ON THE EXISTENCE OF CONTINUOUS PROCESSES WITH GIVEN ONE-DIMENSIONAL DISTRIBUTIONS

Luca Pratelli and Pietro Rigo Naval Academy of Livorno and University of Pavia

Bologna, March 22, 2019

The problem

Throughout, a **process** is meant as a real valued stochastic process indexed by [0, 1]. A process is **continuous** if almost all its paths are continuous

Let \mathcal{P} be the collection of Borel probability measures on \mathcal{R} , equipped with the weak* topology, and

 $\mu: [0,1] \rightarrow \mathcal{P}$ a continuous map

(*)

Is there a continuous process X such that $X_t \sim \mu_t$ for each $t \in [0, 1]$?

If yes, say that μ is **presentable**

Motivations

- Problem (*) is connected to gradient flows and certain partial differential equations
- A positive answer to (*) can be regarded as a strong version of Skorohod representation theorem
- By a result of Blackwell and Dubins, there is a process X such that, for each fixed t, X_t ~ μ_t and almost all X-paths are continuous at t. Despite this fact, however, the answer to (*) may be no:

 $\mu_t = (1-t)\,\delta_0 + t\,\delta_1$

Remark

Problem (*) is actually an extension problem

In fact, let us extend μ to

$$\mathcal{U} = \{\mu_{t_1,\dots,t_n} : n \ge 1, t_1,\dots,t_n \in [0,1]\}$$

where each $\mu_{t_1,...,t_n}$ is a Borel probability measure on \mathcal{R}^n There is a continuous process X with $X \sim \mathcal{U}$ if and only if

- \mathcal{U} is consistent (i.e., $Y \sim \mathcal{U}$ for some process Y)
- $Y_s \to Y_t$ in probability as $s \to t$
- $\inf_{\delta>0} \sup_n P(\exists s, t \in D_n \text{ with } |s-t| < \delta \text{ and } |Y_s Y_t| > \epsilon) = 0$ for each $\epsilon > 0$, where $D_n = \{j/2^n : j = 0, 1, \dots, 2^n\}$

The quantile process

Let $F_t(x) = \mu_t(-\infty, x]$ and

 $\left|Q_t(\alpha) = \inf \left\{x \in \mathcal{R} : F_t(x) \ge \alpha\right\}, \quad t \in [0, 1], \ \alpha \in (0, 1)$

Q is a process on $((0,1), \mathcal{B}(0,1), \lambda)$, where λ is Lebesgue measure, with finite dimensional distributions

 $\lambda(Q_{t_1} \leq x_1, \dots, Q_{t_k} \leq x_k) = \min_{1 \leq i \leq k} F_{t_i}(x_i)$

In particular, $Q_t \sim \mu_t$ for all t so that

Q continuous $\Rightarrow \mu$ presentable

Letting $J_t = \{ \alpha \in (0,1) : F_t(x) = F_t(y) = \alpha \text{ for some } x < y \}$,

Q is continuous $\Leftrightarrow \lambda^*(\cup_t J_t) = 0$

As a consequence, μ is presentable whenever

 μ_t is supported by an interval (possibly, by a singleton) for all but countably many t

Suppose all μ_t have the same support, say F

If $F = \mathcal{R}$, then μ is presentable by Result 1. Otherwise, since F is closed,

 $F^c = \cup_n(a_n, b_n)$

with the (a_n, b_n) pairwise disjoint open intervals. The following statements are equivalent:

- μ is presentable
- Q is continuous
- $F_t(a_n) = F_0(a_n)$ for all $t \in [0, 1]$ and n with $a_n > -\infty$

Work in progress

An intriguing open problem is whether

 μ presentable $\Rightarrow Q \sim X$ for some continuous process X

In a sense, a positive answer would "close" problem (*)

So far, we only have results such as

 μ presentable + something $\Rightarrow Q \sim X$ for some continuous X

One is Result 2 above. Another is the following:

Q is continuous if there is a process X, defined on some probability space (Ω, \mathcal{A}, P) , such that $X_t \sim \mu_t$ for all t and

 $\{X(\omega) : \omega \in \Omega\}$ is an equicontinuous subset of C[0, 1]

Corollary

 $\boldsymbol{\mu}$ is presentable if and only if admits the representation

$$\mu = \sum_n c_n \mu^n$$

where: $c_n \ge 0$, $\sum_n c_n = 1$, $\mu^n : [0,1] \rightarrow \mathcal{P}$, and the quantile process induced by μ^n is continuous

Let $a \ge 1$, b > 1, c > 0 be constants. Then, $Q \sim X$ for some continuous process X if

 $E\{|Y_s - Y_t|^a\} \le c |s - t|^b$

for all $s, t \in [0, 1]$ and some process Y such that $Y_t \sim \mu_t$ for all t

This fact is a (simple) consequence of the Chentsov-Kolmogorov criterion

Open problems

There are (at least) three questions

(1) μ presentable $\Rightarrow Q \sim X$ for some continuous process X ? This is the main issue (and has been already mentioned)

(2) If
$$\mu : [0,1] \rightarrow \mathcal{P}$$
 is cadlag,

(**) Is there a cadlag process X such that
$$X_t \sim \mu_t$$
 for each $t \in [0, 1]$?

What is a μ which provides a negative answer to (**)? Now, $\mu_t = (1-t) \,\delta_0 + t \,\delta_1$ no longer works. Just let

$$X_t = \mathbf{1}_{[U,1]}(t)$$

with U uniformly distributed on (0, 1)

(3) Replace \mathcal{R} with an arbitrary metric space S, i.e., assume

 $\mu : [0,1] \rightarrow \{ \text{Borel probability measures on } S \}$

continuous and investigate

(***)

Is there a continuous, S-valued process X such that $X_t \sim \mu_t$ for each $t \in [0, 1]$?

Among other things, can we conclude that μ is presentable under some reasonable condition on the supports of the μ_t ?

Example

Let $S = \mathcal{R}^2$ and

 $\{\pi_t(\cdot|x) : x \in \mathcal{R}\}$

a regular version of the conditional distribution of the second coordinate given the first under μ_t

Then, μ is presentable provided:

- All μ_t have the same marginal on the first coordinate
- $t \mapsto \pi_t(\cdot|x)$ is a continuous map for fixed x
- $\pi_t(\cdot|x)$ is supported by an interval for all t and x