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e Reggio-Emilia, via Campi 213/B, 41100 Modena, Italy
∗∗ Postal address: IMT School for Advanced Studies, Piazza San Ponziano 6, 55100 Lucca, Italy
∗∗∗ Postal address: Accademia Navale, viale Italia 72, 57100 Livorno, Italy
∗∗∗∗ Postal address: Dipartimento di Matematica “F. Casorati”, Università di Pavia, via Ferrata 1,
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Abstract

An urn contains black and red balls. Let Zn be the proportion of black balls at

time n and 0 ≤ L < U ≤ 1 random barriers. At each time n, a ball bn is drawn.

If bn is black and Zn−1 < U , then bn is replaced together with a random number

Bn of black balls. If bn is red and Zn−1 > L, then bn is replaced together with

a random number Rn of red balls. Otherwise, no additional balls are added,

and bn alone is replaced. In this paper, we assume Rn = Bn. Then, under

mild conditions, it is shown that Zn
a.s.−→ Z for some random variable Z, and

Dn :=
√
n (Zn − Z) −→ N (0, σ2) conditionally a.s.

where σ2 is a certain random variance. Almost sure conditional convergence

means that

P
(
Dn ∈ · | Gn

) weakly−→ N (0, σ2) a.s.

where P
(
Dn ∈ · | Gn

)
is a regular version of the conditional distribution of Dn

given the past Gn. Thus, in particular, one obtains Dn −→ N (0, σ2) stably. It

is also shown that L < Z < U a.s. and Z has non-atomic distribution.

Keywords: Bayesian nonparametrics; Central limit theorem; Random probabil-

ity measure; Stable convergence; Urn model
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1. Introduction

In recent times, there is a growing interest on randomly reinforced urns. A mean-

ingful version of the latter, introduced in [3] and supported by real applications, is the

following.

1.1. Framework

An urn contains b > 0 black balls and r > 0 red balls. At each time, a ball is drawn

and then replaced, possibly together with a random number of balls of the same color.

Precisely, for each n ≥ 1, let bn denote the ball drawn at time n and Zn the proportion

of black balls in the urn at time n. Then,

• If bn is black and Zn−1 < U , where U is a random barrier, bn is replaced together
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with a random number Bn ≥ 0 of black balls;

• If bn is red and Zn−1 > L, where L < U is another random barrier, bn is replaced

together with a random number Rn ≥ 0 of red balls;

• Otherwise, bn is replaced without additional balls, so that the composition of the

urn does not change.

To model such urns, we fix a probability space (Ω,A, P ) supporting the random

variables (L,U,Xn, Bn, Rn : n ≥ 1) such that

0 ≤ L < U ≤ 1; Xn ∈ {0, 1}; 0 ≤ Bn, Rn ≤ c for some constant c.

We let

G0 = σ(L,U), Gn = σ
(
L,U,X1, B1, R1, . . . , Xn, Bn, Rn

)
, Z0 = b/(b+ r),

Zn =
b+

∑n
i=1XiBi I{Zi−1<U}

b+ r +
∑n
i=1

[
XiBi I{Zi−1<U} + (1−Xi)Ri I{Zi−1>L}

] .
Further, we assume

E(Xn+1 | Gn) = Zn a.s. and

(Bn, Rn) independent of σ
(
Gn−1, Xn).

Clearly, Xn should be regarded as the indicator of the event {black ball at time n}

and Zn as the proportion of black balls in the urn at time n.

1.2. State of the art

Though the literature on randomly reinforced urns is quite huge, random barriers

are not so popular. In other terms, the case L = 0 and U = 1 is widely investigated

(see e.g. [1], [2], [4]-[6], [8], [11]-[15] and references therein) but

P
(
{L > 0} ∪ {U < 1}

)
> 0

is almost neglected. To our knowledge, the only explicit reference is [3]. In such a

paper, the barriers L and U are not random (i.e., they are constant) and (Bn) and

(Rn) are independent sequences of i.i.d. random variables. The a.s. convergence of

Zn is investigated, and it is shown that Zn
a.s.−→ L if E(B1) < E(R1) and Zn

a.s.−→ U if

E(B1) > E(R1). Among other applications, this model could be usefully exploited in
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clinical trials, when a response adaptive design is requested targeting a fixed asymptotic

allocation.

1.3. Results

In a sense, this paper deals with the opposite case with respect to [3]. Indeed, while

(Bn) and (Rn) are independent sequences in [3], throughout this paper it is assumed

that

Rn = Bn for each n ≥ 1. (1)

Condition (1) looks reasonable in several real applications. Furthermore, under (1),

in addition to the a.s. convergence of Zn, a central limit theorem can be obtained.

Precisely, the following two results are proved.

Theorem 1.1. In the framework of Subsection 1.1, suppose

Rn = Bn and lim inf
n

E(Bn) > 0.

Then,

Zn
a.s.−→ Z

for some random variable Z such that L ≤ Z ≤ U and 0 < Z < 1 a.s.

Theorem 1.2. In the framework of Subsection 1.1, suppose

Rn = Bn, m := lim
n
E(Bn) > 0 and q := lim

n
E(B2

n).

Define

Dn =
√
n (Zn − Z) and σ2 = q Z (1− Z)/m2,

where Z is the a.s. limit of Zn. Then,

Dn −→ N (0, σ2) conditionally a.s. with respect to (Gn).

Moreover, Z has a non-atomic distribution and L < Z < U a.s.

In Theorem 1.2, N (a, b) denotes the Gaussian law with mean a and variance b ≥ 0,

where N (a, 0) = δa. Almost sure conditional convergence is a strong form of stable
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convergence, introduced in [9]-[10] and involved in [2], [6], [14], [15]. The general

definition is discussed in Section 2. In the present case, it means that

P
(
Dn ∈ · | Gn

)
(ω)

weakly−→ N (0, σ2(ω)) for almost all ω ∈ Ω

where P
(
Dn ∈ · | Gn

)
is a regular version of the conditional distribution of Dn given

Gn. Thus, in particular, Theorem 1.2 yields

Dn −→ N (0, σ2) stably;

see Lemma 2.1.

Theorems 1.1-1.2 establish the asymptotics for randomly reinforced urns with ran-

dom barriers when Rn = Bn. The case Rn 6= Bn, as well as some other possible

developments, are discussed in Section 4.

A last note is that Theorem 1.2 agrees with the result obtained when random barriers

are not taken into account. Indeed, if L = 0 and U = 1, Theorem 1.2 follows from [6,

Corollary 3]. Similarly, Theorem 1.1 is quite in line with intuition. Thus, in a sense,

Theorems 1.1-1.2 are fairly expected. Despite this fact, their proofs (or at least our

proofs) are long and surprisingly involved. Such proofs are delayed to Section 3 after

recalling some technical facts in Section 2.

2. Almost sure conditional convergence

Almost sure conditional convergence, introduced in [9]-[10], may be regarded as a

strong form of stable convergence. We now make it precise.

Let (Ω,A, P ) be a probability space and S a metric space. A kernel on S (or a

random probability measure on S) is a measurable collection N = {N(ω) : ω ∈ Ω} of

probability measures on the Borel σ-field on S. Measurability means that

N(·)(f) =

∫
f(x)N(·)(dx)

is a real random variable for each bounded Borel map f : S → R. To denote such

random variable, in the sequel, we will often write N(f) instead of N(·)(f).

For each n ≥ 1, fix a sub-σ-field Fn ⊂ A. Also, let (Yn) be a sequence of S-valued

random variables and N a kernel on S. Say that Yn converges to N , conditionally a.s.
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with respect to (Fn), if

E
{
f(Yn) | Fn

} a.s.−→ N(f) for each f ∈ Cb(S). (2)

If S is Polish, condition (2) has a quite transparent meaning. Suppose in fact S is

Polish and fix a regular version P
(
Yn ∈ · | Fn

)
of the conditional distribution of Yn

given Fn. Then, condition (2) is equivalent to

P
(
Yn ∈ · | Fn

)
(ω)

weakly−→ N(ω) for almost all ω ∈ Ω.

So far, (Fn) is an arbitrary sequence of sub-σ-fields. Suppose now that (Fn) is a

filtration, in the sense that Fn ⊂ Fn+1 ⊂ A for each n. Then, under a mild measura-

bility condition, almost sure conditional convergence implies stable convergence. This

is noted in [9, Section 5] but we give a proof to make the paper self-contained. Let

F∞ = σ
(
∪nFn

)
.

Lemma 2.1. Suppose (Fn) is a filtration such that

N(f) and Yn are F∞-measurable for all f ∈ Cb(S) and n ≥ 1.

If Yn → N conditionally a.s. with respect to (Fn), then Yn → N stably, that is

E
{
N(f) | H

}
= lim

n
E
{
f(Yn) | H

}
whenever f ∈ Cb(S), H ∈ A and P (H) > 0.

Proof. Let f ∈ Cb(S) and H ∈ A. If H ∈ ∪nFn, then H ∈ Fn for each sufficiently

large n, so that

E
{
N(f) IH

}
= lim

n
E
(
E
{
f(Yn) | Fn

}
IH

)
= lim

n
E
{
f(Yn) IH}.

Since ∪nFn is a field, by standard arguments one obtains

E
{
N(f)V

}
= lim

n
E
{
f(Yn)V } whenever V is bounded and F∞-measurable.

Hence, for arbitrary H ∈ A, the measurability condition implies

E
{
N(f) IH

}
= E

(
N(f)E(IH | F∞)

)
= lim

n
E
(
f(Yn)E(IH | F∞)

)
= lim

n
E
{
f(Yn) IH}.
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Note that the measurability condition of Lemma 2.1 is trivially true if F∞ = A.

We refer to [9]-[10] for more on almost sure conditional convergence. Here, for easy

of reference, we report three useful facts. The first and the second are already known

(see [6, Proposition 1 and Lemma 2] and [10, Theorem 2.2]) while the third is a quick

consequence of condition (2). In each of these facts, (Fn) is a filtration.

Lemma 2.2. Suppose the Yn are real random variables such that Yn
a.s.−→ Y . Then,

√
n (Yn − Y ) −→ N (0, U), conditionally a.s. with respect to (Fn),

where U is a real random variable, provided

(i) (Yn) is a uniformly integrable martingale with respect to (Fn);

(ii) E
{

supn
√
n |Yn − Yn−1|

}
<∞;

(iii) n
∑
k≥n(Yk − Yk−1)2

a.s.−→ U .

Lemma 2.3. Suppose the Yn are real random variables. If (Yn) is adapted to (Fn),∑
n n
−2E(Y 2

n ) <∞ and E
(
Yn+1 | Fn

) a.s.−→ U , for some real random variable U , then

n
∑
k≥n

Yk
k2

a.s.−→ U and
1

n

n∑
k=1

Yk
a.s.−→ U.

Lemma 2.4. Suppose Yn → N conditionally a.s. with respect to (Fn). Define Q(A) =

E
{
IA V } for A ∈ A, where V ≥ 0, E(V ) = 1 and V is F∞-measurable. Then Yn → N ,

conditionally a.s. with respect to (Fn), under Q as well.

Proof. Suppose first supV <∞ and define Kn = V −E(V | Fn). Given f ∈ Cb(S),

EQ
{
f(Yn) | Fn

}
=
E
{
V f(Yn) | Fn

}
E(V | Fn)

= E
{
f(Yn) | Fn

}
+
E
{
Kn f(Yn) | Fn

}
E(V | Fn)

, Q-a.s.,

where EQ denotes expectation under Q. Since σ(V ) ⊂ F∞ and |Kn| ≤ supV a.s., the

martingale convergence theorem (in the version of [7]) implies

E(V | Fn)
a.s.−→ E(V | F∞) = V and∣∣∣E{Kn f(Yn) | Fn
}∣∣∣ ≤ sup|f |E

{
|Kn| | Fn

} a.s.−→ 0.

Since Q(V > 0) = 1, one obtains EQ
{
f(Yn) | Fn

}
→ N(f), Q-a.s. This con-

cludes the proof for bounded V . If V is not bounded, it suffices to reply V with

V I{V≤v}/E
(
V I{V≤v}

)
and to take the limit as v →∞.
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3. Proofs

In the sequel, for any events An ∈ A and B ∈ A, we say that An is eventually true

on B (or, more briefly, An eventually on B) whenever

P
{
ω ∈ B : ω /∈ An for infinitely many n

}
= 0.

Assume the conditions of Subsection 1.1 and Rn = Bn. Let

Sn = b+ r +

n∑
i=1

[
XiBi I{Zi−1<U} + (1−Xi)Bi I{Zi−1>L}

]
denote the denominator of Zn, namely, the number of balls in the urn at time n. Also,

the filtration (Gn) is abbreviated by G.

After some (tedious but easy) algebra, one obtains

Zn+1 − Zn = ZnHn + ∆n+1,

where

Hn =
Bn+1

Sn +Bn+1
(1− Zn)

(
I{Zn<U} − I{Zn>L}

)
,

∆n+1 =
Bn+1

Sn +Bn+1
(Xn+1 − Zn)

(
(1− Zn)I{Zn<U} + ZnI{Zn>L}

)
.

This writing of Zn+1 − Zn is fundamental for our purposes.

3.1. Proof of Theorem 1.1

In this subsection, it is assumed that

lim inf
n

E(Bn) > 0.

Since

E
(
Xn+1 | Gn, Bn+1

)
= E(Xn+1 | Gn) = Zn a.s.,

then

E(∆n+1 | Gn) = 0 a.s.

This fact has two useful consequences. First,

Mn =

n∑
i=1

∆i
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is a G-martingale. Second, (Zn) is a G-sub-martingale in case U = 1. In fact, U = 1

implies Hn ≥ 0, so that

E
{
Zn+1 − Zn | Gn

}
= E

{
ZnHn + ∆n+1 | Gn

}
= ZnE(Hn | Gn) ≥ 0 a.s.

Similarly, if L = 0 then (Zn) is a G-super-martingale. Therefore, it is not hard to see

that Zn converges a.s. on the set {L = 0} ∪ {U = 1}.

We next state two lemmas.

Lemma 3.1. Let Z∗ = lim infn Zn and Z∗ = lim supn Zn. Each of the following

statements implies the subsequent:

(a) 0 < L < U < 1 a.s.;

(b) 0 < Z∗ ≤ Z∗ < 1 a.s.;

(c) lim infn(Sn/n) > 0 a.s.;

(d) Mn converges a.s.

Proof. “(a) =⇒ (b)”. Let H = {Z∗ = 0, L > 0}. On the set H, one obtains

sup
n
Sn =∞, lim

n
(Zn+1 − Zn) = 0, Zn > L for infinitely many n.

Define τ0 = 0 and

τn = inf
{
k : k > τn−1, Zk−1 > L, Zk ≤ L

}
.

Then, τn < ∞ for all n on H. Observe now that Zj ≥ Zj−1 whenever Zj−1 ≤ L.

Hence, Z∗ = lim infn Zn = lim infn Zτn on H, which implies the contradiction

Z∗ ≥ lim inf
n

Zτn−1
+ lim inf

n
(Zτn − Zτn−1

) = lim inf
n

Zτn−1
≥ L > 0 a.s. on H.

Thus, under (a), one obtains P (Z∗ = 0) = P (H) = 0. Similarly, P (Z∗ = 1) = 0.

“(b) =⇒ (c)”. Define

Kn =

n∑
i=1

I{Zi−1<U}
[
XiBi − Zi−1E(Bi)

]
+ I{Zi−1>L}

[
(1−Xi)Bi − (1− Zi−1)E(Bi)

]
i

.
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Since Kn is a G-martingale and supnE(K2
n) < ∞, then Kn converges a.s. Thus,

Kronecker lemma implies (1/n)
∑n
i=1 iKi

a.s.−→ 0, so that

lim inf
n

Sn
n

= lim inf
n

1

n

n∑
i=1

(
I{Zi−1<U}Zi−1E(Bi) + I{Zi−1>L} (1− Zi−1)E(Bi)

)
a.s.

Since I{Zi−1<U} + I{Zi−1>L} ≥ 1, one finally obtains

lim inf
n

Sn
n
≥
{
Z∗ ∧ (1− Z∗)

}
lim inf

n
E(Bn) > 0 a.s.

“(c) =⇒ (d)”. Since 0 ≤ Bn+1 ≤ c,

E
{

(Mn+1 −Mn)2 | Gn
}

= E(∆2
n+1 | Gn) ≤ E

(B2
n+1

S2
n

| Gn
)

=
E(B2

n+1)

S2
n

≤ c2

n2
1

(Sn/n)2
a.s.

Thus,
∑
nE
{

(Mn+1 − Mn)2 | Gn
}
< ∞ a.s. by condition (c). It follows that the

G-martingale Mn converges a.s.

Lemma 3.2. If lim infn(Sn/n) > 0 a.s., then P (D) = 0 where

D =
{
Za ≤ L for infinitely many a and Zb ≥ U for infinitely many b

}
.

Proof. On D, there is a sequence (an, bn) such that a1 < b1 < a2 < b2 < . . . and

Zan ≤ L, Zbn ≥ U, L < Zk < U for each an < k < bn.

Since Hk = 0 if an < k < bn, then

U − L ≤ Zbn − Zan =

bn−1∑
k=an

(Zk+1 − Zk) =

bn−1∑
k=an

(ZkHk + ∆k+1) = ZanHan +Mbn −Man .

Since lim infn(Sn/n) > 0 a.s., then supn Sn = ∞ a.s., which implies Hn
a.s.−→ 0. Also,

by Lemma 3.1, Mn converges a.s. Hence, taking the limit as n → ∞, one obtains

U − L ≤ 0 a.s. on D. Therefore, P (D) = 0.

We are now ready to prove a.s. convergence of Zn.

Since Zn converges a.s. on the set {L = 0}∪{U = 1}, it can be assumed P (0 < L <

U < 1) > 0. In turn, up to replacing P with P (· | 0 < L < U < 1), it can be assumed

0 < L < U < 1 a.s. Then, Lemmas 3.1-3.2 imply P (Dc) = 1 and a.s. convergence of

Mn. Write

Zn − Z0 =

n−1∑
i=0

(Zi+1 − Zi) =

n−1∑
i=0

ZiHi +Mn = Kn +Mn
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where Kn =
∑n−1
i=0 ZiHi. On the set Dc, one has either ZiHi ≥ 0 eventually or

ZiHi ≤ 0 eventually. Hence, on Dc, the sequence Kn converges if and only if it is

bounded. But Kn is a.s. bounded, since |Kn| ≤ 1 + supk|Mk| and Mn converges a.s.

Thus, Zn converges a.s. on Dc. This proves a.s. convergence of Zn for P (Dc) = 1.

Let Z denote the a.s. limit of Zn. Since Zn
a.s.−→ 1 on the set {Z < L} and Zn

a.s.−→ 0

on the set {Z > U}, then L ≤ Z ≤ U a.s.

It remains to see that

P (Z = 0) = P (Z = 1) = 0.

We just prove P (Z = 1) = 0. The proof of P (Z = 0) = 0 is quite analogous.

Since Z ≤ U ≤ 1 a.s., then P (Z = 1) ≤ P (U = 1). Thus, it can be assumed

P (U = 1) > 0. In turn, up to replacing P with P (· | U = 1), it can be assumed U = 1

everywhere. Then, Zn is a G-sub-martingale, so that

Yn = Zn/(1− Zn)

is still a G-sub-martingale. Let H =
{∑

nE
{
Yn+1 − Yn | Gn

}
< ∞

}
. Since Yn is a

positive G-sub-martingale, Yn converges a.s. (to a real random variable) on the set H.

Thus, to get P (Z = 1) = 0, it suffices to show that

∑
n

E
{
Yn+1 − Yn | Gn

}
<∞ a.s. on the set {Z = 1}. (3)

To prove (3), let

Jn = b+

n∑
i=1

XiBi and Ln = Sn − Jn = r +

n∑
i=1

(1−Xi)Bi I{Zi−1>L}

be the numbers of black balls and red balls, respectively, in the urn at time n (recall

that U = 1, so that Zi−1 < U is automatically true). On noting that Yn = Jn/Ln, one
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obtains

E
{
Yn+1 − Yn | Gn

}
= −Yn + E

{Jn +Bn+1

Ln
Xn+1 +

Jn
Ln + I{Zn>L}Bn+1

(1−Xn+1) | Gn
}

= −Yn + ZnE
{Jn +Bn+1

Ln
| Gn

}
+ (1− Zn)E

{ Jn
Ln + I{Zn>L}Bn+1

| Gn
}

= −Yn (1− Zn) +
ZnE(Bn+1)

Ln
+ Yn (1− Zn)E

{ Ln
Ln + I{Zn>L}Bn+1

| Gn
}

=
ZnE(Bn+1)

Ln
− Zn I{Zn>L}E

{ Bn+1

Ln + I{Zn>L}Bn+1
| Gn

}
≤ ZnE(Bn+1)

Ln
− Zn I{Zn>L}E

{ Bn+1

Ln + c
| Gn

}
=
ZnE(Bn+1)

Ln
− Zn I{Zn>L}

E(Bn+1)

Ln + c
a.s.

Since Zn
a.s.−→ Z, then Zn > L eventually on the set {Z = 1}. Hence,

E
{
Yn+1 − Yn | Gn

}
≤ ZnE(Bn+1)

( 1

Ln
− 1

Ln + c

)
≤ c2

L2
n

eventually on {Z = 1}.

Next, given k ∈ (1, 2), it is not hard to see that

E
{ Jn+1

Lkn+1

− Jn
Lkn
| Gn

}
≤ 0 eventually on {Z = 1}.

We omit the calculations for they exactly agree with those for proving [13, Lemma

A.1(ii)]. Thus, the sequence Jn/L
k
n converges a.s. on {Z = 1}. Furthermore, indepen-

dence of the Bn yields

lim inf
n

Jn
n

= lim inf
n

∑n
i=1Bi
n

Sn∑n
i=1Bi

Zn = lim inf
n

∑n
i=1Bi
n

= lim inf
n

∑n
i=1E(Bi)

n
≥ lim inf

n
E(Bn) > 0 a.s. on {Z = 1}.

Given any γ < 1, it follows that

nγ

Lkn
=
nγ

n

n

Jn

Jn
Lkn

a.s.−→ 0 a.s. on {Z = 1}.

Thus,

Ln > nγ/k eventually on {Z = 1}.

Since k < 2, one can take γ < 1 such that γ/k > 1/2. Therefore, condition (3) holds,

and this concludes the proof of Theorem 1.1.
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3.2. Proof of Theorem 1.2

In this subsection, it is assumed that

m := lim
n
E(Bn) > 0 and q := lim

n
E(B2

n).

By Theorem 1.1, Zn
a.s.−→ Z for some random variable Z such that L ≤ Z ≤ U and

0 < Z < 1 a.s.

On noting that

0 < Z∗ = Z = Z∗ < 1 a.s.,

the same argument used after Lemma 3.2 yields
∑
n Zn|Hn| < ∞ a.s. Since Z > 0

a.s., it follows that ∑
n

|Hn| <∞ a.s. (4)

Define

Tn =

n−1∏
i=1

(1 +Hi) and Wn =
Zn
Tn
.

Condition (4) implies Tn
a.s.−→ T , for some real random variable T > 0, so that

Wn
a.s.−→ Z/T := W.

Our next goal is to show that
√
n (Wn −W ) converges conditionally a.s. To this

end, we first fix the asymptotic behavior of Sn.

Lemma 3.3. Sn/n
a.s.−→ m.

Proof. Let Qn =
∑n
i=1Bi

[
XiI{Zi−1≥U} + (1 − Xi)I{Zi−1≤L}

]
. Since Zi

a.s.−→ Z,

then 1− Zi > (1− Z)/2 eventually. Moreover, I{Zi−1≥U} + I{Zi−1≤L} = |I{Zi−1<U} −

I{Zi−1>L}|. Therefore,

Bi
[
XiI{Zi−1≥U} + (1−Xi)I{Zi−1≤L}

]
≤ Bi |I{Zi−1<U} − I{Zi−1>L}|

= |Hi−1|
Si−1 +Bi
1− Zi−1

≤ 2 |Hi−1|
1− Z

(Si−1 +Bi) eventually.

By condition (4) and Kronecker lemma,

Qn
Sn
≤ 2

1− Z
1

Sn

n∑
i=1

|Hi−1|Si−1 +
2 c

1− Z
1

Sn

n∑
i=1

|Hi−1|
a.s.−→ 0.
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Hence,

Qn
n

=
Qn
Sn

Sn
n
≤ Qn
Sn

r + b+ nc

n

a.s.−→ 0.

On noting that (1/n)
∑n
i=1Bi

a.s.−→ m, one finally obtains

Sn
n

=
r + b

n
− Qn

n
+

∑n
i=1Bi
n

a.s.−→ m.

In view of the next lemma, we recall that

σ2 = q Z (1− Z)/m2.

Lemma 3.4.

√
n (Wn −W ) −→ N

(
0, σ2/T 2

)
conditionally a.s. with respect to G.

Proof. First note that Wn can be written as

Wn = Z1 +

n−1∑
i=1

∆i+1

Ti+1
.

Thus, Wn is a G-martingale and the obvious strategy would be applying Lemma 2.2

to Yn = Wn. However, conditions (i)-(ii)-(iii) are not easy to check with Yn = Wn.

Accordingly, we adopt an approximation procedure.

Given ε > 0, define

W (ε)
n = Z1 +

n−1∑
i=1

∆i+1 IAi

ε ∨ Ti+1
where Ai = {2Si > im}.

For fixed ε > 0, W
(ε)
n is still a G-martingale and

sup
n
E
{

(W (ε)
n )2

}
≤ 1 +

1

ε2

∞∑
i=1

E
{

∆2
i+1 IAi

}
≤ 1 +

c2

ε2

∞∑
i=1

E
{IAi

S2
i

}
≤ 1 +

( 2 c

m ε

)2 ∞∑
i=1

1

i2
.

Hence, W
(ε)
n

a.s.−→ W (ε) for some random variable W (ε). Since Sn/n
a.s.−→ m, the events

An are eventually true, so that

W −Wn =
∑
i≥n

∆i+1

Ti+1
=
∑
i≥n

∆i+1 IAi

ε ∨ Ti+1
= W (ε) −W (ε)

n eventually on {T > ε}.

Therefore, it suffices to show that, for fixed ε > 0,

√
n
{
W (ε)
n −W (ε)

}
−→ N

(
0, σ2/(ε ∨ T )2

)
conditionally a.s. with respect to G.
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In turn, since W
(ε)
n is a uniformly integrable G-martingale, it suffices to check conditions

(ii)-(iii) of Lemma 2.2 with Yn = W
(ε)
n and U = σ2/(ε ∨ T )2. As to (ii),

E
{(

sup
n

√
n |W (ε)

n −W
(ε)
n−1|

)4} ≤∑
n

n2E
{

(W (ε)
n −W

(ε)
n−1)4

}
≤ 1

ε4

∑
n

n2E
{

∆4
n IAn−1

}
≤ c4

ε4

∑
n

n2E
{IAn−1

S4
n−1

}
≤
( 2 c

m ε

)4∑
n

n2

(n− 1)4
<∞.

We next turn to condition (iii). We have to prove

n
∑
k≥n

(
W

(ε)
k −W

(ε)
k−1
)2

= n
∑
k≥n

IAk−1
∆2
k

(ε ∨ Tk)2
a.s.−→ σ2/(ε ∨ T )2.

Since Tk
a.s.−→ T , the above condition reduces to

n
∑
k≥n

IAk−1
∆2
k
a.s.−→ σ2. (5)

Since 1 − Zk > (1 − Z)/2 eventually and
∑
k|Hk| < ∞ a.s., Abel summation formula

yields

n
∑
k≥n

IAk−1

B2
k

(Sk−1 +Bk)2

(
I{Zk−1≥U} + I{Zk−1≤L}

)
= n

∑
k≥n

IAk−1

Bk
Sk−1 +Bk

|Hk−1|
1− Zk−1

≤ 2 c n

1− Z
∑
k≥n

IAk−1

|Hk−1|
Sk−1

≤ 4 c n

m(1− Z)

∑
k≥n

|Hk−1|
k − 1

a.s.−→ 0.

Hence, to get (5), it suffices to prove that

n
∑
k≥n

IAk−1

B2
k

(Sk−1 +Bk)2
(Xk − Zk−1)2

a.s.−→ σ2.

Finally, such condition follows from Lemma 2.3 if E(Vn+1 | Gn)
a.s.−→ σ2, where

Vn = n2IAn−1

B2
n

(Sn−1 +Bn)2
(Xn − Zn−1)2.

In fact,

E(Vn+1 | Gn) = IAn (n+ 1)2E
{ B2

n+1

(Sn +Bn+1)2
(Xn+1 − Zn)2 | Gn

}
≤ (n+ 1)2E

{B2
n+1

S2
n

(Xn+1 − Zn)2 | Gn
}

=
(n+ 1)2

S2
n

E
{
B2
n+1 (Xn+1 − Zn)2 | Gn

}
=

(n+ 1)2

S2
n

E(B2
n+1)E

{
(Xn+1 − Zn)2 | Gn

}
=

(n+ 1)2

S2
n

E(B2
n+1)Zn (1− Zn)

a.s.−→ q Z (1− Z)

m2
= σ2.
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Since the events An are eventually true, one similarly obtains

E(Vn+1 | Gn) ≥ IAn (n+ 1)2E
{ B2

n+1

(Sn + c)2
(Xn+1 − Zn)2 | Gn

}
= IAn

(n+ 1)2

(Sn + c)2
E
{
B2
n+1 (Xn+1 − Zn)2 | Gn

} a.s.−→ σ2.

Hence, E(Vn+1 | Gn)
a.s.−→ σ2. This proves condition (5) and concludes the proof of the

lemma.

Theorem 1.2 is a quick consequence of Lemma 3.4. Define in fact

Dn =
√
n (Zn − Z) and Fn =

∞∏
i=n

(1 +Hi).

Because of Lemma 3.4,

√
n
(
Fn Zn − Z

)
= T
√
n (Wn −W ) −→ N (0, σ2)

conditionally a.s. with respect to G.

If L < Z < U a.s., then L < Zn < U eventually, which in turn implies Fn = 1

and Dn =
√
n
(
Fn Zn − Z

)
eventually. Thus Dn −→ N (0, σ2), conditionally a.s. with

respect to G, provided L < Z < U a.s.

Lemma 3.5. P (L < Z < U) = 1.

Proof. We just prove P (Z = L) = 0. The proof of P (Z = U) = 0 is the same.

Since P (Z = L = 0) ≤ P (Z = 0) = 0, it suffices to show that P (Z = L > 0) = 0.

Let H = {Z = L > 0}. Toward a contradiction, suppose P (H) > 0 and define

Q(·) = P (· | H). Since
√
n (Zn − L) is Gn-measurable and

Dn =
√
n (Zn − Z) ≤

√
n (ZnFn − Z) if Fn ≥ 1,

then

I{
√
n (Zn−L)≤0} = Q

(
Dn ≤ 0 | Gn

)
≥ Q

(
Fn ≥ 1,

√
n (ZnFn − Z) ≤ 0 | Gn

)
≥ Q

(√
n (ZnFn − Z) ≤ 0 | Gn

)
−Q(Fn < 1 | Gn) a.s.

Since Zn < U eventually on H, then Fn ≥ 1 eventually on H. Hence, the martingale

convergence theorem in [7] yields Q(Fn < 1 | Gn)
Q−a.s.−→ 0. By Lemma 2.4 and σ2 > 0
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a.s., it follows that

Q
(√

n (ZnFn − Z) ≤ 0 | Gn
)
Q−a.s.−→ N (0, σ2)

(
(−∞, 0]

)
= 1/2.

Thus, I{
√
n (Zn−L)≤0}

Q−a.s.−→ 1, namely, Zn ≤ L eventually on H, which implies the

contradiction Zn
a.s.−→ 1 on H. Thus, P (H) = 0.

It remains only to show that Z has non-atomic distribution. This follows from the

same argument of Lemma 3.5. Suppose in fact P (Z = z) > 0 for some z ∈ (0, 1) and

define Q(·) = P (· | Z = z). Then, on the complement of a Q-null set, one obtains the

contradiction σ2 = q z (1− z)/m2 > 0 and

δ√n (Zn−z)(·) = Q
(
Dn ∈ · | Gn

)
weakly−→ N (0, σ2).

This concludes the proof of Theorem 1.2.

4. Concluding remarks

Some hints for future research, partly suggested by an anonymous referee, are listed

in this section.

• The assumption Rn = Bn makes sense in a number of real applications. But

clearly Theorems 1.1 and 1.2 would be much improved if such assumption could

be relaxed. In case L = 0 and U = 1, actually, Rn = Bn may be weakened into

E(Rn) = E(Bn) for all n ≥ 1;

see [6, Cor. 3]. Also, up to minor complications, various points in the proofs of

Theorems 1.1 and 1.2 seem to run assuming only that E(Rn) = E(Bn). Thus,

we conjecture that Theorems 1.1 and 1.2 are still valid if Rn = Bn is replaced by

E(Rn) = E(Bn).

• Let Xn = (1/n)
∑n
i=1Xi and Cn =

√
n (Xn−Zn). If L = 0 and U = 1, as shown

in [6, Cor. 3], one obtains

Cn −→ N
(
0, σ2 − Z(1− Z)

)
stably.

Thus, the asymptotic behavior of Cn, or even of the pair (Cn, Dn), could be

investigated in the general case 0 ≤ L < U ≤ 1. Again, this could be (tentatively)

performed assuming E(Rn) = E(Bn) instead of Rn = Bn.
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• Since G0 = σ(L,U) and (Bn, Rn) is independent of σ
(
Gn−1, Xn

)
, the barriers L

and U could be assumed to be constants (i.e., non random). Such assumption

has not been made, however, for it does not simplify any point in the proofs of

Theorems 1.1 and 1.2. Rather, L and U could be made dependent on the time.

In other terms, L and U could be replaced by Ln and Un such that Ln
a.s.−→ L

and Un
a.s.−→ U .

• Let µ be the probability distribution of Z. Even if L = 0 and U = 1, just very

little about µ is known; see [1]. Some information on µ, possibly in the general

case 0 ≤ L < U ≤ 1, would be a major step forward. For instance, under which

conditions µ is absolutely continuous with respect to Lebesgue measure? Or else,

is it possible to (explicitly) connect µ with the distribution of (L,U)?

• A last (obvious) improvement is considering multicolor urns instead of 2-color

urns. Indeed, most additional problems arising in the multicolor case are of the

notational type. Similarly, the framework in Subsection 1.1 could be generalized.

For instance, Bn ∨ Rn ≤ c could be replaced by a suitable moment condition.

Or else, (Bn, Rn) independent of σ
(
Gn−1, Xn) could be replaced by (Bn, Rn)

conditionally independent of Xn given Gn−1.
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