1. [6 pt] Si determini var(X - Y + 2Z) nelle ipotesi: X indipendente da (Y, Z), var(X) = var(Y) = var(Z) = 1 e cov (Y, Z) = 1/2.

2. [6 pt] Sia X una variabile aleatoria tale che X > 0 ed $E(\frac{1}{X}) = \frac{1}{E(X)}$. Si determini cov $(X, \frac{1}{X})$. Intuitivamente, come e' fatta la distribuzione di X?

3. [10 pt] L'urna U_1 contiene 2 palline bianche ed 1 nera e l'urna U_2 contiene 2 palline bianche e 3 nere. Si sceglie una delle 2 urne e poi si fanno 2 estrazioni dall'urna scelta. Supponiamo che $P(U_1) = P(U_2)$ e che le estrazioni siano con reinbussolamento da U_1 e senza reinbussolamento da U_2 . Si determini la probabilita' che l'urna scelta sia U_2 nell'ipotesi di aver esservate una pallina bianca ed una pere

osservato una pallina bianca ed una nera.

4. [8 pt] Sia x_1, \ldots, x_n un campione, composto da osservazioni i.i.d., proveniente da una variabile aleatoria esponenziale di parametro $\lambda > 0$. Si determini una stima di massima versomiglianza per λ .

5.	[8 pt] Detta F la funzione di ripartizione della variabile aleatoria X , si scriva $P(a \le X < b)$ in funzione di F .
6.	[8 pt] Si dimostri che $P(X > a + b \mid X > a) = P(X > b)$ per ogni $a, b > 0$ ("mancanza d memoria") dove X e' una variabile aleatoria esponenziale.
7.	[10 pt] Posto $\mathbb{N} = \{1, 2, 3,\}$, siano X ed Y variabili aleatorie tali che $P(X \in \mathbb{N}) = 1$ ed Y ha funzione di ripartizione continua. E' possibile che $P(X = n) = P(X = 1)$ per ogn $n \in \mathbb{N}$? Dati $a, b \in \mathbb{R}$, che relazione intercorre tra $P(Y = b)$ e $P(Y = a)$?
8.	[4 pt] Si dia un intervallo di confidenza per la media di una distribuzione normale, di varianza incognita, e si diano espressione esplicite (in funzione degli elementi campionari per tutte le quantita' coinvolte in tale intervallo.