EXISTENCE OF PROPER REGULAR CONDITIONAL DISTRIBUTIONS

Pietro Rigo University of Pavia

Bologna, may 16, 2018

Classical (Kolmogorovian) conditional probabilities

Let (Ω, \mathcal{A}, P) be a probability space and $\mathcal{G} \subset \mathcal{A}$ a sub- σ -field.

A regular conditional distribution (rcd) is a map Q on $\Omega \times A$ such that

(i) $Q(\omega, \cdot)$ is a probability on A for $\omega \in \Omega$

(ii) $Q(\cdot, A)$ is G-measurable for $A \in \mathcal{A}$

(iii) $P(A \cap B) = \int_B Q(\omega, A) P(d\omega)$ for $A \in \mathcal{A}$ and $B \in \mathcal{G}$

An rcd can fail to exist. However, it exists under mild conditions and is a.s. unique if $\mathcal A$ is countably generated.

In the standard framework, thus, conditioning is with respect to a σ -field G and not with respect to an event H.

What does it mean ?

According to the usual interpretation, it means: For each $B \in \mathcal{G}$, we now whether B is true or false. This naive interpretation is very dangerous.

Example 1 Let $X = \{X_t : t \ge 0\}$ be a process adapted to a filtration $\mathcal{F} = {\mathcal{F}_t : t \geq 0}$. Suppose $P(X = x) = 0$ for each path x and

$$
\{A\in\mathcal{A}: P(A)=0\}\subset\mathcal{F}_0.
$$

In this case,

 $\{X = x\} \in \mathcal{F}_0$ for each path x.

But then we can stop. We already know the X -path at time 0!

Example 2 (Borel-Kolmogorov paradox) Suppose

$$
\{X=x\} = \{Y=y\}
$$

for some random variables X and Y. Let Q_X and Q_Y be rcd's given $\sigma(X)$ and $\sigma(Y)$. Then,

 $P(\cdot | X = x) = Q_X(\omega, \cdot)$ and $P(\cdot | Y = y) = Q_Y(\omega, \cdot)$

where $\omega \in \Omega$ meets $X(\omega) = x$ and $Y(\omega) = y$. Hence it may be that

$$
P(\cdot | X = x) \neq P(\cdot | Y = y)
$$
 even if $\{X = x\} = \{Y = y\}.$

Example 3 For the naive interpretation to make sense, Q should be proper, i.e.

 $Q(\omega, \cdot) = \delta_{\omega}$ on G for almost all ω .

But Q needs not be proper. In fact, properness of Q essentially amounts to G countably generated.

Conditional 0-1 laws

An rcd Q is 0-1 on G if

 $Q(\omega, \cdot) \in \{0, 1\}$ on G for almost all ω

Why to focus on such a 0-1 law ?

- It is a (natural) consequence of properness
- It is equivalent to

A independent G, under $Q(\omega, \cdot)$, for almost all ω

- It is basic for integral representation of invariant measures
- It is not granted. It typically fails if $\{A \in \mathcal{A} : P(A) = 0\} \subset \mathcal{G}$

Theorem 1

Let $\mathcal{G}_n \subset \mathcal{A}$ be a sub- σ -field and Q_n an rcd given \mathcal{G}_n .

The rcd Q is 0-1 on G if

- The "big" σ -field A is countably generated
- Q_n is 0-1 on \mathcal{G}_n for each n and $\mathcal{G} \subset \limsup_n \mathcal{G}_n$
- $E(1_A|{\cal G}_n) \to E(1_A|{\cal G})$ a.s. for each $A \in {\cal A}$

Note that, by martingale convergence, the last condition is automatically true if the sequence \mathcal{G}_n is monotonic

Examples

Let S be a Polish space and $\Omega = S^{\infty}$. Theorem 1 applies to

Tail σ -field: $\mathcal{G} = \cap_n \sigma(X_n, X_{n+1}, \ldots)$

where X_n is a sequence of real random variables

Symmetric σ -field:

 $\mathcal{G} = \{B \in \mathcal{A} : B = f^{-1}(B) \text{ for each finite permutation } f\}$

Thus,

Theorem $1 \Rightarrow$ de Finetti's theorem

Open problem: Theorem 1 does not apply to the shift-invariant σ -field:

 $\mathcal{G} = \{ B \in \mathcal{A} : B = s^{-1}(B) \}$

where $s(x_1, x_2, ...) = (x_2, x_3, ...)$ is the shift

6

Disintegrability

Let $\Pi \subset A$ be a partition of Ω . P is disintegrable on Π if

 $P(A) = \int_{\Pi} P(A|H) P^*(dH)$

for each $A \in \mathcal{A}$, where

• $P(\cdot|H)$ is a probability on A such that

 $P(H|H) = 1$

• P^* is a probability on a suitable σ -field of subsets of Π

Theorem 2

Given a partition Π of Ω , let

 $G = \{(x, y) \in \Omega \times \Omega : x \sim y\}.$

Then, P is disintegrable on Π whenever

- (Ω, \mathcal{A}) is nice (e.g. a standard space)
- G is a Borel subset of $\Omega \times \Omega$

Remark: G is actually a Borel set if Π is the partition in the atoms of the tail, or the symmetric, or the shift invariant σ -fields

Remark: The condition on G can be relaxed (e.g., G coanalytic)

Coherent (de Finettian) conditional probabilities

A different notion, introduced by de Finetti, is as follows.

Let

 $P(\cdot|\cdot): \mathcal{A} \times \mathcal{G} \rightarrow R.$

For all $n \geq 1$, $c_1, \ldots, c_n \in R$, $A_1, \ldots, A_n \in A$ and $B_1, \ldots, B_n \in \mathcal{G} \setminus \emptyset$, define

$$
G(\omega) = \sum_{i=1}^n c_i 1_{B_i}(\omega) \{ 1_{A_i}(\omega) - P(A_i|B_i) \}.
$$

Then, $P(\cdot|\cdot)$ is coherent if

 $\sup_{\omega \in B} G(\omega) \geq 0$ where $B = \cup_{i=1}^n B_i$.

Such a definition has both merits and drawbacks. In particular, contrary to the classical case:

- The conditioning is now with respect to events,
- $P(B|B) = 1$,
- For fixed B , $P(\cdot|B)$ is "only" a finitely additive probability,
- Disintegrability on Π is not granted, where Π is the partition of Ω in the atoms of $\mathcal G$

Bayesian inference

 $({\cal X}, {\cal E})$ sample space, $(\Theta, {\cal F})$ parameter space,

 $\{P_\theta : \theta \in \Theta\}$ statistical model,

A prior is a probability π on F. A posterior for π is any collection $Q = \{Q_x : x \in \mathcal{X}\}\$ such that

- Q_x is a probability on F for each $x \in \mathcal{X}$
- $\int_A Q_x(B) m(dx) = \int_B P_\theta(A) \pi(d\theta)$

for all $A \in \mathcal{E}$ $B \in \mathcal{F}$ and for some (possibly finitely additive) probability m on subsets of $\mathcal X$

Theorem 3

Fix a measurable function T on $\mathcal X$ (a statistic) such that

 $P_{\theta}(T=t) = 0$ for all θ and t.

Under mild conditions, for any prior π , there is a posterior Q for π such that

 $T(x) = T(y) \Rightarrow Q_x = Q_y$

Interpretation:

The above condition means that T is **sufficient** for Q. Suppose you start with a prior π , describing your feelings on θ , and a statistic T, describing how different samples affect your inference on θ . Theorem 3 states that, whatever π and T (with $P_{\theta}(T = t) = 0$) there is a posterior Q for π which makes T sufficient.

Point estimation

The ideas underlying Theorem 3 yield further results. Suppose $\Theta \subset R$ and $d : \mathcal{X} \to \Theta$ is an estimate of θ .

Theorem 4

Under mild conditions, if the prior π is null on compacta, there is a posterior Q for π such that $\int \theta^2 Q_x(d\theta) < \infty$ and

$$
E_Q(\theta|x) = \int \theta \, Q_x(d\theta) = d(x)
$$

Interpretation:

The above condition means that d is optimal under square error loss. Suppose you start with a measurable map $d : \mathcal{X} \to \Theta$, to be regarded as your estimate of θ . Theorem 4 states that, if the prior π vanishes on compacta, there is a posterior Q for π which makes d optimal

Compatibility

Let $X = (X_1, \ldots, X_k)$ be a k-dimensional random vector and

 $X_{-i} = (X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_k)$

To assess the distribution of X , assign the kernels Q_1,\ldots,Q_k , where each Q_i is only requested to satisfy

 $Q_i(x, \cdot)$ is a probability for fixed x and

the map $x \mapsto Q_i(x, A)$ is measurable for fixed A

The kernels Q_1, \ldots, Q_k are **compatible** if there is a Borel probability μ on R^k such that

 $P_{\mu}(X_i \in \cdot | X_{-i} = x) = Q_i(x, \cdot)$

for all i and μ -almost all x.

Such a μ , if exists, should be regarded as the distribution of X

Example: Let $k = 2$ and

$$
Q_1(x,\cdot) = Q_2(x,\cdot) = \mathcal{N}(x,1)
$$

This looks reasonable in a number of problems. Nevertheless, Q_1 and Q_2 are not compatible, i.e., no Borel probability on R^2 admits Q_1 and $Q₂$ as conditional distributions

Compatibility issues arise in: spatial statistics, statistical mechanics, Bayesian image analysis, multiple data imputation and Gibbs sampling

Another example are **improper priors**. Given the statistical model $\{P_\theta: \theta \in \Theta\}$, let $Q = \{Q_x: x \in \mathcal{X}\}$ be the "formal posterior" of an improper prior γ (i.e., $\gamma(\Theta) = \infty$). Strictly speaking, Q makes sense only if compatible with the statistical model. In that case, Q agrees with the posterior of some (proper) prior

For $x \in R^k$ and $f \in C_b(R^k)$, let

$$
E(f|X_{-i} = x_{-i}) = \int f(x_1, \dots, x_{i-1}, t, x_{i+1}, \dots, x_k) Q_i(x_{-i}, dt)
$$

Theorem 5

Suppose there is a compact set A_i such that

 $Q_i(x, A_i) = 1$ for all $x \in R^{k-1}$.

Letting $A = A_1 \times \ldots \times A_k$, suppose also that

 $x \mapsto E(f | X_{-i} = x_{-i})$ is continuous on A for each $f \in C(A)$

Then, Q_1, \ldots, Q_k are compatible if and only if

$$
\left| \sup_{x \in A} \sum_{i=1}^{k-1} \left\{ E(f_i | X_{-i} = x_{-i}) - E(f_i | X_{-k} = x_{-k}) \right\} \ge 0 \right|
$$

for all $f_1, \ldots, f_{k-1} \in C(A)$

For each i, fix a (σ -finite) measure λ_i and suppose that

 $Q_i(x, dy) = f_i(x, y) \lambda_i(dy)$ for all $x \in R^{k-1}$

Let $\lambda = \lambda_1 \times ... \times \lambda_k$ be the product measure

Theorem 6

Suppose $f_i > 0$ for all i. Then, Q_1, \ldots, Q_k are compatible if and only if there are positive Borel functions u_1, \ldots, u_k on R^{k-1} such that

 $f_i(x_i|x_{-i}) = f_k(x_k|x_{-k}) u_i(x_{-i}) u_k(x_{-k}),$

for all $i < k$ and λ -almost all $x \in R^k$, and

 $\int u_k d\lambda_{-k} = 1$

Remark: The assumption $f_i > 0$ can be dropped at the price of a more involved statement

An asymptotic result

Let S be a Polish space, (X_n) an exchangeable sequence of S-valued random variables, and

 $\mu_n = (1/n) \, \sum_{i=1}^n \delta_{X_i} \; \; \Big|$ empirical measure

 $\boxed{a_n(\cdot)} = P(X_{n+1} \in \cdot | X_1, \ldots, X_n)$ predictive measure

Often, a_n can not be evaluated in closed form and μ_n is a reasonable " estimate" of a_n . Here, we focus on the error

 $d(\mu_n, a_n)$

where d is a distance between probability measures. For instance, if

 $d(\mu_n, a_n) \to 0$ in some sense

then μ_n is a **consistent** estimate of a_n

Fix a class D of Borel subsets of S and define d as

$$
d(\alpha, \beta) = ||\alpha - \beta|| = \sup_{A \in \mathcal{D}} |\alpha(A) - \beta(A)|
$$

for all probabilities α and β on the Borel subsets of S

Theorem 7

If D is a (countably determined) VC-class,

$$
\boxed{ \limsup_n \sqrt{\frac{n}{\log \log n}} \; ||\mu_n - a_n|| \leq 1/\sqrt{2} } \text{ a.s. }
$$

Hence, for any constants r_n ,

$$
r_n ||\mu_n - a_n || \to 0 \text{ a.s. provided } r_n \sqrt{\frac{\log \log n}{n}} \to 0
$$

Remark: If $S = R^k$,

$$
\mathcal{D} = \{\text{closed balls}\}, \ \mathcal{D} = \{\text{half spaces}\}, \text{ and}
$$

 $\mathcal{D} = \{(-\infty, t] : t \in R^k\}$

are (countably determined) VC-classes

Remark: It is possible to give conditions for

√ $\overline{n}\,||\mu_{n} - a_{n}|| \rightarrow$ 0 in probability

or even for

 $n || \mu_n - a_n ||$ converges a.s. to a finite limit

Example: Let $S = \{0, 1\}$. Then, $\sqrt{n} || \mu_n - a_n || \rightarrow 0$ in probability if the prior (i.e, the de Finetti's measure) is absolutely continuous and $n || \mu_n - a_n ||$ converges a.s. if the prior is absolutely continuous with an almost Lipschitz density