] is a fixed Borel set and f satisfies f ≥ 0 and f ∈ BV [0, 1]. Then,

a

n
≤ ρ
[
L(µn), L(µ)

]
≤
P
(
µ{1} /∈ B

)
2
√
n

+
b

n+ 1
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for each n ≥ 1, with

b = P
(
µ{1} ∈ B

)
+

1

2

∫ 1

0

x (1− x) |νf |(dx).

(The measure |νf | has been defined in Section 2).

Proof. Fix φ ∈ L ∩ C1 and recall that V = µ{1} a.s. (for d = 1). Then,

E
{(
φ(Xn)− φ(V )

)
IBc(V )

}
≤ E

{
|Xn − V | IBc(V )

}
= E

{
IBc(V )E

{
|Xn − V | | V

}}
≤ E

{
IBc(V )

√
E
{

(Xn − V )2 | V
}}

= E
{
IBc(V )

√
V (1− V )

n

}
≤
P
(
V /∈ B

)
2
√
n

where the last inequality depends on V (1−V ) ≤ 1/4. Next, note that E
{
g(V ) IB(V )

}
=∫ 1

0
g(x) f(x) dx for each bounded Borel function g. Hence,

P
(
nXn = j, V ∈ B

)
= E

{
IB(V )P

(
nXn = j | V

)}
=

(
n
j

)
E
{
V j(1− V )n−j IB(V )

}
=

(
n
j

) ∫ 1

0

xj(1− x)n−jf(x) dx.

It follows that

E
{(
φ(Xn)− φ(V )

)
IB(V )

}
=

n∑
j=0

φ(
j

n
)P
(
nXn = j, V ∈ B

)
− E

{
φ(V ) IB(V )

}
=

n∑
j=0

φ(
j

n
)

(
n
j

) ∫ 1

0

xj(1− x)n−jf(x) dx −
∫ 1

0

φ(x) f(x) dx.

Thus, the argument exploited in the proof of Theorem 1 can be replicated. Since∫ 1

0
f(x) dx = P

(
V ∈ B

)
, one finally obtains

E
{(
φ(Xn)− φ(V )

)
IB(V )

}
≤
P
(
V ∈ B

)
n+ 1

+
1

2(n+ 1)

∫ 1

0

x (1− x) |νf |(dx) =
b

n+ 1
.

�

The rate provided by Theorem 4, namely n−1/2, is available without any assump-
tion on µ{1}; see [10, Proposition 3.1]. Sometimes, however, Theorem 4 allows to
get a better rate. As highlighted by (the second part of) the next example, the idea
is to take B depending on n.

Example 5. Let B = [s, t], f = 0 on Bc and f monotone on B. Then,∫ 1

0

x (1− x) |νf |(dx) ≤ 1

2
max

{
f(s), f(t)

}
and Theorem 4 yields

ρ
[
L(µn), L(µ)

]
≤
P
(
µ{1} /∈ B

)
2
√
n

+
P
(
µ{1} ∈ B

)
+ (1/4) max

{
f(s), f(t)

}
n+ 1

.

Suppose in fact f increasing and 0 < s < t < 1 (all other cases can be treated in
exactly the same manner). Since f ≥ 0 and f(t+) = 0,

|νf |{t} = |νf{t}| = |f(t+)− f(t−)| = f(t−).
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Similarly, |νf |{s} = f(s+). Therefore,∫ 1

0

x (1− x) |νf |(dx) ≤ 1

4
|νf |[s, t] =

f(t−)− f(s+) + |νf |{s, t}
4

=
f(t−)

2
≤ f(t)

2
.

This simple bound works nicely in some practical situations. For instance, in
[10, Proposition 5.1], it is shown that

ρ
[
L(µn), L(µ)

]
= O

(
n−

1+u
2

)
if µ{1} has a density g of the form g(x) = k

(
x − 1

2

)u−1
I( 1

2 ,
3
4 )(x), with u ∈ (0, 1)

and k a normalizing constant. Such result can be easily proved using the bound
obtained above. Fix in fact n > 16 and define

B =
[1

2
+

1√
n
,

3

4

]
and f = g IB .

With such B and f , one obtains

ρ
[
L(µn), L(µ)

]
≤
P
(
µ{1} < 1

2 + 1√
n

)
2
√
n

+
1 + (1/4) f( 1

2 + 1√
n

)

n+ 1
≤ q n−

1+u
2

for some constant q.

4. µn versus an

In this section, it is convenient to work on the coordinate space. Accordingly,
we let (Ω,A) = (S∞,B∞) and we take Xn to be the n-th canonical projection on
Ω = S∞. Recall also that Gn = σ(X1, . . . , Xn).

Our last result provides a (sharp) upper bound for ρ
[
L(µn), L(an)

]
.

Theorem 6. Let S = {0, 1, . . . , d} and X exchangeable. Suppose
(
µ{1}, . . . , µ{d}

)
admits a density f , with respect to Lebesgue measure on I, and f is Holder contin-
uous. Then,

ρ
[
L(µn), L(an)

]
≤ 2 d

n+ d+ 1
+ 2 r

√
d

d!

( d2

(d+ 1) (d+ 2)

) 1+δ
2
( 1

n

) 1+δ
2

for each n ≥ 1, where δ ∈ (0, 1] and r ∈ [0,∞) are the exponent and the Holder
constant of f , respectively.

Proof. Let Q be the probability measure on A which makes X exchangeable with

EQ
(
Vj | Gn

)
= Q

(
Xn+1 = j | Gn

)
=

1 + nµn{j}
n+ d+ 1

, Q-a.s.

Then, ∣∣∣µn{j} − EQ(Vj | Gn) ∣∣∣ ≤ 1 + dµn{j}
n+ d+ 1

.
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Fix n ≥ 1, x1, . . . , xn ∈ S, and set kj =
∑n
i=1 δj{xi}. Since V is uniformly

distributed on I under Q,

P
(
X1 = x1, . . . , Xn = xn

)
=

∫
I

(
1−

d∑
i=1

ui
)k0 d∏

i=1

ukii f(u1, . . . , ud) du1, . . . , dud

=
1

d!

∫
Ω

(
1−

d∑
i=1

Vi
)k0 d∏

i=1

V kii f(V ) dQ

=
1

d!

∫
{X1=x1,...,Xn=xn}

f(V ) dQ.

Hence, P has density f(V )/d! with respect to Q. In particular,

E(Vj | Gn) =
EQ
{
Vj f(V ) | Gn

}
EQ
{
f(V ) | Gn

} a.s.

Further, each Vj has a beta distribution, with parameters 1 and d, under Q. Hence,

EQ
{
‖V −Xn‖2

}
=

d∑
j=1

EQ
{

(Vj − µn{j})2
}

=

d∑
j=1

EQ

{Vj (1− Vj)
n

}
=

d2

(d+ 1) (d+ 2)

1

n

where ‖·‖ is the Euclidean norm on Rd.
Next, define Un = f(V )− EQ

{
f(V ) | Gn

}
. Then,

EQ
(
µn{j}Un | Gn

)
= µn{j}EQ(Un | Gn) = 0, Q-a.s.

Since P � Q, then EQ
(
µn{j}Un | Gn

)
= 0 a.s. with respect to P as well. Hence,

|µn{j} − E(Vj | Gn)| − 1 + dµn{j}
n+ d+ 1

≤ |EQ(Vj | Gn)− E(Vj | Gn)|

=
∣∣∣EQ(Vj | Gn)−

EQ
{
Vj f(V ) | Gn

}
EQ
{
f(V ) | Gn

} ∣∣∣
=
|EQ

{
Vj Un | Gn

}
|

EQ
{
f(V ) | Gn

} =
|EQ

{
(Vj − µn{j})Un | Gn

}
|

EQ
{
f(V ) | Gn

}
≤
EQ
{
|(Vj − µn{j})Un| | Gn

}
EQ
{
f(V ) | Gn

} a.s.

Since f is Holder continuous and δ ≤ 1, one also obtains

EQ(U2
n) = EQ

{(
f(V )− f(Xn)− EQ

{
f(V )− f(Xn) | Gn

})2}
≤ 4EQ

{
(f(V )− f(Xn))2

}
≤ 4 r2EQ

{
‖V −Xn‖2δ

}
≤ 4 r2

(
EQ
{
‖V −Xn‖2

})δ
.

Finally, for x ∈ Rd, define ‖x‖∗ =
∑d
j=1|xj | and recall that ‖x‖ ≤ ‖x‖∗ ≤√

d ‖x‖. Given φ ∈ L, to conclude the proof, it suffices to note that
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E
{
φ(Xn)

}
− E

{
φ(Wn)

}
≤ E|φ(Xn)− φ(Wn)|

≤ E‖Xn −Wn‖ ≤ E‖Xn −Wn‖∗

≤
d∑
j=1

E
{ 1 + dµn{j}

n+ d+ 1
+
EQ
{
|(µn{j} − Vj)Un| | Gn

}
EQ
{
f(V ) | Gn

} }

=
d+ dP (X1 6= 0)

n+ d+ 1
+

d∑
j=1

EQ

{ f(V )

d!

EQ
{
|(µn{j} − Vj)Un| | Gn

}
EQ
{
f(V ) | Gn

} }
≤ 2 d

n+ d+ 1
+

1

d!
EQ

{
|Un| ‖Xn − V ‖∗

}
≤ 2 d

n+ d+ 1
+

√
d

d!
EQ

{
|Un| ‖Xn − V ‖

}
≤ 2 d

n+ d+ 1
+

√
d

d!

√
EQ
{
‖Xn − V ‖2

}
EQ(U2

n)

≤ 2 d

n+ d+ 1
+ 2 r

√
d

d!

(
EQ
{
‖Xn − V ‖2

}) 1+δ
2

=
2 d

n+ d+ 1
+ 2 r

√
d

d!

( d2

(d+ 1) (d+ 2)

) 1+δ
2
( 1

n

) 1+δ
2

.

�

Theorem 6 improves a previous result which covers the particular case where
d = 1 and δ = 1; see [5, Theorem 10].

The rate provided by Theorem 6 can not be improved. Take in fact P = Q with
Q as in the proof of Theorem 6. Then, V is uniformly distributed on I (so that f

is even constant) and an{1} = 1+nµn{1}
n+d+1 a.s. Take also φ(x) =

x2
1

2 for all x ∈ I.
Since φ ∈ L, one obtains

2 (n+ d+ 1) ρ
[
L(µn), L(an)

]
≥ 2 (n+ d+ 1)

(
E
{
φ(Xn)

}
− E

{
φ(Wn)

})
= (n+ d+ 1)

{
E
(
µn{1}2

)
− E

(
an{1}2

)}
= (n+ d+ 1)E

(
µn{1}2

)
−

1 + n2E
(
µn{1}2

)
+ 2nE

(
µn{1}

)
n+ d+ 1

≥
2 (d+ 1)nE

(
µn{1}2

)
− 2nE

(
µn{1}

)
− 1

n+ d+ 1
−→ 2 (d+ 1)E(V 2

1 )− 2E(V1) =
2 d

(d+ 1) (d+ 2)
.

Therefore, in this case, the rate of ρ
[
L(µn), L(an)

]
is actually 1/n.
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