EXISTENCE OF PROPER REGULAR CONDITIONAL DISTRIBUTIONS

Pietro Rigo University of Pavia

Bologna, may 16, 2018

Classical (Kolmogorovian) conditional probabilities

Let (Ω, \mathcal{A}, P) be a probability space and $\mathcal{G} \subset \mathcal{A}$ a sub- σ -field.

A regular conditional distribution (rcd) is a map Q on $\Omega \times \mathcal{A}$ such that

(i) $Q(\omega, \cdot)$ is a probability on \mathcal{A} for $\omega \in \Omega$

(ii) $Q(\cdot, A)$ is \mathcal{G} -measurable for $A \in \mathcal{A}$

(iii) $P(A \cap B) = \int_B Q(\omega, A) P(d\omega)$ for $A \in \mathcal{A}$ and $B \in \mathcal{G}$

An rcd can fail to exist. However, it exists under mild conditions and is a.s. unique if \mathcal{A} is countably generated.

In the standard framework, thus, conditioning is with respect to a σ -field \mathcal{G} and not with respect to an event H.

What does it mean ?

According to the usual interpretation, it means: For each $B \in \mathcal{G}$, we now whether B is true or false. This naive interpretation is very dangerous.

Example 1 Let $X = \{X_t : t \ge 0\}$ be a process adapted to a filtration $\mathcal{F} = \{\mathcal{F}_t : t \ge 0\}$. Suppose P(X = x) = 0 for each path x and

 $\{A \in \mathcal{A} : P(A) = 0\} \subset \mathcal{F}_0.$

In this case,

 ${X = x} \in \mathcal{F}_0$ for each path x.

But then we can stop. We already know the X-path at time 0 !

Example 2 (Borel-Kolmogorov paradox) Suppose

$$\{X = x\} = \{Y = y\}$$

for some random variables X and Y. Let Q_X and Q_Y be rcd's given $\sigma(X)$ and $\sigma(Y)$. Then,

$$P(\cdot | X = x) = Q_X(\omega, \cdot)$$
 and $P(\cdot | Y = y) = Q_Y(\omega, \cdot)$

where $\omega \in \Omega$ meets $X(\omega) = x$ and $Y(\omega) = y$. Hence it may be that

$$P(\cdot | X = x) \neq P(\cdot | Y = y)$$
 even if $\{X = x\} = \{Y = y\}.$

Example 3 For the naive interpretation to make sense, Q should be **proper**, i.e.

 $Q(\omega, \cdot) = \delta_{\omega}$ on \mathcal{G} for almost all ω .

But Q needs not be proper. In fact, properness of Q essentially amounts to \mathcal{G} countably generated.

Conditional 0-1 laws

An rcd Q is 0-1 on ${\mathcal G}$ if

 $Q(\omega, \cdot) \in \{0, 1\}$ on \mathcal{G} for almost all ω

Why to focus on such a 0-1 law ?

- It is a (natural) consequence of properness
- It is equivalent to

 \mathcal{A} independent \mathcal{G} , under $Q(\omega, \cdot)$, for almost all ω

- It is basic for integral representation of invariant measures
- It is not granted. It typically fails if $\{A \in \mathcal{A} : P(A) = 0\} \subset \mathcal{G}$

Theorem 1

Let $\mathcal{G}_n \subset \mathcal{A}$ be a sub- σ -field and Q_n an rcd given \mathcal{G}_n .

The rcd Q is 0-1 on ${\cal G}$ if

- \bullet The "big" $\sigma\text{-field}\ \mathcal{A}$ is countably generated
- Q_n is 0-1 on \mathcal{G}_n for each n and $\mathcal{G} \subset \limsup_n \mathcal{G}_n$
- $E(\mathbf{1}_A | \mathcal{G}_n) \to E(\mathbf{1}_A | \mathcal{G})$ a.s. for each $A \in \mathcal{A}$

Note that, by martingale convergence, the last condition is automatically true if the sequence \mathcal{G}_n is monotonic

Examples

Let S be a Polish space and $\Omega = S^{\infty}$. Theorem 1 applies to

Tail σ -field: $\mathcal{G} = \cap_n \sigma(X_n, X_{n+1}, \ldots)$

where X_n is a sequence of real random variables

Symmetric σ -field:

 $\mathcal{G} = \{B \in \mathcal{A} : B = f^{-1}(B) \text{ for each finite permutation } f\}$

Thus,

Theorem 1 \Rightarrow de Finetti's theorem

Open problem: Theorem 1 does not apply to the **shift-invariant** σ -field:

 $\mathcal{G} = \{ B \in \mathcal{A} : B = s^{-1}(B) \}$

where $s(x_1, x_2, ...) = (x_2, x_3, ...)$ is the shift

Disintegrability

Let $\Pi \subset \mathcal{A}$ be a partition of Ω . P is disintegrable on Π if

 $P(A) = \int_{\prod} P(A|H) P^*(dH)$

for each $A \in \mathcal{A}$, where

• $P(\cdot|H)$ is a probability on \mathcal{A} such that

P(H|H) = 1

• P^* is a probability on a suitable σ -field of subsets of Π

Theorem 2

Given a partition Π of Ω , let

 $G = \{(x, y) \in \Omega \times \Omega : x \sim y\}.$

Then, P is disintegrable on Π whenever

- (Ω, \mathcal{A}) is nice (e.g. a standard space)
- G is a Borel subset of $\Omega \times \Omega$

Remark: G is actually a Borel set if Π is the partition in the atoms of the tail, or the symmetric, or the shift invariant σ -fields

Remark: The condition on G can be relaxed (e.g., G coanalytic)

Coherent (de Finettian) conditional probabilities

A different notion, introduced by de Finetti, is as follows.

Let

 $P(\cdot|\cdot) : \mathcal{A} \times \mathcal{G} \to R.$

For all $n \geq 1$, $c_1, \ldots, c_n \in R$, $A_1, \ldots, A_n \in \mathcal{A}$ and $B_1, \ldots, B_n \in \mathcal{G} \setminus \emptyset$, define

$$G(\omega) = \sum_{i=1}^{n} c_i \mathbf{1}_{B_i}(\omega) \{ \mathbf{1}_{A_i}(\omega) - P(A_i | B_i) \}.$$

Then, $P(\cdot|\cdot)$ is coherent if

 $\sup_{\omega \in B} G(\omega) \ge 0$ where $B = \bigcup_{i=1}^{n} B_i$.

Such a definition has both merits and drawbacks. In particular, contrary to the classical case:

- The conditioning is now with respect to events,
- P(B|B) = 1,
- For fixed B, $P(\cdot|B)$ is "only" a finitely additive probability,
- Disintegrability on Π is not granted, where Π is the partition of Ω in the atoms of ${\cal G}$

Bayesian inference

 $(\mathcal{X}, \mathcal{E})$ sample space, (Θ, \mathcal{F}) parameter space,

 $\{P_{\theta}: \theta \in \Theta\}$ statistical model,

A **prior** is a probability π on \mathcal{F} . A **posterior** for π is any collection $Q = \{Q_x : x \in \mathcal{X}\}$ such that

- Q_x is a probability on \mathcal{F} for each $x \in \mathcal{X}$
- $\int_A Q_x(B) m(dx) = \int_B P_\theta(A) \pi(d\theta)$

for all $A \in \mathcal{E}$ $B \in \mathcal{F}$ and for some (possibly finitely additive) probability m on subsets of \mathcal{X}

Theorem 3

Fix a measurable function T on \mathcal{X} (a statistic) such that

 $P_{\theta}(T=t) = 0$ for all θ and t.

Under mild conditions, for any prior $\pi,$ there is a posterior Q for π such that

 $T(x) = T(y) \Rightarrow Q_x = Q_y$

Interpretation:

The above condition means that T is **sufficient** for Q. Suppose you start with a prior π , describing your feelings on θ , and a statistic T, describing how different samples affect your inference on θ . Theorem 3 states that, whatever π and T (with $P_{\theta}(T = t) = 0$) there is a posterior Q for π which makes T sufficient.

Point estimation

The ideas underlying Theorem 3 yield further results. Suppose $\Theta \subset R$ and $d : \mathcal{X} \to \Theta$ is an estimate of θ .

Theorem 4

Under mild conditions, if the prior π is null on compacta, there is a posterior Q for π such that $\int \theta^2 Q_x(d\theta) < \infty$ and

$$E_Q(\theta|x) = \int \theta Q_x(d\theta) = d(x)$$

Interpretation:

The above condition means that d is optimal under square error loss. Suppose you start with a measurable map $d : \mathcal{X} \to \Theta$, to be regarded as your estimate of θ . Theorem 4 states that, if the prior π vanishes on compacta, there is a posterior Q for π which makes d optimal

Compatibility

Let $X = (X_1, \ldots, X_k)$ be a k-dimensional random vector and

 $X_{-i} = (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_k)$

To assess the distribution of X, assign the kernels Q_1, \ldots, Q_k , where each Q_i is only requested to satisfy

 $Q_i(x, \cdot)$ is a probability for fixed x and

the map $x \mapsto Q_i(x, A)$ is measurable for fixed A

The kernels Q_1, \ldots, Q_k are **compatible** if there is a Borel probability μ on R^k such that

 $P_{\mu}(X_i \in \cdot | X_{-i} = x) = Q_i(x, \cdot)$

for all i and μ -almost all x.

Such a μ , if exists, should be regarded as the distribution of X

Example: Let k = 2 and

$$Q_1(x,\cdot) = Q_2(x,\cdot) = \mathcal{N}(x,1)$$

This looks reasonable in a number of problems. Nevertheless, Q_1 and Q_2 are not compatible, i.e., no Borel probability on R^2 admits Q_1 and Q_2 as conditional distributions

Compatibility issues arise in: **spatial statistics, statistical mechanics, Bayesian image analysis, multiple data imputation and Gibbs sampling**

Another example are **improper priors**. Given the statistical model $\{P_{\theta} : \theta \in \Theta\}$, let $Q = \{Q_x : x \in \mathcal{X}\}$ be the "formal posterior" of an improper prior γ (i.e., $\gamma(\Theta) = \infty$). Strictly speaking, Q makes sense only if compatible with the statistical model. In that case, Q agrees with the posterior of some (proper) prior

For $x \in \mathbb{R}^k$ and $f \in C_b(\mathbb{R}^k)$, let

$$E(f | X_{-i} = x_{-i}) = \int f(x_1, \dots, x_{i-1}, t, x_{i+1}, \dots, x_k) Q_i(x_{-i}, dt)$$

Theorem 5

Suppose there is a compact set A_i such that

 $Q_i(x, A_i) = 1$ for all $x \in \mathbb{R}^{k-1}$.

Letting $A = A_1 \times \ldots \times A_k$, suppose also that

 $x \mapsto E(f | X_{-i} = x_{-i})$ is continuous on A for each $f \in C(A)$

Then, Q_1, \ldots, Q_k are compatible if and only if

$$\sup_{x \in A} \sum_{i=1}^{k-1} \{ E(f_i | X_{-i} = x_{-i}) - E(f_i | X_{-k} = x_{-k}) \} \ge 0$$

for all $f_1, \ldots, f_{k-1} \in C(A)$

For each *i*, fix a (σ -finite) measure λ_i and suppose that

 $Q_i(x, dy) = f_i(x, y) \lambda_i(dy)$ for all $x \in \mathbb{R}^{k-1}$

Let $\lambda = \lambda_1 \times \ldots \times \lambda_k$ be the product measure

Theorem 6

Suppose $f_i > 0$ for all *i*. Then, Q_1, \ldots, Q_k are compatible if and only if there are positive Borel functions u_1, \ldots, u_k on R^{k-1} such that

 $f_i(x_i | x_{-i}) = f_k(x_k | x_{-k}) u_i(x_{-i}) u_k(x_{-k}),$

for all i < k and λ -almost all $x \in R^k$, and

 $\int u_k d\lambda_{-k} = 1$

Remark: The assumption $f_i > 0$ can be dropped at the price of a more involved statement

An asymptotic result

Let S be a Polish space, (X_n) an **exchangeable** sequence of S-valued random variables, and

 $\mu_n = (1/n) \sum_{i=1}^n \delta_{X_i}$ empirical measure

 $a_n(\cdot) = P(X_{n+1} \in \cdot | X_1, \dots, X_n)$ predictive measure

Often, a_n can not be evaluated in closed form and μ_n is a reasonable "estimate" of a_n . Here, we focus on the error

 $d(\mu_n, a_n)$

where d is a distance between probability measures. For instance, if

 $d(\mu_n, a_n) \rightarrow 0$ in some sense

then μ_n is a **consistent** estimate of a_n

Fix a class $\mathcal D$ of Borel subsets of S and define d as

$$d(\alpha,\beta) = ||\alpha - \beta|| = \sup_{A \in \mathcal{D}} |\alpha(A) - \beta(A)|$$

for all probabilities α and β on the Borel subsets of S

Theorem 7

If \mathcal{D} is a (countably determined) VC-class,

$$\left|\limsup_n \sqrt{\frac{n}{\log\log n}} ||\mu_n - a_n|| \le 1/\sqrt{2} \right|$$
 a.s.

Hence, for any constants r_n ,

$$r_n ||\mu_n - a_n|| \to 0$$
 a.s. provided $r_n \sqrt{\frac{\log \log n}{n}} \to 0$

Remark: If $S = R^k$,

$$\mathcal{D} = \{ closed balls \}, \mathcal{D} = \{ half spaces \}, and$$

 $\mathcal{D} = \{(-\infty, t] : t \in \mathbb{R}^k\}$

are (countably determined) VC-classes

Remark: It is possible to give conditions for

 $\sqrt{n} \left| \left| \mu_n - a_n \right| \right|
ightarrow 0$ in probability

or even for

 $n ||\mu_n - a_n||$ converges a.s. to a finite limit

Example: Let $S = \{0, 1\}$. Then, $\sqrt{n} ||\mu_n - a_n|| \rightarrow 0$ in probability if the prior (i.e, the de Finetti's measure) is absolutely continuous and $n ||\mu_n - a_n||$ converges a.s. if the prior is absolutely continuous with an almost Lipschitz density