ON THE EXISTENCE OF CONTINUOUS PROCESSES WITH GIVEN ONE-DIMENSIONAL DISTRIBUTIONS

Luca Pratelli and Pietro Rigo Naval Academy of Livorno and University of Pavia

Bologna, March 22, 2019

The problem

Throughout, a **process** is meant as a real valued stochastic process indexed by $[0, 1]$. A process is **continuous** if almost all its paths are continuous

Let P be the collection of Borel probability measures on R, equipped with the weak* topology, and

 $\mu : [0,1] \rightarrow \mathcal{P}$ a continuous map

(*) Is there a continuous process X such that $X_t \sim \mu_t$
for the 19 and 2 for each $t \in [0,1]$?

If yes, say that μ is presentable

Motivations

- Problem (*) is connected to gradient flows and certain partial differential equations
- A positive answer to $(*)$ can be regarded as a strong version of Skorohod representation theorem
- By a result of Blackwell and Dubins, there is a process X such that, for each fixed t, $X_t \sim \mu_t$ and almost all X-paths are continuous at t . Despite this fact, however, the answer to $(*)$ may be no:

 $\mu_t = (1 - t) \, \delta_0 + t \, \delta_1$

Remark

Problem (*) is actually an extension problem

In fact, let us extend μ to

$$
\mathcal{U} = {\mu_{t_1,...,t_n} : n \ge 1, t_1,...,t_n \in [0,1]}
$$

where each $\mu_{t_1,...,t_n}$ is a Borel probability measure on \mathcal{R}^n There is a continuous process X with $X \sim \mathcal{U}$ if and only if

- U is consistent (i.e., $Y \sim U$ for some process Y)
- $Y_s \to Y_t$ in probability as $s \to t$
- \bullet $\inf_{\delta>0}$ sup $_n$ $P(\exists \; s,t\in D_n$ with $|s-t|<\delta$ and $|Y_s-Y_t|>\epsilon)=0$ for each $\epsilon > 0$, where $D_n = \{j/2^n : j = 0, 1, ..., 2^n\}$

The quantile process

Let $F_t(x) = \mu_t(-\infty, x]$ and

 $Q_t(\alpha) = \inf\{x \in \mathcal{R} : F_t(x) \geq \alpha\}, \vert t \in [0,1], \alpha \in (0,1)$

Q is a process on $((0,1), \mathcal{B}(0,1), \lambda)$, where λ is Lebesgue measure, with finite dimensional distributions

 $\lambda(Q_{t_1} \leq x_1, \ldots, Q_{t_k} \leq x_k) = \min_{1 \leq i \leq k} F_{t_i}(x_i)$

In particular, $Q_t \sim \mu_t$ for all t so that

Q continuous \Rightarrow μ presentable

Letting $J_t = \{ \alpha \in (0,1) : F_t(x) = F_t(y) = \alpha \text{ for some } x < y \},$

 Q is continuous $\Leftrightarrow \lambda^*(\cup_t J_t) = 0$

As a consequence, μ is presentable whenever

 μ_t is supported by an interval (possibly, by a singleton) for all but countably many t

Suppose all μ_t have the same support, say F

If $F = \mathcal{R}$, then μ is presentable by Result 1. Otherwise, since F is closed,

 $F^c = \bigcup_n (a_n, b_n)$

with the (a_n, b_n) pairwise disjoint open intervals. The following statements are equivalent:

- μ is presentable
- \bullet Q is continuous
- $F_t(a_n) = F_0(a_n)$ for all $t \in [0,1]$ and n with $a_n > -\infty$

Work in progress

An intriguing open problem is whether

 μ presentable \Rightarrow Q \sim X for some continuous process X

In a sense, a positive answer would "close" problem $(*)$

So far, we only have results such as

 μ presentable + something \Rightarrow Q ~ X for some continuous X

One is Result 2 above. Another is the following:

 Q is continuous if there is a process X , defined on some probability space (Ω, \mathcal{A}, P) , such that $X_t \sim \mu_t$ for all t and

 $\{X(\omega): \omega \in \Omega\}$ is an equicontinuous subset of $C[0,1]$

Corollary

 μ is presentable if and only if admits the representation

$$
\mu = \sum_n c_n \mu^n
$$

where: $c_n \, \geq \, 0, \, \sum_n c_n \, = \, 1, \, \, \mu^n \,$: $[0,1] \, \rightarrow \, \mathcal{P},$ and the quantile process induced by μ^n is continuous

Let $a \geq 1$, $b > 1$, $c > 0$ be constants. Then, $Q \sim X$ for some continuous process X if

 $E\{|Y_{s}-Y_{t}|^{a}\} \leq c \, |s-t|^{b}$

for all s, $t \in [0,1]$ and some process Y such that $Y_t \sim \mu_t$ for all t

This fact is a (simple) consequence of the Chentsov-Kolmogorov criterion

Open problems

There are (at least) three questions

(1) μ presentable $\Rightarrow Q \sim X$ for some continuous process X? This is the main issue (and has been already mentioned)

(2) If
$$
\mu : [0,1] \rightarrow \mathcal{P}
$$
 is cadlag,

$$
(**) \qquad \begin{array}{|l|l|} \hline \text{Is there a cadlag process } X \text{ such that } X_t \sim \mu_t \text{ for} \\ \text{each } t \in [0,1] \text{ ?} \end{array}
$$

What is a μ which provides a negative answer to $(**)$? Now, $\mu_t = (1-t)\,\delta_0 + t\,\delta_1$ no longer works. Just let

$$
X_t = \mathbf{1}_{[U,1]}(t)
$$

with U uniformly distributed on $(0, 1)$

(3) Replace R with an arbitrary metric space S , i.e., assume

 $\mu : [0,1] \rightarrow \{\text{Borel probability measures on } S\}$

continuous and investigate

 $(***)$ Is there a continuous, S-valued process X such that $X_t \sim \mu_t$ for each $t \in [0,1]$?

Among other things, can we conclude that μ is presentable under some reasonable condition on the supports of the μ_t ?

Example

Let $S = \mathcal{R}^2$ and

 $\{\pi_t(\cdot|x):x\in\mathcal{R}\}\$

a regular version of the conditional distribution of the second coordinate given the first under μ_t

Then, μ is presentable provided:

- All μ_t have the same marginal on the first coordinate
- $t \mapsto \pi_t(\cdot|x)$ is a continuous map for fixed x
- $\pi_t(\cdot|x)$ is supported by an interval for all t and x