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Abstract. In various frameworks, to assess the joint distribution of a k-

dimensional random vector X = (X1, . . . , Xk), one selects some putative

conditional distributions Q1, . . . , Qk. Each Qi is regarded as a possible (or
putative) conditional distribution for Xi given (X1, . . . , Xi−1, Xi+1, . . . , Xk).

The Qi are compatible if there is a joint distribution P for X with condition-

als Q1, . . . , Qk. Three types of compatibility results are given in this paper.
First, the Xi are assumed to take values in compact subsets of R. Second, the

Qi are supposed to have densities with respect to reference measures. Third,
a stronger form of compatibility is investigated. The law P with condition-

als Q1, . . . , Qk is requested to belong to some given class P0 of distributions.

Two choices for P0 are considered, that is, P0 = {exchangeable laws} and
P0 = {laws with identical univariate marginals}.

1. Introduction

Let I be a countable index set and, for each i ∈ I, let Xi be a real random
variable. Denote by P the set of all probability distributions for the process

X = (Xi : i ∈ I).

Also, for each P ∈ P and H ⊂ I (with H 6= ∅ and H 6= I), denote by PH the
conditional distribution of

(Xi : i ∈ H) given (Xi : i ∈ I \H) under P.
PH is determined by P (up to P -null sets). In fact, to get PH , the obvious

strategy is to first select P ∈ P and then calculate PH . Sometimes, however, this
procedure is reverted. Let H be a class of subsets of I (all different from ∅ and I).
One first selects a collection {QH : H ∈ H} of putative conditional distributions,
and then looks for some P ∈ P inducing the QH as conditional distributions, in
the sense that

(1) QH = PH , a.s. with respect to P, for all H ∈ H.
But such a P can fail to exist. Accordingly, a set {QH : H ∈ H} of putative
conditional distributions is said to be compatible, or consistent, if there exists P ∈ P
satisfying condition (1). (See Section 2 for formal definitions).

An obvious version of the previous definition is the following. Fix P0 ⊂ P. For
instance, P0 could be the set of those P ∈ P which make X exchangeable, or
else which are absolutely continuous with respect to some reference measure. A
natural question is whether there is P ∈ P0 with given conditional distributions
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{QH : H ∈ H}. Thus, a set {QH : H ∈ H} of putative conditional distributions is
P0-compatible if condition (1) holds for some P ∈ P0.

To better frame the problem, we next give three examples where compatibility
issues arise.

Example 1. (Gibbs measures). Think of I as a lattice and of Xi as the spin at
site i ∈ I. The equilibrium distribution of a finite system of statistical physics is
generally believed to be the Boltzmann-Gibbs distribution. Thus, when I is finite,
one can let

P (dx) = a exp
{
− b

∑
H⊂I

UH(x)
}
λ(dx)

where a, b > 0 are constants and λ is a suitable reference measure. Roughly
speaking, UH(x) quantifies the energy contribution of the subsystem (Xi : i ∈ H)
at point x. This simple scheme breaks down when I is countably infinite. However,
for each finite H ⊂ I, the Boltzmann-Gibbs distribution can still be attached to
(Xi : i ∈ H) conditionally on (Xi : i ∈ I \ H). If QH denotes such Boltzmann-
Gibbs distribution, we thus obtain a family {QH : H finite} of putative conditional
distributions. But a law P ∈ P having the QH as conditional distributions can fail
to exist. So, it is crucial to decide whether {QH : H finite} is compatible. See [10].

Example 2. (Gibbs sampling, Multiple imputation, Markov random fields).
Let I = {1, . . . , k} and Hi = {i}. For the Gibbs sampler to apply, one needs

PHi(·) = P
(
Xi ∈ · | X1, . . . , Xi−1, Xi+1, . . . , Xk

)
for all i ∈ I. Usually, the PHi

are obtained from a given P ∈ P. But sometimes P is
not assessed. Rather, one selects a collection {QHi

: i ∈ I} of putative conditional
distributions and use QHi

in the place of PHi
. Formally, this procedure makes

sense only if {QHi : i ∈ I} is compatible. Essentially the same situation occurs
in missing data imputation and spatial data modeling. Again, P is not explicitly
assessed and X = (X1, . . . , Xk) is modeled by some collection {QHi

: i ∈ I} of
putative conditional distributions. As a (remarkable) particular case, in Markov
random fields, each QHi

depends only on (Xj : j ∈ Ni), where Ni denotes the set
of neighbors of i. See [5], [7], [11], [13], [15], [16] and references therein.

We point out that Gibbs sampling, multiple imputation and spatial data mod-
eling are different statistical issues, but they share the structure of the putative
conditional distributions {QHi

: i ∈ I}. From the point of view of compatibility,
hence, they can be unified.

Example 3. (Bayesian inference). Let X = (X1, . . . , Xn, . . . , Xm). Think of
Y = (X1, . . . , Xn) as the data and of Θ = (Xn+1, . . . , Xm) as a random parameter.
As usual, a prior is a marginal distribution for Θ, a statistical model a conditional
distribution for Y given Θ, and a posterior a conditional distribution for Θ given
Y . The statistical model, say QY , is supposed to be assigned. Then, the standard
Bayes scheme is to select a prior µ, to obtain the joint distribution of (Y,Θ), and to
calculate (or to approximate) the posterior. To assess µ is typically very arduous.
Sometimes, it may be convenient to avoid the choice of µ and to assign directly a
putative conditional distribution QΘ, to be viewed as the posterior.

The alternative Bayes scheme sketched above is not unusual. Suppose QΘ is the
formal posterior of an improper prior, or it is obtained by some empirical Bayes
method, or else it is a fiducial distribution. In all these cases, QΘ is assessed without
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explicitly selecting any (proper) prior. Such a QΘ may look reasonable or not (there
are indeed different opinions). But a basic question is whether QΘ is the actual
posterior of QY and some (proper) prior µ, or equivalently, whether QY and QΘ

are compatible.

Compatibility results, if usable, have significant practical implications. In fact, in
frameworks such as Examples 1 and 2 (Example 3 is a little more problematic), the
statistical procedures based on {QH : H ∈ H} request compatibility. If {QH : H ∈
H} fails to be compatible, such procedures are questionable, or perhaps they do not
make sense at all. In any case, a preliminary test of compatibility is fundamental.

Example 1 has been largely investigated (see e.g. [10]) while Example 3 reduces
to Example 2 with k = 2 by taking X1 and X2 as random vectors of suitable
dimensions. Thus, in this paper, we focus on the framework of Example 2.

In the sequel, we let

I = {1, . . . , k} and X = (X1, . . . , Xk)

for some k ≥ 2. We also let Hi = {i} and we write

Qi = Q{i} for i = 1, . . . , k.

Accordingly, Qi is to be regarded as the (putative) conditional distribution of Xi

given (X1, . . . , Xi−1, Xi+1, . . . , Xk).
Three different types of compatibility results are provided. Most of them hold

for arbitrary k, even if they take a nicer form for small k.
In Section 3, each Xi (or each Xi but one) takes values in a compact subset of the

real line. Then, necessary and sufficient conditions for compatibility are obtained
as a consequence of a general result in [4].

In Section 4, as in most real problems, Q1, . . . , Qk have densities with respect
to reference measures. Under this assumption, compatibility is characterized in
Theorem 10. Such a result improves and extends to any k a well known criterion
which holds for k = 2. In particular, no positivity assumption on the conditional
densities is requested. See [1], [2], [5], [8], [12], [13], [14], [17]. See also Example 9
and the remarks after Theorem 10.

In Section 5, P0-compatibility is investigated under two different choices for P0.
We let P0 = E and P0 = I where

E = {P ∈ P : X exchangeable under P} and

I = {P ∈ P : X1, . . . , Xk identically distributed under P}.

Note that E ⊂ I . Among other things it is shown that, if Q1 = . . . = Qk and Q1

meets a certain invariance condition, then Q1, . . . , Qk are E-compatible if and only
if they are compatible (Theorem 12). Moreover, if k = 2 and X1, X2 take values
in a countable set X , a necessary and sufficient condition for I-compatibility is
provided (Theorem 17). The latter condition becomes quite simple and practically
useful when X is finite. In this case, if the (finitely many) values of Q1 and Q2 are
uploaded into a computer, one obtains an on-line, definitive answer on whether Q1

and Q2 are I-compatible or not.
Finally, some examples are given, mainly in Section 5. Suppose that, according

to Qi, the conditional distribution of Xi given (X1, . . . , Xi−1, Xi+1, . . . , Xk) is
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N
(
α

∑
j 6=iXj

k − 1
, 1
)

for some α ∈ R and all i = 1, . . . , k.

Then, those values of α which make Q1, . . . , Qk compatible can be exactly deter-
mined. If k = 3, for instance, it turns out that Q1, Q2, Q3 are compatible if and only
if α ∈ (−2, 1). In addition, Q1, Q2, Q3 are actually E-compatible for α ∈ (−2, 1).
As another example, suppose k = 2 and Q1 is the kernel corresponding to the sym-
metric random walk on the integers. According to Q1, thus, X1 takes values j − 1
and j + 1 with equal probability 1/2 conditionally on X2 = j. Then, there is no
putative conditional distribution Q2 which is I-compatible with such Q1.

2. Notation and basic definitions

Since we are only concerned with distributions (both conditional and uncondi-
tional) the Xi can be taken to be coordinate random variables. Thus, for each i,
we fix a Borel set Ωi ⊂ R to be regarded as the collection of “admissible” values
for Xi (possibly, Ωi = R). We define Ω =

∏k
j=1 Ωj and we take Xi to be the i-th

coordinate map on Ω. We define also

Yi = (X1, . . . , Xi−1, Xi+1, . . . , Xk) and Yi =
∏
j 6=i

Ωj .

The following notations will be used. If i ∈ I, x ∈ Ωi and y ∈ Yi, then (x, y)
denotes that point ω ∈ Ω such that Xi(ω) = x and Yi(ω) = y. For any topological
space S, we let B(S) be the Borel σ-field on S. If µ and ν are measures on the
same σ-field, µ� ν means that µ(A) = 0 whenever A is measurable and ν(A) = 0,
and µ ∼ ν stands for µ� ν and ν � µ.

A probability distribution for X = (X1, . . . , Xk) is a probability measure on
B(Ω). Let P denote the set of all such probability measures. Fix P ∈ P and i ∈ I.
The conditional distribution of Xi given Yi, under P , is a function Pi of the pair
(y,A), where y ∈ Yi and A ∈ B(Ωi), satisfying

(i) A 7→ Pi(y,A) is a probability measure for fixed y;

(ii) y 7→ Pi(y,A) is a Borel measurable function for fixed A;

(iii) EP

{
IB(Yi)Pi(Yi, A)

}
= P (Xi ∈ A, Yi ∈ B) for A ∈ B(Ωi) and B ∈ B(Yi).

Such a Pi is P -essentially unique. Clearly, Pi(y,A) should be regarded as the
conditional probability of {Xi ∈ A} given that Yi = y under P .

A putative conditional distribution, or a kernel, is a function Qi with the same
domain as Pi, satisfying conditions (i)-(ii) but not necessarily (iii). In the sequel,

Q1, . . . , Qk are given kernels.

We say that Q1, . . . , Qk are compatible if there is P ∈ P such that

Qi(y, ·) = Pi(y, ·)

for all i ∈ I and P -almost all y ∈ Yi. In addition, given P0 ⊂ P, we say that
Q1, . . . , Qk are P0-compatible if such a condition holds for some P ∈ P0.
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3. Compactly supported distributions

3.1. Two compatibility results. Some general compatibility criterions have been
obtained in [4]. While quite abstract, such criterions simplify when adapted to the
framework of this paper. All results in this section are actually proved by applying
Theorem 6 of [4] to the present setting.

Let L be a set of real bounded Borel functions on Ω. We assume that L is both
a linear space and a determining class. By a determining class we mean that, given
any P ∈ P and Q ∈ P,

EP (U) = EQ(U) for all U ∈ L ⇐⇒ P = Q.

For instance, L could be the set of real bounded continuous functions on Ω.
To state our first result, we let

E
(
U | Yi = y

)
=
∫

Ωi

U(x, y)Qi(y, dx) for all U ∈ L, i ∈ I and y ∈ Yi.

Theorem 4. Suppose that, for all U ∈ L and i ∈ I,

Ωi is compact and y 7→ E
(
U | Yi = y

)
is a continuous function.

Then, Q1, . . . , Qk are compatible if and only if

sup
ω∈Ω

k∑
i=2

{
E
(
Ui | Yi = Yi(ω)

)
− E

(
Ui | Y1 = Y1(ω)

)}
≥ 0(2)

for all U2, . . . , Uk ∈ L.

Proof. In the notation of [4], define B = B(Ω) and Ai = σ(Yi). Also, for each ω ∈ Ω
and i ∈ I, take µi(ω) to be the only probability on B such that

µi(ω)
(
Xi ∈ A, Yi ∈ B

)
= IB

(
Yi(ω)

)
Qi
(
Yi(ω), A

)
whenever A ∈ B(Ωi) and B ∈ B(Yi). Then, for each bounded Borel function
U : Ω→ R, one obtains∫

Ω

U(v)µi(ω)(dv) =
∫

Ωi

U(x, Yi(ω))Qi
(
Yi(ω), dx

)
= E

(
U | Yi = Yi(ω)

)
.

Next, let H be the linear space generated by all functions

ω 7→ E
(
U | Yi = Yi(ω)

)
− E

(
U | Y1 = Y1(ω)

)
for U ∈ L and i = 2, . . . , k. Since L is a linear space, each h ∈ H can be written as

h(ω) =
k∑
i=2

{
E
(
Ui | Yi = Yi(ω)

)
− E

(
Ui | Y1 = Y1(ω)

)}
(3)

for suitable U2, . . . , Uk ∈ L. Thus, under (2), compatibility of Q1, . . . , Qk fol-
lows from Theorem 6-(a) of [4]. This proves the “if” part. Conversely, suppose
Q1, . . . , Qk are compatible. Take U2, . . . , Uk ∈ L and define h according to (3). By
compatibility, there is P ∈ P such that E

(
Ui | Yi = Yi(·)

)
and E

(
Ui | Y1 = Y1(·)

)
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are both conditional expectations under P for all i. It follows that

sup
ω∈Ω

h(ω) ≥ EP (h)

=
k∑
i=2

EP

{
E
(
Ui | Yi = Yi(·)

)
− E

(
Ui | Y1 = Y1(·)

)}
=

k∑
i=2

{
EP (Ui)− EP (Ui)

}
= 0.

Hence, condition (2) holds. �

Under the assumptions of Theorem 4, the sup in condition (2) is attained. Thus,
condition (2) is equivalent to: for all U2, . . . , Uk ∈ L, there is ω ∈ Ω such that

k∑
i=2

E
(
Ui | Yi = Yi(ω)

)
≥

k∑
i=2

E
(
Ui | Y1 = Y1(ω)

)
.

For instance, let k = 2 and let (x, y) denote a point of Ω1 × Ω2 = Ω. Since
Y2 = X1 and Y1 = X2, condition (2) reduces to

for each U ∈ L, there is (x, y) ∈ Ω such that

E
(
U | X1 = x

)
≥ E

(
U | X2 = y

)
.

Similarly, if k = 3 and (x, y, z) denotes a point of Ω1 ×Ω2 ×Ω3 = Ω, condition (2)
can be written as

for all U, V ∈ L, there is (x, y, z) ∈ Ω such that

E
(
U | X1 = x,X3 = z

)
+ E

(
V | X1 = x,X2 = y

)
≥ E

(
U + V | X2 = y,X3 = z

)
.

For Theorem 4 to apply, each Ωi has to be compact. This is certainly a strong
restriction, which rules out various interesting applications. However, the compact-
ness assumption can be weakened at the price of replacing (2) with a more involved
condition. We give an explicit statement for k = 2 only.

Theorem 5. Suppose k = 2, Ω1 is compact, and

x 7→ E
(
U | X1 = x

)
and x 7→

∫
Ω2

E
(
U | X2 = y

)
Q2(x, dy)

are continuous functions on Ω1 for all U ∈ L. Then, Q1 and Q2 are compatible if
and only if

sup
x∈Ω1

{
E
(
U | X1 = x

)
−
∫

Ω2

E
(
U | X2 = y

)
Q2(x, dy)

}
≥ 0

for all U ∈ L.

Proof. We just give a sketch of the proof. The “only if” part can be proved as in
Theorem 4. As to the “if” part, in the notation of [4], take j = 2 and φ = Y2 = X1.
Define also Ai, µi and B as in the proof of Theorem 4. Now, proceed as in such a
proof but apply Theorem 6-(b) of [4] instead of Theorem 6-(a). �
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3.2. Examples. The possible applications of Theorems 4 and 5 depend on the
choice of L. We just give two examples for k = 2. Recall that Y1 = X2 and
Y2 = X1 when k = 2.

Example 6. (Putative conditional moments). Suppose Ω1 and Ω2 are com-
pact and

x 7→ E
(
Xj

2 | X1 = x
)

and y 7→ E
(
Xj

1 | X2 = y
)

are continuous functions for all j ≥ 1. Here, Xj
2 and Xj

1 are the j-th powers of X2

and X1. Then, L can be taken to be the class of polynomials on Ω. Practically,
this amounts to testing compatibility of Q1 and Q2 via conditional moments. Let

U(x, y) =
∑

0≤r,s≤n

c(r, s)xr ys

where (x, y) ∈ Ω, n ≥ 1 and the c(r, s) are real coefficients. Define

h(x, y) = E
(
U | X1 = x

)
− E

(
U | X2 = y

)
=

∑
0≤r,s≤n

c(r, s)
{
xr E

(
Xs

2 | X1 = x
)
− ysE

(
Xr

1 | X2 = y
)}
.

By Theorem 4, Q1 and Q2 are compatible if and only if suph ≥ 0 for every n ≥ 1
and every choice of the constants c(r, s).

Example 7. (Discrete random variables). Suppose Ω1 is finite and Ω2 count-
ably infinite. Let I(a, b) denote the indicator of the point (a, b) ∈ Ω. Take L to be
the class of all functions U on Ω of the type

U =
∑
a∈Ω1

∑
b∈B

c(a, b) I(a, b)

where B ⊂ Ω2 is a finite subset and the c(a, b) are real constants. Writing Qi(r, s)
instead of Qi(r, {s}), one obtains

h(x) := E
(
U | X1 = x

)
−
∫

Ω2

E
(
U | X2 = y

)
Q2(x, dy)

=
∑
b∈B

c(x, b)Q2(x, b)−
∑
a∈Ω1

∑
b∈B

c(a, b)Q1(b, a)Q2(x, b)

for all x ∈ Ω1. By Theorem 5, Q1 and Q2 are compatible if and only if maxh ≥ 0
for all finite B ⊂ Ω2 and all choices of the constants c(a, b). Suppose now that Ω1

and Ω2 are both finite. Then, L can be taken as above with B = Ω2 and Theorem
5 can be replaced by Theorem 4. Define in fact

h(x, y) = E
(
U | X1 = x

)
− E

(
U | X2 = y

)
=
∑
b∈Ω2

c(x, b)Q2(x, b)−
∑
a∈Ω1

c(a, y)Q1(y, a)

for all (x, y) ∈ Ω. By Theorem 4, Q1 and Q2 are compatible if and only if maxh ≥ 0
for all choices of the constants c(a, b).

One drawback of Theorem 4 is that condition (2) is to be checked for infinitely
many choices of elements of L. For instance, in Example 7 with Ω1 and Ω2 finite,
one has to verify whether maxh ≥ 0 for every choice of the constants c(a, b). This
fact reduces the practical scope of Theorem 4. The same is true for Theorem 5.
However, Theorems 4-5 are of possible theoretical interest. Furthermore, since they
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give necessary and sufficient conditions, they can be useful to quickly prove non
compatibility. As a trivial example, suppose Ω1 = Ω2 = {1, 2, 3} and

Q1 =

 1/2 ∗ ∗
2/3 ∗ ∗
2/5 1/5 2/5

 , Q2 =

 1/7 2/7 4/7
∗ ∗ 1/3
∗ ∗ 1/4

 .

Such Q1 and Q2 are not compatible, whatever the ∗ are specified. This can be seen
by restricting to c(a, b) ∈ {0, 1} for all a, b ∈ {1, 2, 3}. For instance, one obtains
h(x, y) < 0 for all x, y ∈ {1, 2, 3} in case c(1, 1) = c(1, 2) = c(2, 3) = c(3, 3) = 1
and c(a, b) = 0 otherwise.

4. The dominated case

In Theorems 4 and 5, Q1, . . . , Qk are arbitrary kernels. In almost all applications,
however, each Qi has a density with respect to some reference measure λi. In this
case, simpler results are available.

For each i ∈ I, let λi denote a σ-finite measure on B(Ωi). For instance, some Ωi
could be countable with λi the counting measure and some other Ωj could be an
interval with λj the Lebesgue measure. In this section, it is assumed that

Qi(y,A) =
∫
A

fi(x | y)λi(dx)(4)

for all i ∈ I, y ∈ Yi and A ∈ B(Ωi). Here, fi is a putative conditional density, that
is, (x, y) 7→ fi(x | y) is a non-negative Borel function on Ω satisfying∫

Ωi

fi(x | y)λi(dx) = 1 for each y ∈ Yi.

Under (4), we will say indifferently that f1, . . . , fk are compatible or that Q1, . . . , Qk
are compatible.

We first report a well known result which holds for k = 2; see e.g. [1]-[2] and
references therein. Let

λ = λ1 × . . .× λk
denote the product measure on B(Ω).

Theorem 8. Suppose k = 2 and condition (4) holds. Then, f1 and f2 are compati-
ble if and only if there are two Borel functions u : Ω1 → [0,∞) and v : Ω2 → [0,∞)
such that

f1(x | y) = f2(y | x)u(x) v(y),

λ-a.e. on the set {(x, y) : u(x) > 0, v(y) > 0},

and ∫
Ω

I{v>0}(y) f2(y | x)u(x)λ(dx, dy) =
∫

Ω1

u dλ1 =
∫
{v>0}

1/v dλ2 = 1.(5)

Our next goal is extending Theorem 8 from k = 2 to an arbitrary k ≥ 2. Before
doing this, however, a remark is in order.

To our knowledge, no version of Theorem 8 includes condition (5). But some
form of (5) is necessary to characterize compatibility. In fact, some of the existing
versions of Theorem 8, as they stand, can give rise to misunderstandings.
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Example 9. According to Theorems 3.1 and 4.1 of [1] and Theorem 1 of [2],
f1 and f2 are compatible if and only if

{f1 > 0} = {f2 > 0} = N (say) and

f1(x | y)
f2(y | x)

= u(x) v(y) for (x, y) ∈ N

for some u, v such that
∫

Ω1
u dλ1 < ∞. Actually, such conditions suffice for com-

patibility of f1 and f2, but they are not necessary (even if they are asked λ-a.e.
only). For instance, take Ω1 = Ω2 = [0, 1], λ1 = λ2 = Lebesgue measure, and

f1(x | y) = I[0, 1/2)(y) + 2 IS(x, y),

f2(y | x) = I[0, 1/2)(x) + 2 IS(x, y),

where S = [1/2, 1]× [1/2, 1]. Let f be the uniform density on S, that is, f(x, y) =
4 IS(x, y). Then, f1 and f2 are compatible, for they agree on S with the conditional
densities induced by f . Nevertheless,

λ
(
f1 = 0, f2 > 0

)
= λ

(
f1 > 0, f2 = 0

)
= 1/4.

In the next result, λ∗i denotes the product measure

λ∗i = λ1 × . . .× λi−1 × λi+1 × . . .× λk
on B(Yi). Recall that, according to Section 2, Xi is the i-th coordinate map on
Ω =

∏k
j=1 Ωj and Yi = (X1, . . . , Xi−1, Xi+1, . . . , Xk).

Theorem 10. Suppose condition (4) holds. Then, f1, . . . , fk are compatible if and
only if there are Borel functions

ui : Yi → [0,∞), i ∈ I,
such that, for each i < k,

fi(Xi | Yi) = fk(Xk | Yk)ui(Yi)uk(Yk),(6)

λ-a.e. on the set {ui(Yi) > 0, uk(Yk) > 0},
and ∫

Ω

I{ui>0}(Yi) fk(Xk | Yk)uk(Yk) dλ =
∫
Yk

uk dλ
∗
k =

∫
{ui>0}

1/ui dλ∗i = 1.(7)

Moreover:
(a) If f1, . . . , fk are compatible and P ∈ P has conditional distributions Q1, . . . , Qk,

then P � λ. If, in addition, fi > 0 for all i ∈ I, then P ∼ λ.
(b) If conditions (6)-(7) hold for some u1, . . . , uk, then f = fk(Xk | Yk)uk(Yk)

is a density with respect to λ and f1, . . . , fk are the conditional densities
induced by f .

The proof of Theorem 10 is postponed to a final Appendix while some examples
are given in Section 5. Here, we make a few brief remarks.

For k = 2, Theorem 10 implies Theorem 8 (with u = u2 and v = u1). For k = 3,
if (x, y, z) denotes a point of Ω1 × Ω2 × Ω3 = Ω, condition (6) can be written as

f1(x | y, z) = f3(z | x, y)u1(y, z)u3(x, y) if u1(y, z) > 0 and u3(x, y) > 0,

f2(y | x, z) = f3(z | x, y)u2(x, z)u3(x, y) if u2(x, z) > 0 and u3(x, y) > 0,
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for λ-almost all (x, y, z). Similarly, for condition (7). In general, to investigate
compatibility of f1, . . . , fk, one has to handle 2 (k−1) constraints. Such constraints
reduce to k−1 provided fi > 0 for all i ∈ I and

∫
Yk
uk dλ

∗
k = 1. In fact, the following

result is available.

Corollary 11. Suppose condition (4) holds with fi > 0 for all i ∈ I. Then,
f1, . . . , fk are compatible if and only if there are strictly positive Borel functions
u1, . . . , uk satisfying condition (6) as well as

∫
Yk
uk dλ

∗
k = 1.

Proof. Suppose f1, . . . , fk are compatible. Since fi > 0 for all i ∈ I, points (a)-(b)
of Theorem 10 imply ui(Yi) > 0, λ-a.e., for all i ∈ I. Thus, u1, . . . , uk can be taken
to be strictly positive. Conversely, if ui > 0 for all i ∈ I, condition (7) follows from
condition (6) and

∫
Yk
uk dλ

∗
k = 1. �

Theorem 10 is inspired to Theorem 8, which in turn underlies most results in
compatibility theory. Furthermore, at least for low values of k, Theorem 10 is useful
in real problems. Despite these facts, no explicit version of Theorem 10 has been
stated so far. To our knowledge, the existing results focus on particular cases only
and/or request some positivity condition on f1, . . . , fk. See [1], [2], [5], [8], [12],
[13], [14], [17].

A last note is that Theorem 10 provides information on P0-compatibility as well.
This is apparent if P0 = {P ∈ P : P � λ} or P0 = {P ∈ P : P ∼ λ}, but Theorem
10 may be instrumental also for P0 = {P ∈ P : X exchangeable under P}; see
Subsection 5.1.

5. P0-compatibility

In this section, P0-compatibility is investigated under two different choices for
P0. We let

Ω1 = . . . = Ωk = X for some X ∈ B(R).

As a consequence, Ω = X k and Yi = X k−1 for all i ∈ I.

5.1. Exchangeability. For each n ≥ 1, let Πn denote the set of all permutations
of Xn, that is, those mappings π : Xn → Xn of the form

π(x1, . . . , xn) = (xπ1 , . . . , xπn
) for all (x1, . . . , xn) ∈ Xn,

where (π1, . . . , πn) is a fixed permutation of (1, . . . , n). The random vector
X = (X1, . . . , Xk) is exchangeable if X is distributed as π(X) for all π ∈ Πk.
Let

E = {P ∈ P : X exchangeable under P}.

Exchangeability plays a role in various frameworks where compatibility issues
arise. In Bayesian statistics, observations are usually i.i.d. conditionally on some
random parameter, so that they are actually exchangeable. Or else, in some prob-
lems of spatial statistics, the joint distribution of the random variables associated
to the sites is invariant under permutations of the sites; see e.g. [6] and [9]. Ac-
cordingly, in this subsection, we let P0 = E and we investigate E-compatibility.

If Q1, . . . , Qk are the conditional distributions of some P ∈ E , there is an invari-
ant kernel Q such that Q1 = . . . = Qk = Q, P -a.s.. Here, invariance of Q means
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that

Q
(
π(y), ·

)
= Q(y, ·) for all y ∈ X k−1 and π ∈ Πk−1.(8)

Thus, it makes sense to assume

Q1 = . . . = Qk = Q(9)

for some kernel Q satisfying (8). But conditions (8)-(9) are not enough, even for
compatibility alone. As an example, take k = 2, X = R and Q1 = Q2 = Q, where
Q(y, ·) = N(y, 1) for all y ∈ R. Then, conditions (8)-(9) are trivially true but Q1

and Q2 fail to be compatible; see forthcoming Example 15.
Basing on the previous remarks, a natural question is whether Q1, . . . , Qk are

E-compatible provided they are compatible and conditions (8)-(9) hold. For some
time, we conjectured a negative answer. Instead, the answer is yes.

Theorem 12. Suppose conditions (8)-(9) hold. Then, Q1, . . . , Qk are E-compatible
if and only if they are compatible.

Proof. SupposeQ1, . . . , Qk are compatible and fix P ∈ P with conditionalsQ1, . . . , Qk.
It suffices to prove that, for all i ∈ I and π ∈ Πk,

Q is a version of the conditional distribution of Xi given Yi under P ◦ π−1.(10)

In fact, suppose (10) holds and define

P ∗ =
1
k!

∑
π∈Πk

P ◦ π−1.

By definition, P ∗ ∈ E . Fix i ∈ I. For each π ∈ Πk, let

µ∗(·) = P ∗(Yi ∈ ·) and µπ(·) = P ◦ π−1
(
Yi ∈ ·

)
be the marginal distributions of Yi under P ∗ and P ◦ π−1. By (10),∫

B

Q(y,A)µ∗(dy) =
1
k!

∑
π∈Πk

∫
B

Q(y,A)µπ(dy)

=
1
k!

∑
π∈Πk

P ◦ π−1
(
Xi ∈ A, Yi ∈ B

)
= P ∗

(
Xi ∈ A, Yi ∈ B

)
for all A ∈ B(X ) and B ∈ B(X k−1). Hence, Q is a version of the conditional
distribution of Xi given Yi under P ∗.

It remains to prove condition (10). Since P ◦ π−1 is the distribution of π(X)
under P , it suffices to show that, for all i ∈ I and ψ ∈ Πk−1,

Q is a version of the conditional distribution of Xi given ψ(Yi) under P.

Fix i ∈ I, ψ ∈ Πk−1, and define

µ(·) = P
(
ψ(Yi) ∈ ·

)
and ν(·) = P

(
Yi ∈ ·

)
to be the marginal distributions of ψ(Yi) and Yi under P . Then,

µ ◦ ψ(B) = µ
(
ψ(B)

)
= P

(
ψ(Yi) ∈ ψ(B)

)
= P

(
Yi ∈ B

)
= ν(B)
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for all B ∈ B(X k−1). Thus, µ ◦ ψ = ν. Together with (8), this fact implies∫
B

Q(y,A)µ(dy) =
∫
B

Q
(
ψ−1(y), A

)
µ(dy) =

∫
ψ−1(B)

Q(y,A)µ ◦ ψ(dy)

=
∫
ψ−1(B)

Q(y,A) ν(dy) = P
(
Xi ∈ A, Yi ∈ ψ−1(B)

)
= P

(
Xi ∈ A, ψ(Yi) ∈ B

)
for all A ∈ B(X ) and B ∈ B(X k−1). Hence, Q is a version of the conditional
distribution of Xi given ψ(Yi) under P . This concludes the proof. �

In view of Theorem 12, E-compatibility reduces to compatibility as far as con-
ditions (8)-(9) are satisfied. In turn, in many real problems, compatibility can be
tested via Theorem 10. This provides an usable strategy for checking E-compatibility.
Moreover, under some conditions, Theorem 12 gives a necessary condition for com-
patibility as well.

Corollary 13. Suppose condition (4) holds with

f1 = . . . = fk and λ1 = . . . = λk.

Suppose also that

f1 > 0 and f1

(
· | π(y)

)
= f1(· | y) for all y ∈ X k−1 and π ∈ Πk−1.

Then, f1, . . . , fk are compatible if and only if they are E-compatible, if and only if
there is a strictly positive Borel function g on X k such that

g = g ◦ π for all π ∈ Πk, g is a density with respect to λ,

f1(x | y) =
g(x, y)∫

X g(u, y)λ1(du)
for λ-almost all (x, y) ∈ X k.

Proof. Since conditions (8)-(9) hold, it suffices to see that f1 can be represented
as asserted whenever f1, . . . , fk are compatible. Suppose f1, . . . , fk are compatible.
Then, f1, . . . , fk are actually E-compatible. Fix P ∈ E with conditional densities
f1, . . . , fk. Since f1 > 0, Theorem 10-(a) yields P ∼ λ. Let g be a density of P with
respect to λ. Since P ∼ λ, P ∈ E , and λ = λk1 is invariant under permutations, up
to modifying g on a λ-null set, it can be assumed g > 0 and g = g ◦π for all π ∈ Πk.
Further, f1(x | y) =

{∫
X g(u, y)λ1(du)

}−1
g(x, y) for λ-almost all (x, y) ∈ X k. �

To exploit Corollary 13, the following remark is useful.

Remark 14. Let λ1 = . . . = λk and let ϕ and h be real Borel functions on X k and
X k−1, respectively. If ϕ = ϕ ◦ π for all π ∈ Πk and

h(y) = ϕ(x, y) for λ-almost all (x, y) ∈ X k,

then h is constant, λk−1
1 -a.e.. We omit the proof of this fact.

Example 15. (Normal distributions depending on the sample mean). Let
X = R and

Q1(y, ·) = . . . = Qk(y, ·) = N
(
α y , 1)

where α ∈ R, y = (y1, . . . , yk−1) ∈ Rk−1 and y = (1/(k − 1))
∑k−1
i=1 yi. We aim

to identify those values of α which make Q1, . . . , Qk compatible. Let fi = f1 and
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λi = λ1 for all i ∈ I, where f1 is a normal density with mean α y and unit variance
while λ1 is Lebesgue measure. We first assume k = 2. Write

f1(x | y) = (2π)−1/2 exp
{
−(1/2)(x− α y)2

}
=
ϕ(x, y)
h(y)

where

ϕ(x, y) = (2π)−1/2 exp
{
−(1/2)(x2 + y2) + αx y

}
, h(y) = exp

{
(1/2) y2(α2 − 1)

}
.

If |α| < 1, then 0 <
∫

R h(y) dy <∞. Letting

g(x, y) =
ϕ(x, y)∫
R h(y) dy

,

Corollary 13 implies that Q1 and Q2 are compatible. Next, suppose |α| ≥ 1. If Q1

and Q2 are compatible, Corollary 13 yields∫
R g(u, y) du
h(y)

=
g(x, y)
ϕ(x, y)

for a suitable density function g and λ-almost all (x, y) ∈ R2. Since the right-
hand member is invariant under permutations of (x, y) while the left-hand member
depends on y only, Remark 14 implies

∫
R g(u, y) du = c h(y) for some constant c > 0

and λ1-almost all y. But since |α| ≥ 1, one obtains∫
R2
g dλ =

∫
R

∫
R
g(u, y) du dy =

∫
R
c exp

{
(1/2) y2(α2 − 1)

}
dy =∞,

contrary to the assumption that g is a density with respect to λ. To sum up, Q1

and Q2 are compatible if and only if |α| < 1.
The previous argument actually works for any k. In fact, f1 can be factorized as

f1(x | y) = (2π)−1/2 exp
{
−(1/2)(x− α y)2

}
=
ϕ(x, y)
h(y)

where ϕ is invariant under permutations of (x, y) ∈ Rk and h depends on
y ∈ Rk−1 only. Then, Q1, . . . , Qk are compatible exactly for those values of α
such that

∫
Rk−1 h(y) dy <∞. For k = 3, for instance, Q1, Q2, Q3 are compatible if

and only if 4− α2 > |2α+ α2|, that is, α ∈ (−2, 1).

A last note is in order before leaving this Subsection. For k = 2, condition (8) is
trivially true. Furthermore, if Q1 = Q2 = Q, compatibility of Q1 and Q2 amounts
to reversibility of the kernel Q. We recall that, for k = 2 and Ω1 = Ω2 = X , a
kernel Q is reversible if there is a probability measure µ on B(X ) such that∫

A

Q(x,B)µ(dx) =
∫
B

Q(x,A)µ(dx) for all A, B ∈ B(X ).(11)

The conditional distributions of an (exchangeable) law P ∈ E are actually reversible;
see e.g. Theorem 3.2 of [3].

Theorem 16. Suppose k = 2 and Q1 = Q2 = Q for some kernel Q. Then, Q1

and Q2 are compatible if and only if they are E-compatible, if and only if Q is a
reversible kernel.

Proof. By Theorem 12, it suffices to prove that Q1 and Q2 are E-compatible if and
only if Q is reversible. Suppose Q is reversible. Fix a probability measure µ on
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B(X ) satisfying (11) and define

P (A) =
∫
X

∫
X
IA(x, y)Q(x, dy)µ(dx) for A ∈ B(X 2).

Since Q is reversible,

P
(
X1 ∈ A, X2 ∈ B

)
=
∫
A

Q(x,B)µ(dx) =
∫
B

Q(x,A)µ(dx) = P
(
X1 ∈ B, X2 ∈ A

)
for all A, B ∈ B(X ). Hence, P ∈ E . Also, Q is a conditional distribution, under P ,
for X1 given X2 as well as for X2 given X1. Conversely, suppose Q1 and Q2 are
E-compatible. Letting µ(·) = P (X1 ∈ ·), where P ∈ E has conditionals Q1 and Q2,
it is straightforward to see that Q meets condition (11). �

5.2. Identical marginal distributions. If X is exchangeable, Xi is distributed
as X1 for all i ∈ I, but not conversely. In a number of frameworks, when modeling
the joint distribution P of X via a set of putative conditional distributions, one is
actually looking for some P which makes X1, . . . , Xk identically distributed. Thus,
it makes sense to study I-compatibility, where

I = {P ∈ P : X1, . . . , Xk identically distributed under P}.

If only Q1, . . . , Qk are assigned, as in this paper, to investigate I-compatibility
for k > 2 looks quite difficult (to us). But for k = 2 and X countable, an useful
result can be obtained.

Let k = 2. By adapting the proof of Theorem 16, it is not hard to prove that Q1

and Q2 are I-compatible if and only if there is a probability measure µ on B(X )
such that ∫

A

Q2(x,B)µ(dx) =
∫
B

Q1(x,A)µ(dx) for all A, B ∈ B(X ).

In fact, under such condition, there is P ∈ I satisfying: (i) P has conditionals Q1

and Q2; (ii) both X1 and X2 have marginal distribution µ under P .
Suppose that X is countable and Q is a kernel on X . As usual, we will write

Q(a, b) instead of Q(a, {b}) whenever a, b ∈ X . We also need the following (well
known) definition. Given a, b ∈ X , a path connecting a and b is a finite sequence
x0, x1, . . . , xn ∈ X such that x0 = a, xn = b and Q(xi−1, xi) > 0 for all i. Also, Q
is irreducible if any pair of points in X are connected by a path.

We are now able to state our last result.

Theorem 17. Suppose k = 2, X countable and Q1 irreducible. Fix a ∈ X . Then,
Q1 and Q2 are I-compatible if and only if

n∏
i=1

Q1(xi−1, xi) =
n∏
i=1

Q2(xi, xi−1)(12)

whenever x0, x1, . . . , xn ∈ X and xn = x0,

Q1(x, y) > 0 ⇐⇒ Q2(y, x) > 0(13)

for all x, y ∈ X , and ∑
x∈X

n∏
i=1

Q1

(
bxi−1, b

x
i

)
Q2

(
bxi , b

x
i−1

) <∞(14)
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whenever bx0 , . . . , b
x
n is a path connecting a and x. (Hence, bx0 = a, bxn = x and

Q1

(
bxi−1, b

x
i

)
> 0 for all i).

The proof of Theorem 17 is deferred to the Appendix.
Theorem 17 notably simplifies in some special cases. Firstly, if there is a point

a ∈ X such that Q1(a, x) > 0 for all x ∈ X , one can take n = 1, bx0 = a and bx1 = x
in condition (14). Thus, such condition reduces to∑

x∈X

Q1(a, x)
Q2(x, a)

<∞.

More importantly, condition (14) can be dropped at all when X is finite.

Corollary 18. If k = 2, X is finite and Q1 irreducible, then Q1 and Q2 are
I-compatible if and only if conditions (12)-(13) hold.

Corollary 18 provides a simple and effective criterion for I-compatibility. Con-
dition (13), in fact, is trivially seen to be true or false. Suppose it is true. Then,
to check (12), one can restrict to those sequences x0, x1, . . . , xn ∈ X such that
xn = x0 and Q1(xi−1, xi) > 0 for all i. Moreover, as it is easily verified by induc-
tion, it can be assumed xi 6= xj for all 0 ≤ i < j < n. Thus, when X is finite and
Q1 irreducible, I-compatibility can be tested via a finite number of straightforward
conditions. If the values of Q1 and Q2 are uploaded into a computer, one obtains
an on-line, definitive answer on whether Q1 and Q2 are I-compatible or not.

To be concrete, we give a numerical example.

Example 19. With X = {1, 2, 3, 4}, let

Q1 =


1/10 0 3/10 3/5

0 2/11 4/11 5/11
4/15 1/5 8/15 0
1/4 3/10 0 9/20

 and Q2 =


1/10 0 2/5 1/2

0 2/11 3/11 6/11
1/5 4/15 8/15 0
3/10 1/4 0 9/20

 .

Such Q1 and Q2 are I-compatible, and this can be proved as follows. First note
that Q1 is irreducible and condition (13) is trivially true. By Corollary 18, thus, it
suffices to check condition (12). Let x0, x1, . . . , xn ∈ X be such that

xn = x0, xi 6= xj for 0 ≤ i < j < n,

n∏
i=1

Q1(xi−1, xi) > 0.(15)

To fix ideas, let x0 = 1. It must be 1 ≤ n ≤ 4. Since Q1(1, 1) = Q2(1, 1), condition
(12) holds for n = 1 and x0 = 1. For n = 3, no path satisfies (15) and x0 = 1. For
n = 2 and n = 4, the paths satisfying (15) and x0 = 1 are

x0 = 1, x1 = 3, x2 = 1; x0 = 1, x1 = 4, x2 = 1;
x0 = 1, x1 = 3, x2 = 2, x3 = 4, x4 = 1; x0 = 1, x1 = 4, x2 = 2, x3 = 3, x4 = 1.

All such paths meet condition (12). Similarly, (12) is immediately seen to be true
for x0 > 1. Therefore, Q1 and Q2 are I-compatible.

We finally give an example with an infinite state space X .

Example 20. (Random walk on the integers). Let X = Z be the integers and
let Q be the kernel of the symmetric random walk on Z, that is, Q(x, y) = 1/2 if
y ∈ {x− 1, x+ 1} and Q(x, y) = 0 if y /∈ {x− 1, x+ 1}. A first (obvious) question
is whether Q is compatible with itself. More precisely, letting Q1 = Q2 = Q, the
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question is whether Q1 and Q2 are compatible. Since Q is clearly not reversible, the
answer is no because of Theorem 16. A second possible question is the following.
Let Q1 = Q. Is there a kernel Q2 on Z such that Q1 and Q2 are I-compatible ?
Fix a kernel Q2. Since Q1 = Q is irreducible, Theorem 17 applies. Thus, if Q1

and Q2 are I-compatible, condition (13) implies Q2(x, y) > 0 if y ∈ {x− 1, x+ 1}
and Q2(x, y) = 0 if y /∈ {x − 1, x + 1}. Let α(x) = Q2(x, x + 1). For each x ∈ Z,
condition (12) yields

1/4 = Q1(x, x+ 1)Q1(x+ 1, x) = Q2(x+ 1, x)Q2(x, x+ 1) = {1− α(x+ 1)}α(x).

Therefore,

α(x+ 1) = 1− 1
4α(x)

.(16)

To fix ideas, suppose α(0) ≥ 1/2. Then, condition (16) implies α(x) ≥ 1/2 for all
x ≥ 1, so that

Q1(0, 1)Q1(1, 2) · · ·Q1(x− 1, x)
Q2(1, 0)Q2(2, 1) · · ·Q2(x, x− 1)

=
(1/2)x

(1− α(1))(1− α(2)) · · · (1− α(x))
≥ 1

for all x ≥ 1. Hence, condition (14) fails (just let a = 0, n = x and bxi = i).
Similarly, condition (14) fails if α(0) < 1/2. By Theorem 17, thus, no kernel Q2 is
I-compatible with Q1 = Q.

APPENDIX

We have to prove Theorems 10 and 17. We begin with point (a) of Theorem 10.

Lemma 21. Suppose (4) holds and P ∈ P has conditional distributions Q1, . . . , Qk.
Then P � λ, and P ∼ λ if fi > 0 for all i ∈ I.

Proof. We first prove P � λ. Let µ(·) = P
(
Yk ∈ ·

)
be the marginal distribution of

Yk under P . Fix A ∈ B(Ω) such that λ(A) = 0 and define

Ay = {x ∈ Ωk : (x, y) ∈ A} for y ∈ Yk and B = {y ∈ Yk : λk(Ay) = 0}.
Since ∫

Yk

λk(Ay)λ∗k(dy) =
∫
Yk

∫
Ωk

IA(x, y)λk(dx)λ∗k(dy) = λ(A) = 0,

then λ∗k(Bc) = 0. Thus, if µ� λ∗k, condition (4) yields

P (A) =
∫
Yk

Qk(y,Ay)µ(dy) =
∫
B

Qk(y,Ay)µ(dy) = 0.

Therefore, to get P � λ, it suffices to show that µ � λ∗k. Let µ1 be the marginal
distribution of X1 under P . If A ∈ B(Ω1) and λ1(A) = 0, condition (4) implies

µ1(A) = P (X1 ∈ A) = EP
{
Q1(Y1, A)

}
= 0.

Hence, µ1 � λ1. Next, let µ1,2 be the marginal distribution of (X1, X2) under P .
For µ1-almost all x ∈ Ω1, one obtains

P
(
X2 ∈ A | X1 = x

)
= EP

{
Q2

(
(x,X3, . . . , Xk), A

)
| X1 = x

}
for each A ∈ B(Ω2).

Hence, for µ1-almost all x ∈ Ω1,

P
(
X2 ∈ A | X1 = x

)
= 0 provided A ∈ B(Ω2) and λ2(A) = 0.
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Since µ1 � λ1, the above condition implies µ1,2 � λ1×λ2. Proceeding in this way,
one finally obtains µ � λ1 × . . . × λk−1 = λ∗k. This proves P � λ. Next, suppose
fi > 0 for all i ∈ I. Then Qi(y,A) > 0, for all i ∈ I and y ∈ Yi, provided A ∈ B(Ωi)
and λi(A) > 0. Basing on this fact, P ∼ λ can be proved exactly as above. �

Proof of Theorem 10. Point (a) has been proved in Lemma 21. Recall also that∫
Ωi

fi(x | y)λi(dx) = 1 for all i ∈ I and y ∈ Yi.

Suppose f1, . . . , fk are compatible and fix P ∈ P with conditional distributions
Q1, . . . , Qk. By point (a), P has a density f with respect to λ. Let

φi(y) =
∫

Ωi

f(x, y)λi(dx), y ∈ Yi,

be the marginal of f with respect to λ∗i . Define also

ui = I{0<φi<∞} (1/φi) for i < k, uk = I{φk<∞} φk,

and note that

{0 < φi <∞} = {ui > 0} and λ∗i (φi =∞) = 0 for all i ∈ I.

Let Hi = {ui(Yi) > 0}. Given i < k, since f1, . . . , fk are the conditional densities
induced by f , one trivially obtains

fi(Xi | Yi) =
f

φi(Yi)
=

f

φk(Yk)
ui(Yi)φk(Yk) = fk(Xk | Yk)ui(Yi)uk(Yk),

λ-a.e. on the set Hi ∩Hk. Further, since f = fk(Xk | Yk)uk(Yk), λ-a.e.,∫
Yk

uk dλ
∗
k =

∫
Yk

φk dλ
∗
k = 1,

∫
{ui>0}

1/ui dλ∗i =
∫
Yi

φi dλ
∗
i = 1,∫

Ω

IHi
fk(Xk | Yk)uk(Yk) dλ =

∫
Ω

IHi
f dλ = P

(
0 < φi(Yi) <∞

)
= 1.

Therefore, conditions (6)-(7) hold. Conversely, suppose (6)-(7) hold for some func-
tions u1, . . . , uk. Define again Hi = {ui(Yi) > 0}. By (7),∫

Ω

fk(Xk | Yk)uk(Yk) dλ =
∫
Yk

∫
Ωk

fk(x | y)λk(dx)uk(y)λ∗k(dy) =
∫
Yk

uk dλ
∗
k = 1.

Thus, f := fk(Xk | Yk)uk(Yk) is a density with respect to λ. By definition, f = 0
on Hc

k. If i < k, condition (7) yields∫
Hc

i

f dλ = 1−
∫
Hi

f dλ = 1− 1 = 0.

Hence f = 0, λ-a.e., on ∪ki=1H
c
i . By (6), it follows that

f = f IHi IHk
=
fi(Xi | Yi)
ui(Yi)

IHi IHk
, λ-a.e. for all i < k.
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Moreover,∫
Hc

k

IHi

fi(Xi | Yi)
ui(Yi)

dλ =
∫

Ω

IHi

fi(Xi | Yi)
ui(Yi)

dλ−
∫
Hk

IHi

fi(Xi | Yi)
ui(Yi)

dλ

=
∫
{ui>0}

∫
Ωi

fi(x | y)λi(dx)
1

ui(y)
λ∗i (dy)−

∫
Ω

f dλ

=
∫
{ui>0}

1/ui dλ∗i − 1 = 0.

Thus,

f =
fi(Xi | Yi)
ui(Yi)

IHi
, λ-a.e. for all i < k.(17)

Next, define the marginal φi of f as above. Then, it suffices to prove that
f

φi(Yi)
= fi(Xi | Yi), λ-a.e. on the set {0 < φi(Yi) <∞}, for all i ∈ I.

Since φk = uk, such condition holds for i = k. If i < k, condition (17) yields

φi(Yi) =
∫

Ωi

fi(x | Yi)
ui(Yi)

IHi
λi(dx) =

IHi

ui(Yi)
.

Thus, {0 < φi(Yi) < ∞} = Hi, and condition (17) implies f/φi(Yi) = fi(Xi | Yi),
λ-a.e. on Hi. Since point (b) is obvious, this concludes the proof. �

We finally turn to Theorem 17.

Proof of Theorem 17. Assume conditions (12)-(13)-(14). Let x0, x1, . . . , xr and
y0, y1, . . . , ys be any two paths connecting a and x. Take a further path z0, z1, . . . , zt
connecting x and a. On noting that x0 = y0 = zt = a and xr = ys = z0 = x,
condition (12) yields
r∏
i=1

Q1(xi−1, xi)
t∏
i=1

Q1(zi−1, zi)
s∏
i=1

Q2(yi, yi−1) =
r∏
i=1

Q2(xi, xi−1)
t∏
i=1

Q2(zi, zi−1)
s∏
i=1

Q2(yi, yi−1)

=
r∏
i=1

Q2(xi, xi−1)
t∏
i=1

Q1(zi−1, zi)
s∏
i=1

Q1(yi−1, yi).

By condition (13) and the definition of path, all factors are strictly positive. Hence,
r∏
i=1

Q1(xi−1, xi)
Q2(xi, xi−1)

=
s∏
i=1

Q1(yi−1, yi)
Q2(yi, yi−1)

.

Next, define

ν{x} =
r∏
i=1

Q1(xi−1, xi)
Q2(xi, xi−1)

.

By what already proved, the definition of ν{x} does not depend on the path con-
necting a and x. Hence, ν is a (well defined) measure on the power set of X , and
ν(X ) =

∑
x∈X ν{x} < ∞ because of (14). Define µ = ν/ν(X ). To conclude the

proof of the “if” part, it suffices to see that

µ{x}Q1(x, y) = µ{y}Q2(y, x) for all x, y ∈ X .(18)
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In view of (13), to check condition (18) it can be assumed Q1(x, y) > 0. In this
case, the very definition of µ yields

µ{x} Q1(x, y)
Q2(y, x)

= µ{y}.

Conversely, suppose Q1 and Q2 are I-compatible. Take a probability µ satisfying
condition (18). Summing over x ∈ X , one obtains

µ{y} =
∑
x∈X

µ{y}Q2(y, x) =
∑
x∈X

µ{x}Q1(x, y) for all y ∈ X .

Thus, µ is an invariant probability for the irreducible kernelQ1, and this fact implies
µ{x} > 0 for all x ∈ X . Therefore, condition (13) follows from (18) and µ{x} > 0
for all x ∈ X . Next, let x0, x1, . . . , xn ∈ X with xn = x0. If Q1(xi−1, xi) = 0 for
some i, condition (13) yields

n∏
i=1

Q1(xi−1, xi) = 0 =
n∏
i=1

Q2(xi, xi−1).

If Q1(xi−1, xi) > 0 for all i, one obtains
n∏
i=1

Q1(xi−1, xi)
Q2(xi, xi−1)

=
n∏
i=1

µ{xi}
µ{xi−1}

=
µ{xn}
µ{x0}

=
µ{x0}
µ{x0}

= 1.

Thus, condition (12) holds. Finally, as to (14), it suffices to note that∑
x∈X

n∏
i=1

Q1

(
bxi−1, b

x
i

)
Q2

(
bxi , b

x
i−1

) =
∑
x∈X

n∏
i=1

µ{bxi }
µ{bxi−1}

=
∑
x∈X

µ{x}
µ{a}

=
1

µ{a}

whenever bx0 , . . . , b
x
n is a path connecting a and x.

�
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