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Abstract. Convergence in distribution is investigated in a finitely additive

setting. Let Xn be maps, from any set Ω into a metric space S, and P a

finitely additive probability (f.a.p.) on the field F =
S

n σ(X1, . . . , Xn). Fix

H ⊂ Ω and X : Ω → S. Conditions for Q(H) = 1 and Xn
d→ X under

Q, for some f.a.p. Q extending P , are provided. In particular, one can let

H = {ω ∈ Ω : Xn(ω) converges} and X = limn Xn on H. Connections

between convergence in probability and in distribution are also exploited. A
general criterion for weak convergence of a sequence (µn) of f.a.p.’s is given.

Such a criterion grants a σ-additive limit provided each µn is σ-additive. Some
extension results are proved as well. As an example, let X and Y be maps on

Ω. Necessary and sufficient conditions for the existence of a f.a.p. on σ(X, Y ),

which makes X and Y independent with assigned distributions, are given. As
a consequence, a question posed by de Finetti in 1930 is answered.

1. Introduction and motivations

At pages 11-12 of [6], de Finetti raises the following question:
Let X = {X(t) : t ∈ [0, 1]} be a real process with continuous paths and

Sn = 1
n

∑n
j=1 X( j

n ). Under some assumptions (such as X has independent and sta-
tionary increments), P (Sn ≤ t) → F (t) for each continuity point t of F , where F is
some distribution function. Also, continuity of the X-paths yields Sn →

∫ 1

0
X(t)dt

pathwise. Does it follow that
∫ 1

0
X(t)dt has distribution function F ?

The answer is clearly yes if probability measures are requested to be σ-additive.
But at the end of the twenty’s, while investigating processes with independent
increments, de Finetti started to have some criticism on σ-additivity as a general
axiom. This criticism led him to the notion of coherence, stated in [7] and [9]; see
also [8] about his correspondence with Frechet. In any case, de Finetti’s question
is placed in a finitely additive framework.

Then, the answer is no. Indeed, in a finitely additive setting,
∫ 1

0
X(t)dt can be

given any distribution independently of the behaviour of X on finite dimensional
sets. It may be, for instance, that X has the finite dimensional distributions of
standard Brownian motion,

∫ 1

0
X(t)dt has an arbitrary distribution, and

∫ 1

0
X(t)dt

is independent of (X(t1), . . . , X(tn)) for each (finite) choice of t1, . . . , tn.

Example 1.1. Let Ω be the set of real continuous functions on [0, 1], X(t, ω) = ω(t)
the coordinate process, and A the field of finite dimensional sets of the form A =
{ω ∈ Ω : (ω(t1), . . . , ω(tn)) ∈ D}, where n ≥ 1, t1, . . . , tn ∈ [0, 1] and D ∈ B(Rn).
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Say that a real functional Y on Ω is elastic in case: For each finite collection of
distinct points t1, . . . , tn ∈ [0, 1] and each x, x1, . . . , xn ∈ R, there is ω ∈ Ω satisfying
Y (ω) = x and ω(ti) = xi for i = 1, . . . , n. There are actually a number of elastic
functionals on Ω, and one of these is the integral Y (ω) =

∫ 1

0
ω(t)dt. Fix now an

elastic functional Y , a finitely additive probability (f.a.p.) α on A and a f.a.p. β on
B(R). Here, α and β should be regarded as the finite dimensional distributions of X
and the distribution of Y , respectively. Then, in view of the forthcoming Corollary
3.2, there is a f.a.p. P on P(Ω) such that

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) = α(A)β(B)

whenever A ∈ A and B ∈ B(R).

Among other things, Example 1.1 is one more validation of a known fact, dating
to [6]: in a finitely additive setting, almost sure convergence (to some limit) does
not imply convergence in distribution (to the same limit). In fact, almost sure
convergence basically depends on the choice of some extensions. To see this, suppose
(Xn) is a sequence of functions, from any set Ω into a metric space S, and P is a
f.a.p. on the field

F =
⋃
n

σ(X1, . . . , Xn)

of finite dimensional sets for (Xn). The set C = {ω ∈ Ω : Xn(ω) converges} is
typically not in F . For deciding whether Xn converges a.s., thus, some extension
Q of P to F ∪ {C} is to be selected. In the coherent framework, all probability as-
sessments (both conditional and unconditional) are only asked to meet de Finetti’s
coherence principle (Subsection 2.1). Then, Q(C) can be taken to be any value
between the inner measure P∗(C) and the outer measure P ∗(C).

Suppose P ∗(C) = 1. This includes in particular the case where Xn converges
pointwise (C = Ω). Denote Q the extension of P satisfying Q(C) = 1 and define
X = limn Xn on C and X = x0 on Cc, for some x0 ∈ S. Then, Xn → X a.s. under
Q, but Xn can fail to converge in distribution as well (even if C = Ω). A trivial
example is: Ω = N, S = {0, 1}, Xn = I{1,...,n} or Xn = 1 − I{n} according to n
is even or odd, and P such that P{n} = 0 for all n. Furthermore, even when Xn

converges in distribution, X need not be F-measurable. Hence, to decide whether
Xn

d→ X, a further (coherent) extension Q0 of Q to F ∪{C}∪σ(X) is to be chosen,
and again it may be that Xn

d→ X fails to be true under Q0.
To sum up, if P is assessed only on F , as it is reasonable in real problems,

convergence issues in the coherent framework deal with existence of extensions.
For instance, one question is: Under what conditions, is there an extension Q of P

such that Q(C) = 1 and Xn
d→ X under Q ?

We point out that the previous remarks do not concern the strategic approach,
introduced by Dubins and Savage and developed by Purves and Sudderth in [10],
[11], [16]. In that case, in fact, P is strategic on F and Q must be its strategic
extension to σ(F).

This paper contains two types of results, both concerning coherence. Related
references are [4] and [19].

The first type (Section 3) are pure coherence results: existence of (coherent)
extensions satisfying certain requirements. As an example, given two maps X and
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Y on Ω, suppose we would like to model X and Y as independent, with assigned
distributions. Is this possible ? That is, is there a f.a.p. P on σ(X, Y ) which makes
X and Y independent with the assigned distributions ? Our main result (Theorem
3.1) provides necessary and sufficient conditions for such a P to exist.

The second type of results (Section 4) deals with convergence in distribution.
Let X : Ω → S be a map and H ⊂ Ω a subset. For instance, one could let H = C

and X = limn Xn on H. Conditions for Q(H) = 1 and Xn
d→ X under Q, for

some extension Q of P , are given. Next, the connections between convergence in
probability and convergence in distribution are investigated. It turns out that the
former implies the latter provided S is Polish and each Xn has a tight distribution,
but not in general. Next, let (µn) be a sequence of f.a.p.’s on B(S). A necessary
and sufficient condition for µn → µ weakly, for some f.a.p. µ on B(S), is provided
(Theorem 4.2). This condition is potentially useful in the standard setting as well.
In fact, µ can be taken to be σ-additive whenever each µn is σ-additive. Finally,
various examples are given.

2. Basic definitions

In the sequel, Ω is a set, F a field of subsets of Ω and P a f.a.p. on F . We
let P(Ω) denote the power set of Ω and P ∗ and P∗ the outer and inner measures
induced by P , i.e.

P ∗(H) = inf{P (A) : H ⊂ A ∈ F}, P∗(H) = 1− P ∗(Hc), H ⊂ Ω.

2.1. Coherence. Let D be any class of bounded functions defined on (possibly
different) subsets of Ω. The members of D are thus of the form X|H, where
X : Ω → R is bounded and H ⊂ Ω, H 6= ∅. In case H = Ω, we write X instead
of X|Ω. According to de Finetti’s coherence principle, a real function E on D is
coherent if, for each n ≥ 1, X1|H1, . . . , Xn|Hn ∈ D and c1, . . . , cn ∈ R, one has

inf G|H ≤ 0 ≤ supG|H

where G and H are defined as

G =
n∑

i=1

ciIHi

(
Xi − E(Xi | Hi)

)
and H =

n⋃
i=1

Hi.

Heuristically, suppose E describes the opinions of a bookie on the elements of
D. If E is not coherent, a gambler can select a finite combination of bets (on
X1|H1, . . . , Xn|Hn with stakes c1, . . . , cn) which makes the bookie a sure loser.
Instead, no Dutch book against a coherent bookie is possible.

A conditional expectation is a coherent function E and a conditional probability
is the restriction of a conditional expectation to indicators, i.e.,

Prob(A | H) = E(IA | H) A ⊂ Ω, IA|H ∈ D.

We refer to [17] for more on coherence. Here, we just note that a coherent
function E can be extended, preserving coherence, to the class of all functions X|H
with X : Ω → R bounded and H nonempty subset of Ω. Moreover, if G is a field of
subsets of Ω and D = {IA : A ∈ G}, then E is coherent if and only if A 7→ E(IA)
is a f.a.p. on G.
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2.2. Convergence in distribution. Let S be a metric space. We write B(S) for
the Borel σ-field of S and Cb(S) for the set of real bounded continuous functions on
S. Also, we let ν(f) =

∫
fdν whenever ν is a f.a.p. on B(S) and f a real bounded

Borel function on S. Given f.a.p.’s µn and µ on B(S), say that µn converges to µ
weakly in case µn(f) → µ(f) for all f ∈ Cb(S).

A sufficient condition for µn → µ weakly is

lim sup
n

µn(F ) ≤ µ(F ) for all closed F ⊂ S.

Such a condition is necessary as well provided the limit µ is regular on open sets,
i.e.

µ(U) = sup{µ(F ) : F closed, F ⊂ U} for all open U ⊂ S.

This can be proved by the same argument as in the standard setting; see [13] and
page 316 of [12]. We also recall that, if φ is a linear positive functional on Cb(S)
satisfying φ(1) = 1, then φ(f) = µ(f), f ∈ Cb(S), for some f.a.p. µ on B(S) regular
on open sets. Therefore, if µn → ν weakly for some ν, one also obtains µn → µ
weakly for some µ regular on open sets.

We refer to [13] for more on weak convergence of f.a.p.’s.
Convergence in distribution of measurable maps is defined via weak convergence

of their laws. For any function Z : Ω → S, denote

σ(Z) = {{Z ∈ B} : B ∈ B(S)}.

Let Xn, X : Ω → S be maps and µ a f.a.p. on B(S). Say that Xn converges to µ in
distribution in case σ(Xn) ⊂ F for all n and P ◦X−1

n → µ weakly. Also, say that
Xn converges to X in distribution, written Xn

d→ X, in case σ(Xn) ⊂ F for all n,
σ(X) ⊂ F and P ◦X−1

n → P ◦X−1 weakly.
Finally, we mention a result of Karandikar [14]. For our purposes, it is useful to

extend it to S-valued maps (the original result is stated for real valued functions).
As usual, a probability space is a triplet (Ω0,F0, P0) where P0 is a σ-additive f.a.p.
on the σ-field F0 of subsets of Ω0.

Theorem 2.1. Suppose P is a f.a.p. on

F =
⋃
n

σ(X1, . . . , Xn)

where each Xn : Ω → S is tight (i.e., for all ε > 0 there is a compact K ⊂ S
such that P (Xn /∈ K) < ε). Then, there are a probability space (Ω0,F0, P0) and a
sequence (Zn) of S-valued random variables on (Ω0,F0, P0) satisfying

EP f(X1, . . . , Xn) = EP0f(Z1, . . . , Zn)

for all n and f ∈ Cb(Sn), and

P
(
(X1, . . . , Xn) ∈ B

)
= P0

(
(Z1, . . . , Zn) ∈ B

)
for all n and B ∈ B(Sn) such that P0

(
(Z1, . . . , Zn) ∈ ∂B

)
= 0.

Proof. We just give a sketch of the proof, since it coincides essentially with Karandikar’s
original one. First note that EP f(X1, . . . , Xn) =

∫
f(X1, . . . , Xn)dP is well defined

for all n and f ∈ Cb(Sn), since f is bounded and σ(X1, . . . , Xn) ⊂ F . Fix n and
define φn(f) = EP f(X1, . . . , Xn) for all f ∈ Cb(Sn). Then, φn is a linear posi-
tive functional on Cb(Sn). Since Xi is tight for each i ≤ n, given ε > 0 one has
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P
(
(X1, . . . , Xn) /∈ K

)
< ε for some compact K ⊂ Sn. Using this fact, it is straight-

forward to verify that limj φn(fj) = 0 whenever (fj) ⊂ Cb(Sn) is a non-increasing
sequence converging to 0 pointwise. By Daniell theorem, there is a σ-additive
f.a.p. λn on B(Sn) such that φn(f) = λn(f) for all f ∈ Cb(Sn). Let Ω0 = S∞

and F0 = σ(Z1, Z2, . . .) where Zn is the n-th coordinate projection on S∞. Since
λn+1(B × S) = λn(B) for all n and B ∈ B(Sn), one can define a f.a.p. P on the
field F =

⋃
n σ(Z1, . . . , Zn) as

P
(
(Z1, . . . , Zn) ∈ B

)
= λn(B).

It remains to prove that P is σ-additive on F. Each Zn has a σ-additive distribution
(under P) due to λn is σ-additive. Thus, by Theorem 6 of [20], for P to be σ-additive
it is enough that Zn is tight for all n. Fix n and ε > 0, and take a compact K ⊂ S
such that P (Xn /∈ K) < ε. Since Zn has a σ-additive distribution, some closed
set F ⊂ Kc meets P(Zn /∈ K) < ε + P(Zn ∈ F ). Let h ∈ Cb(S) be such that
IF ≤ h ≤ IKc . Then,

P(Zn /∈ K) < ε + P(Zn ∈ F ) ≤ ε + EPh(Zn)

= ε + EP h(Xn) ≤ ε + P (Xn /∈ K) < 2ε.

�

3. Coherence results

Theorem 3.1. Let F be the field generated by F1∪F2, where F1 and F2 are fields
of subsets of Ω, and let P1 and P2 be f.a.p.’s on F1 and F2. In order to

P (A ∩B) = P1(A)P2(B) for all A ∈ F1 and B ∈ F2, (1)

for some f.a.p. P on F , it is necessary and sufficient that

P1(A)P2(B) = P1(A′)P2(B′) (2)

whenever A ∩B = A′ ∩B′ with A,A′ ∈ F1 and B,B′ ∈ F2.

Proof. Under (1), if A ∩B = A′ ∩B′ for some A,A′ ∈ F1 and B,B′ ∈ F2, then

P1(A)P2(B) = P (A ∩B) = P (A′ ∩B′) = P1(A′)P2(B′).

Conversely, suppose (2) holds and define P(A ∩ B) = P1(A)P2(B) for A ∈ F1 and
B ∈ F2. By (2), P is well defined on S := {A ∩ B : A ∈ F1, B ∈ F2}. Since F is
the collection of finite disjoint unions of elements of S, it is enough proving that P
is finitely additive on S. In fact, fix H,F ∈ F with H = F , and suppose H = ∪iHi

and F = ∪jFj , where the Hi and the Fj are disjoint members of S. If P is finitely
additive on S, one obtains∑

i

P(Hi) =
∑

i

P
(
∪j(Hi ∩ Fj)

)
=

∑
i

∑
j

P(Hi ∩ Fj) =
∑

j

P(Fj).

Thus, it is possible to define P (∪iHi) =
∑

i P(Hi), where ∪iHi is a finite disjoint
union of elements of S, and such a P is a f.a.p. on F which meets condition (1).

It remains to show that P is finitely additive on S. Let A ∩ B =
⋃m

i=1 Ai ∩ Bi,
where A,A1, . . . , Am ∈ F1, B,B1, . . . , Bm ∈ F2 and Ai∩Bi∩Aj ∩Bj = ∅ for i 6= j.
We have to prove that

P1(A)P2(B) =
m∑

i=1

P1(Ai)P2(Bi). (3)
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For m = 1, condition (3) reduces to (2). By induction, suppose that (3) holds for
m = n − 1 where n ≥ 2. Let A ∩ B =

⋃n
i=1 Ai ∩ Bi, where A,A1, . . . , An ∈ F1,

B,B1, . . . , Bn ∈ F2 and Ai ∩Bi ∩Aj ∩Bj = ∅ for i 6= j. On noting that

(A−An) ∩B =
( n⋃
i=1

Ai ∩Bi

)
∩Ac

n =
n−1⋃
i=1

(Ai −An) ∩Bi,

the inductive assumption implies

P1(A−An)P2(B) =
n−1∑
i=1

P1(Ai −An)P2(Bi).

Accordingly,

P1(A)P2(B) = P1(A−An)P2(B) + P1(A ∩An)P2(B)

=
n−1∑
i=1

P1(Ai −An)P2(Bi) + P1(A ∩An)P2(B)

=
n−1∑
i=1

P1(Ai)P2(Bi) + P1(A ∩An)P2(B)−
n−1∑
i=1

P1(Ai ∩An)P2(Bi).

Observe now that, if U ∩ V = ∅ with U ∈ F1 and V ∈ F2, then (2) yields
P1(U)P2(V ) = 0. Since (An − A) ∩ Bn = ∅ and An ∩ (Bn − B) = ∅, it follows
that P1(An −A)P2(Bn) = 0 = P1(An)P2(Bn −B). Hence,

P1(A ∩An)P2(B) = P1(A ∩An)P2(B ∩Bn) + P1(A ∩An)P2(B −Bn)

= P1(An)P2(Bn) + P1(A ∩An)P2(B −Bn)

which implies

P1(A)P2(B) =
n∑

i=1

P1(Ai)P2(Bi)+P1(A∩An)P2(B−Bn)−
n−1∑
i=1

P1(Ai∩An)P2(Bi).

Finally, since Ai ∩Bi ∩An ∩Bn = ∅ for each i < n, one obtains
n−1⋃
i=1

(Ai ∩An) ∩Bi =
n−1⋃
i=1

(Ai ∩An) ∩ (Bi −Bn) = (A ∩An) ∩ (B −Bn).

Therefore, the inductive assumption again implies

P1(A ∩An)P2(B −Bn) =
n−1∑
i=1

P1(Ai ∩An)P2(Bi),

and this concludes the proof. �

Theorem 3.1 is our main result. One of its consequences is next Corollary 3.2,
already used in Example 1.1. See also [19] and Theorem (2.1.4) of [18].

Corollary 3.2. Let Ω be the set of real continuous functions on [0, 1],

X(t, ω) = ω(t), (t, ω) ∈ [0, 1]× Ω

the coordinate process, and A the union of σ(X(t1), . . . , X(tn)) for all n ≥ 1 and
t1, . . . , tn ∈ [0, 1]. Fix an elastic functional Y on Ω, a f.a.p. α on A and a f.a.p.
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β on B(R). (The definition of elastic functional has been given in Example 1.1).
Then, there is a f.a.p. P on P(Ω) satisfying

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) = α(A)β(B)

whenever A ∈ A and B ∈ B(R).

Proof. Let F1 = A, P1 = α and F2 = σ(Y ). Fix I, J ∈ B(R). Since Y (Ω) = R (by
elasticity), {Y ∈ I} = {Y ∈ J} implies I = J and {Y ∈ I} ∩ {Y ∈ J} = ∅ implies
I ∩ J = ∅. Thus, a f.a.p. P2 on F2 can be defined as P2(Y ∈ I) = β(I), I ∈ B(R).
By Theorem 3.1, it suffices to prove condition (2). In obvious notation, let A∩B =
A′ ∩ B′ where A = {ω : (ω(t1), . . . , ω(tn)) ∈ D}, A′ = {ω : (ω(s1), . . . , ω(sm)) ∈
D′}, B = {ω : Y (ω) ∈ I} and B′ = {ω : Y (ω) ∈ I ′}. It can be assumed m = n,
si = ti for each i, and t1, . . . , tn all distinct. If one of D,D′, I, I ′ is empty, say
D = ∅, then A′ ∩ B′ = A ∩ B = ∅, and elasticity of Y yields D′ = ∅ or I ′ = ∅.
Hence, P1(A)P2(B) = 0 = P1(A′)P2(B′). Suppose now that D,D′, I, I ′ 6= ∅. If
D 6= D′, say D −D′ 6= ∅, elasticity of Y implies (ω(t1), . . . , ω(tn)) ∈ D −D′ and
Y (ω) ∈ I for some ω ∈ Ω, which is a contradiction. Assuming I 6= I ′ yields a similar
contradiction. Therefore, D = D′ and I = I ′, that is, A = A′ and B = B′. �

We close this section with a result needed in Section 4. It improves Proposition
8 of [3].

Theorem 3.3. Let P be a f.a.p. on a field F on Ω and µ a f.a.p. on a field G on
T , where T is any set. Fix H ⊂ Ω and a map X : Ω → T . Then, there is a f.a.p.
Q on P(Ω) such that

Q = P on F , Q(H) = 1, Q(X ∈ B) = µ(B) for all B ∈ G

if and only if

µ(B) ≤ P ∗({X ∈ B} ∩H
)

for all B ∈ G. (4)

Proof. Suppose (4) holds. Given ε > 0, one has µ∗(X(H)) + ε > µ(B) for some
B ∈ G with B ⊃ X(H). Since {X ∈ B} ⊃ H, condition (4) yields

µ∗(X(H)) + ε > µ(B) = 1− µ(Bc) ≥ 1− P ∗({X ∈ Bc} ∩H
)

= P∗
(
{X ∈ B} ∪Hc

)
≥ P∗(H ∪Hc) = P (Ω) = 1.

Hence µ∗(X(H)) = 1, so that µ can be extended to a f.a.p. λ on P(T ) such
that λ(X(H)) = 1. If {X ∈ B1} ∩H = {X ∈ B2} ∩H for some B1, B2 ∈ G, then
B1∩X(H) = B2∩X(H) and thus µ(B1) = λ(B1∩X(H)) = λ(B2∩X(H)) = µ(B2).
Therefore, one can define P0({X ∈ B} ∩ H) = µ(B) for all B ∈ G, and P0 is a
f.a.p. on the field G0 = {{X ∈ B} ∩ H : B ∈ G} of subsets of H. Define further
G1 = {C ⊂ Ω : C ∩H ∈ G0} and P1(C) = P0(C ∩H) for C ∈ G1. Fix C ∈ G1 and
A ∈ F with C ⊂ A. Since P1(H) = 1 and C ∩H = {X ∈ B} ∩H for some B ∈ G,
condition (4) implies

P1(C) = P1(C ∩H) = µ(B) ≤ P ∗({X ∈ B} ∩H
)
≤ P (A).

By Theorem 3.6.1 of [5], there exists a f.a.p. Q on P(Ω) extending both P and P1.
This concludes the proof of the “if” part while the “only if” part is trivial. �
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4. Convergence results

In this section, S is a metric space, Xn and X are S-valued maps on Ω,
n = 1, 2, . . ., and P is a f.a.p. on the field F =

⋃
n σ(X1, . . . , Xn) of finite di-

mensional sets for the sequence (Xn).
Motivations for the next result have been given in Section 1.

Theorem 4.1. Suppose Xn converges in distribution (to some f.a.p. on B(S)) and
H ⊂ Ω is any subset. In order that Q(H) = 1 and Xn

d→ X under Q, for some
f.a.p. Q on P(Ω) extending P , it is enough that

lim
n

P (Xn ∈ B) ≤ P ∗({X ∈ B} ∩H
)

whenever B ∈ U and the limit exists

where U denotes the field generated by the open subsets of S.

Proof. Since Xn converges in distribution, there is a f.a.p. µ on B(S), regular on
open sets, such that Xn converges to µ in distribution (cf. Subsection 2.2). Let
G = {B ∈ U : µ(∂B) = 0}. Then,

µ(B) = lim
n

P (Xn ∈ B) ≤ P ∗({X ∈ B} ∩H
)

for all B ∈ G

where the equality depends on µ being regular on open sets. By Theorem 3.3
(applied to T = S and µ|G), some extension Q of P meets Q(H) = 1 and
Q(X ∈ B) = µ(B) for all B ∈ G. It follows that

EQf(X) = µ(f) = lim
n

EP f(Xn) for all f ∈ Cb(S),

where the first equality depends on Q ◦X−1 = µ on G while the second is due to
Xn converges to µ in distribution. �

As an example, suppose H = Ω and Xn → X pointwise. Then, roughly speaking,
X is ”logically independent” of (X1, . . . , Xn) for every fixed n. Thus, since F
contains finite dimensional sets for (Xn) only, it is not unusual that P ∗(X ∈ B) = 1
for all B ∈ U with B 6= ∅. In a sense, this happens in Example 1.1 of Section 1.
In all these situations, Theorem 4.1 applies as far as Xn converges in distribution.
Analogous considerations can be repeated when H = {ω : Xn(ω) converges} and
X = limn Xn on H, provided P ∗(H) = 1.

In Theorem 4.1, Xn is assumed to converge in distribution. At least in principle,
this can be checked via the following general criterion, whose first part is inspired
by Proposition 7 of [3].

Theorem 4.2. Let (µn) be a sequence of f.a.p.’s on B(S). Then µn → µ weakly,
for some f.a.p. µ on B(S), if and only if, for each finite collection F1, . . . , Fk ⊂ S
of closed sets, there is a f.a.p. γ on B(S) satisfying

lim sup
n

µn(Fi) ≤ γ(Fi) for i = 1, . . . , k. (5)

Moreover, under (5), µ can be taken to be σ-additive provided infinitely many µn

are σ-additive.

Proof. If µn → ν weakly for some ν, one also has µn → µ weakly for some µ regular
on open sets, and thus (5) holds with γ = µ (cf. Subsection 2.2). Conversely,
suppose (5) holds. Let C be the class of closed subsets of S and

RF = {γ : γ is a f.a.p. on B(S) and lim sup
n

µn(F ) ≤ γ(F )}, F ∈ C.
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It is enough proving that
⋂

F∈CRF 6= ∅. Let M be the space of [0, 1]-valued
functions on B(S), equipped with product topology. Then, M is compact, RF is
closed in M , and, by assumption, {RF : F ∈ C} has the finite intersection property.
Hence,

⋂
F∈CRF 6= ∅. Finally, suppose (5) holds and there is a subsequence (nj)

such that µnj is σ-additive for each j. By (5), µn → ν weakly for some ν, so that
limj µnj

(f) exists for each f ∈ Cb(S). Since each µnj
is σ-additive, Alexandrov’s

theorem implies µnj
→ µ weakly for some σ-additive f.a.p. µ on B(S); see [1] and

[15]. Therefore, limn µn(f) = limj µnj
(f) = µ(f) for all f ∈ Cb(S). �

The classical portmanteau theorem states that, if µ is regular on open sets, then
µn → µ weakly if and only if lim supn µn(F ) ≤ µ(F ) for all closed F ⊂ S. Instead,
Theorem 4.2 does not require µ to be specified in advance. Furthermore, it is
enough considering finite collections of closed sets rather than all closed sets (in
fact, γ may depend on F1, . . . , Fk).

Incidentally, Theorem 4.2 can be useful in the standard setting as well, since
it provides a criterion for deciding whether a sequence of σ-additive f.a.p.’s has a
σ-additive weak limit. We do not know whether such a criterion is already known.

We next investigate the connections between convergence in probability and
convergence in distribution in the coherent framework. Say that Xn converges to
X in probability, written Xn

P→ X, in case limn P ∗(d(Xn, X) > ε
)

= 0 for all ε > 0,
where d denotes the distance on S.

Theorem 4.3. Suppose S is a Polish space and each Xn is tight. If d(Xn, Xm) P→ 0
as n, m → ∞, then Xn converges to µ in distribution for some σ-additive f.a.p. µ

on B(S). Moreover, if Xn
P→ X, then Xn

d→ X under Q, for any f.a.p. Q on P(Ω)
extending P .

Proof. On some probability space (Ω0,F0, P0), there is a sequence (Zn) of S-valued
random variables satisfying the conclusions of Theorem 2.1. Let

I = {ε > 0 : P0

(
d(Zn, Zm) = ε

)
> 0 for some n, m}.

By Theorem 2.1, P0

(
d(Zn, Zm) > ε

)
= P

(
d(Xn, Xm) > ε

)
for all n, m and all

ε > 0 such that ε /∈ I. Since I is countable and d(Xn, Xm) P→ 0, it follows that
d(Zn, Zm) P0→ 0. Since S is Polish, Zn

P0→ Z for some S-valued random variable Z
on (Ω0,F0, P0). Define µ(B) = P0(Z ∈ B) for all B ∈ B(S). Then, µ is σ-additive
and Theorem 2.1 yields

EP f(Xn) = EP0f(Zn) → µ(f) for all f ∈ Cb(S).

Finally, suppose Xn
P→ X and fix a closed set F ⊂ S. Since µ is regular on open

sets (it is in fact σ-additive), given ε > 0 one obtains

P ∗(X ∈ F ) ≤ lim sup
n

P ∗(X ∈ F, d(Xn, X) ≤ ε
)

≤ lim sup
n

P
(
d(Xn, F ) ≤ ε

)
≤ µ{x ∈ S : d(x, F ) ≤ ε}.

By σ-additivity of µ, one also obtains P ∗(X ∈ F ) ≤ µ(F ). Thus, for each B ∈ B(S),
taking complements yields

µ(B0) ≤ P∗(X ∈ B) ≤ P ∗(X ∈ B) ≤ µ(B) (6)
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where B0 and B stand for the interior and the closure of B. Let Q be a f.a.p. on
P(Ω) extending P . By (6), Q(X ∈ B) = µ(B) whenever B ∈ B(S) and µ(∂B) = 0,
and this routinely implies EQf(X) = µ(f) for all f ∈ Cb(S). �

Example 4.4. (Empirical measures) Let (ξn) be a sequence of real valued

functions on Ω,
∼
P a f.a.p. on

∼
F =

⋃
n σ(ξ1, . . . , ξn) and

Xn(B) =
1
n

n∑
i=1

IB(ξi), B ∈ B(R)

the n-th empirical measure. Define S to be the set of σ-additive f.a.p.’s on B(R),
equipped with the topology of weak convergence, and suppose

lim
a→∞

∼
P (|ξn| > a) = 0 for all n, (7)

∼
P (ξi = ξj) = 0 for all i 6= j, (8)

∼
P

(
ξj1 < ξj2 < . . . < ξjn

)
=

∼
P

(
ξ1 < ξ2 < . . . < ξn

)
(9)

for all n and all permutations (j1, . . . , jn) of (1, . . . , n).

Then, S is Polish and, by (7), every Xn is tight. By Theorem 4.4 of [4] (see also
Theorem 4.2 of [4]), conditions (8)-(9) yield

sup
t

∣∣∣Xn(−∞, t]−Xm(−∞, t]
∣∣∣ P→ 0

where P =
∼
P |F . Thus d(Xn, Xm) P→ 0, where d is Levy distance on S, and Theorem

4.3 implies that Xn converges in distribution to a σ-additive f.a.p. µ on B(S).

Assuming Xn tight for each n is crucial in Theorem 4.3. Otherwise, Xn can fail
to converge in distribution, even though Xn

P→ X.

Example 4.5. Let X : Ω → R be a map and P a f.a.p. on σ(X) such that
P (X ∈ N) = P (X > n) = 1 for all n. Define S = R and Xn = X or
Xn = X + 1

X according to n is even or odd. Then, Xn
P→ X but Xn fails to

converge in distribution. In fact, since {n + 1
n : n ≥ 2} and {2, 3, . . .} are closed

and disjoint, some f ∈ Cb(R) meets f(n + 1
n ) = 1 and f(n) = 0 for all n ≥ 2, so

that EP f(Xn) does not converge to a limit.

In the spirit of Theorems 4.1 and 4.3, one can ask whether Xn
Q→ X for some

extension Q of P , provided Xn → X pointwise, d(Xn, Xm) P→ 0 and each Xn is
tight. The answer is generally no, and this does not depend only on the possible
non completeness of the space L1(P ).

Example 4.6. Let S = R, Ω = N, Xn = I{1,...,n}, X = 1 and P a f.a.p. on F
satisfying P{n} = 0 for all n. Then, Xn → X pointwise, each Xn is tight, and
F =

⋃
n σ(X1, . . . , Xn) is the field of finite co-finite subsets of N. Since P is 0-1-

valued, L1(P ) is complete. However, Xn
P→ 0, and thus Xn−Xm

P→ 0 but Xn
Q→ 1

fails to be true for every extension Q of P .
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We close with a brief remark. In the coherent framework, the limit in distribution
(provided it exists) is not unique, even if f.a.p.’s are restricted to the field generated
by the open subsets of S. Two types of limit should be mentioned. One is a f.a.p.
regular on open sets, while the other is

µπ(·) =
∫

P (Xn ∈ ·)π(dn)

where π is a f.a.p. on P(N) satisfying π{n} = 0 for all n. Indeed, µπ has the nice
property that µπ(B) = limn P (Xn ∈ B) whenever B ∈ B(S) and the limit exists.
Sometimes, this fact is useful for modelling real situations. A well known example
is S = Q (the set of rational numbers) and µπ such that µπ

(
[0, t] ∩ Q

)
= t for all

0 ≤ t ≤ 1. Another example is in [2]: For a suitable choice of S and Xn, under µπ,
a pathwise (Lebesgue-Stieltjes) integral has the same distribution of an Ito integral
(at least on a certain class of events).
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