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Abstract Let (Xn) be a sequence of random variables, adapted to a filtration (Gn),
and let μn = (1/n)

∑n
i=1 δXi and an(·) = P(Xn+1 ∈ · | Gn) be the empirical and the

predictive measures. We focus on ‖μn − an‖ = supB∈D |μn(B) − an(B)|, where D
is a class of measurable sets. Conditions for ‖μn − an‖ → 0, almost surely or in
probability, are given. Also, to determine the rate of convergence, the asymptotic
behavior of rn ‖μn − an‖ is investigated for suitable constants rn . Special attention
is paid to rn = √

n. The sequence (Xn) is exchangeable or, more generally, condi-
tionally identically distributed.

1 Introduction

1.1 The Problem

Throughout, S is a Polish space and X = (Xn : n ≥ 1) a sequence of S-valued ran-
dom variables on the probability space (Ω,A, P). Further, B is the Borel σ-field
on S and G = (Gn : n ≥ 0) a filtration on (Ω,A, P). We fix a subclass D ⊂ B and
we let ‖·‖ denote the sup-norm over D, namely, ‖α − β‖ = supB∈D |α(B) − β(B)|
whenever α and β are probabilities on B.

Let

μn = (1/n)

n∑
i=1

δXi and an(·) = P(Xn+1 ∈ · | Gn).
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Both μn and an are regarded as random probability measures on B; μn is the empirical
measure and (if X is G-adapted) an is the predictive measure.

Under some conditions, μn(B) − an(B)
a.s.−→ 0 for fixed B ∈ B. In that case, a

(natural) question is whether D is such that ‖μn − an‖ a.s.−→ 0.
Such question is addressed in this paper. Conditions for ‖μn − an‖ → 0, almost

surely or in probability, are given. Also, to determine the rate of convergence, the
asymptotic behavior of rn‖μn − an‖ is investigated for suitable constants rn . Special
attention is paid to rn = √

n. The sequence X is assumed to be exchangeable or,
more generally, conditionally identically distributed (see Sect. 2).

Our main concern is to connect and unify a few results from [1–4]. Thus, this
paper is essentially a survey. However, in addition to report known facts, some new
results and examples are given. This is actually the case of Theorem 1(d), Corollary 1
and Examples 1–3.

1.2 Heuristics

There are various (non-independent) reasons for investigating μn − an . We now list
a few of them under the assumption that G = GX , where GX

0 = {∅,Ω} and GX
n =

σ(X1, . . . , Xn). Most remarks, however, apply to any filtration G which makes X
adapted.

• Empirical processes for non-ergodic data. Slightly abusing terminology, say
that X is ergodic if P is 0–1 valued on the sub-σ-field σ

(
lim supn μn(B) : B ∈ B)

.
In real problems, X is often non-ergodic. Most stationary sequences, for instance,
fail to be ergodic. Or else, an exchangeable sequence is ergodic if and only if is
i.i.d. Now, if X is i.i.d., the empirical process is defined as Gn = √

n (μn − μ0)

where μ0 is the probability distribution of X1. But this definition has various
drawbacks when X is not ergodic; see [5]. In fact, unless X is i.i.d., the probability
distribution of X is not determined by that of X1. More importantly, if Gn converges
in distribution in l∞(D) (the metric space l∞(D) is recalled before Corollary 1)

then ‖μn − μ0‖ = n−1/2‖Gn‖ P−→ 0. But ‖μn − μ0‖ typically fails to converge to
0 in probability when X is not ergodic. Thus, empirical processes for non-ergodic
data should be defined in some different way. In this framework, a meaningful
option is to replace μ0 with an , namely, to let Gn = √

n (μn − an).
• Bayesian predictive inference. In a number of problems, the main goal is to

evaluate an but the latter can not be obtained in closed form. Thus, an is to be
estimated by the available data. Under some assumptions, a reasonable estimate of
an is just μn . In these situations, the asymptotic behavior of the error μn − an plays
a role. For instance, μn is a consistent estimate of an provided ‖μn − an‖ −→ 0
in some sense.
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• Predictive distributions of exchangeable sequences. Let X be exchangeable.
Just very little is known on the general form of an for given n, and a representation
theorem for an would be actually a major breakthrough. Failing the latter, to fix
the asymptotic behavior of μn − an contributes to fill the gap.

• de Finetti. Historically, one reason for introducing exchangeability (possibly, the
main reason) was to justify observed frequencies as predictors of future events.
See [8–10]. In this sense, to focus on μn − an is in line with de Finetti’s ideas.
Roughly speaking, μn should be a good substitute of an in the exchangeable case.

2 Conditionally Identically Distributed Sequences

The sequence X is conditionally identically distributed (c.i.d.) with respect to G if it is
G-adapted and P

(
Xk ∈ · | Gn

) = P
(
Xn+1 ∈ · | Gn

)
a.s. for all k > n ≥ 0. Roughly

speaking, at each time n ≥ 0, the future observations (Xk : k > n) are identically
distributed given the past Gn . When G = GX , the filtration G is not mentioned at
all and X is just called c.i.d. Then, X is c.i.d. if and only if

(
X1, . . . , Xn, Xn+2

) ∼(
X1, . . . , Xn, Xn+1

)
for all n ≥ 0.

Exchangeable sequences are c.i.d. while the converse is not true. Indeed, X is
exchangeable if and only if it is stationary and c.i.d. We refer to [3] for more on c.i.d.
sequences. Here, it suffices to mention a last fact.

If X is c.i.d., there is a random probability measure μ on B such that μn(B)
a.s.−→

μ(B) for every B ∈ B. As a consequence, if X is c.i.d. with respect to G, for each
n ≥ 0 and B ∈ B one obtains

E
{
μ(B) | Gn

} = lim
m

E
{
μm(B) | Gn

} = lim
m

1

m

m∑
k=n+1

P
(
Xk ∈ B | Gn

)

= P
(
Xn+1 ∈ B | Gn

) = an(B) a.s.

In particular, an(B) = E
{
μ(B) | Gn

} a.s.−→ μ(B) and μn(B) − an(B)
a.s.−→ 0.

From now on, X is c.i.d. with respect to G. In particular, X is identically distributed
and μ0 denotes the probability distribution of X1. We also let

Wn = √
n (μn − μ),

where μ is the random probability measure on B introduced above. Note that, if X
is i.i.d., then μ = μ0 a.s. and Wn reduces to the usual empirical process.
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3 Results

Let D ⊂ B. To avoid measurability problems, D is assumed to be countably
determined. This means that there is a countable subclass D0 ⊂ D such that
‖α − β‖ = supB∈D0

|α(B) − β(B)| for all probabilities α, β on B. For instance,
D = B is countably determined (for B is countably generated). Or else, if S = R

k ,
then D = {(−∞, t] : t ∈ R

k}, D = {closed balls} and D = {closed convex sets} are
countably determined.

3.1 A General Criterion

Since an(B) = E
{
μ(B) | Gn

}
a.s. for each B ∈ B and D is countably determined,

one obtains

‖μn − an‖ = sup
B∈D0

|E{
μn(B) − μ(B) | Gn

} | ≤ E
{‖μn − μ‖ | Gn

}
a.s.

This simple inequality has some nice consequences. Recall that D is a universal
Glivenko-Cantelli class if ‖μn − μ0‖ a.s.−→ 0 whenever X is i.i.d.

Theorem 1 Suppose D is countably determined and X is c.i.d. with respect to G.
Then,

(a) ‖μn − an‖ a.s.−→ 0 if ‖μn − μ‖ a.s.−→ 0 and ‖μn − an‖ P−→ 0 if ‖μn − μ‖ P−→ 0.
(b) ‖μn − an‖ a.s.−→ 0 provided X is exchangeable, G = GX and D is a universal

Glivenko-Cantelli class.
(c) rn‖μn − an‖ P−→ 0 whenever the constants rn satisfy rn/

√
n → 0 and

supn E
{‖Wn‖b

}
< ∞ for some b ≥ 1.

(d) nu‖μn − an‖ a.s.−→ 0 whenever u < 1/2 and supn E
{‖Wn‖b

}
< ∞ for each b ≥

1.

Proof Since ‖μn − μ‖ ≤ 1, point (a) follows from the martingale convergence

theorem in the version of [7]. (If ‖μn − μ‖ P−→ 0, it suffices to apply an obvi-
ous argument based on subsequences). Next, suppose X , G and D are as in (b).
By de Finetti’s theorem, conditionally on μ, the sequence X is i.i.d. with com-
mon distribution μ. Since D is a universal Glivenko-Cantelli class, it follows that
P

(‖μn − μ‖ → 0
) = ∫

P
{‖μn − μ‖ → 0 | μ

}
d P = ∫

1d P = 1. Hence, (b) is a
consequence of (a). As to (c), just note that

E
{(

rn ‖μn − an‖
)b

}
≤ rb

n E
{‖μn − μ‖b

} = (rn/
√

n)b E
{‖Wn‖b

}
.



Asymptotics of Predictive Distributions 57

Finally, as to (d), fix u < 1/2 and take b such that b(1/2 − u) > 1. Then,

∑
n

P
(
nu‖μn − an‖ > ε

) ≤
∑

n

E
{‖μn − an‖b

}
εb n−ub

≤
∑

n

E
{‖μn − μ‖b

}
εb n−ub

=
∑

n

E
{‖Wn‖b

}
εb n(1/2−u)b

≤
∑

n

const

n(1/2−u)b
< ∞ for each ε > 0.

Therefore, nu‖μn − an‖ a.s.−→ 0 because of the Borel-Cantelli lemma.

Some remarks are in order.
Theorem 1 is essentially known. Apart from (d), it is implicit in [2, 4].
If X is exchangeable, the second part of (a) is redundant. In fact, ‖μn − μ0‖

converges a.s. (not necessarily to 0) whenever X is i.i.d. Applying de Finetti’s theorem
as in the proof of Theorem 1(b), it follows that ‖μn − μ‖ converges a.s. even if X is

exchangeable. Thus, ‖μn − μ‖ P−→ 0 implies ‖μn − μ‖ a.s.−→ 0.
Sometimes, the condition in (a) is necessary as well, namely, ‖μn − an‖ a.s.−→ 0 if

and only if ‖μn − μ‖ a.s.−→ 0. For instance, this happens when G = GX and μ � λ a.s.,
whereλ is a (non-random) σ-finite measure onB. In this case, in fact,‖an − μ‖ a.s.−→ 0
by [6, Theorem 1].

Several examples of universal Glivenko-Cantelli classes are available; see [11]
and references therein. Similarly, for many choices of D and b ≥ 1 there is a
universal constant c(b) such that supn E

{‖Wn‖b
} ≤ c(b) provided X is i.i.d.; see

e.g. [11, Sects. 2.14.1 and 2.14.2]. In these cases, de Finetti’s theorem yields
supn E

{‖Wn‖b
} ≤ c(b) even if X is exchangeable. Thus, points (b)–(d) are espe-

cially useful when X is exchangeable.
In (c), convergence in probability can not be replaced by a.s. convergence. As a

trivial example, take D = B, G = GX , rn =
√

n
log log n , and X an i.i.d. sequence of indi-

cators. Letting p = P(X1 = 1), one obtains E
{‖Wn‖2

} = n E
{(

μn{1} − p
)2} =

p (1 − p) for all n. However, the LIL yields

lim sup
n

rn ‖μn − an‖ = lim sup
n

| ∑n
i=1(Xi − p) |√
n log log n

= √
2 p (1 − p) a.s.

We finally give a couple of examples.

Example 1 Let D = B. If X is i.i.d., then ‖μn − μ0‖ a.s.−→ 0 if and only if μ0 is
discrete. By de Finetti’s theorem, it follows that ‖μn − μ‖ a.s.−→ 0 whenever X is
exchangeable and μ is a.s. discrete. Thus, under such assumptions and G = GX ,
Theorem 1(a) implies ‖μn − an‖ a.s.−→ 0. This result has possible practical interest.
In fact, in Bayesian nonparametrics, most priors are such that μ is a.s. discrete.

Example 2 Let S = R
k and D = {closed convex sets}. Given any probability α on B,

denote by α(c) = α − ∑
x α{x}δx the continuous part of α. If X is i.i.d. and μ(c)

0 � m,
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where m is Lebesgue measure, then ‖μn − μ0‖ a.s.−→ 0. Applying Theorem 1(a) again,
one obtains ‖μn − an‖ a.s.−→ 0 provided X is exchangeable, G = GX and μ(c) � m
a.s. While “morally true”, this argument does not work for D = {Borel convex sets}
since the latter choice of D is not countably determined.

3.2 The Dominated Case

In this Subsection, G = GX , A = σ
(∪nGX

n

)
, Q is a probability on (Ω,A) and

bn(·) = Q(Xn+1 ∈ · | Gn) is the predictive measure under Q. Also, we say that Q is
a Ferguson-Dirichlet law if

bn(·) = c Q(X1 ∈ ·) + n μn(·)
c + n

, Q-a.s. for some constant c > 0.

If P � Q, the asymptotic behavior of μn − an under P should be affected by that
of μn − bn under Q. This (rough) idea is realized by the next result.

Theorem 2 (Theorems 1 and 2 of [4]) Suppose D is countably determined, X

is c.i.d., and P � Q. Then,
√

n ‖μn − an‖ P−→ 0 provided
√

n ‖μn − bn‖ Q−→ 0
and the sequence (Wn) is uniformly integrable under both P and Q. In addition,
n ‖μn − an‖ converges a.s. to a finite limit whenever Q is a Ferguson-Dirichlet law,
supn EQ

{‖Wn‖2
}

< ∞, and

sup
n

n
{

EQ
{
(d P/d Q)2

} − EQ
{

EQ(d P/d Q | Gn)
2
}}

< ∞.

To make Theorem 2 effective, the condition P � Q should be given a simple
characterization. This happens in at least one case.

Let S be finite, say S = {x1, . . . , xk, xk+1}, X exchangeable and μ0{x} > 0 for all
x ∈ S. Then P � Q, with Q a Ferguson-Dirichlet law, if and only if the distribution
of

(
μ{x1}, . . . ,μ{xk}

)
is absolutely continuous (with respect to Lebesgue measure).

This fact is behind the next result.

Theorem 3 (Corollaries 4 and 5 of [4]) Suppose S = {0, 1} and X is exchangeable.

Then,
√

n
(
μn{1} − an{1}) P−→ 0 whenever the distribution of μ{1} is absolutely

continuous. Moreover, n
(
μn{1} − an{1}) converges a.s. (to a finite limit) provided

the distribution of μ{1} is absolutely continuous with an almost Lipschitz density.

In Theorem 3, a real function f on (0, 1) is said to be almost Lipschitz in case
x �→ f (x)xu(1 − x)v is Lipschitz on (0, 1) for some reals u, v < 1.

A consequence of Theorem 3 is to be stressed. For each B ∈ B, define

Tn(B) = √
n

{
an(B) − P

{
Xn+1 ∈ B | GB

n

}}
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where GB
n = σ

(
IB(X1), . . . , IB(Xn)

)
. Also, let l∞(D) be the set of real bounded

functions on D, equipped with uniform distance. In the next result, Wn is regarded as
a random element of l∞(D) and convergence in distribution is meant in Hoffmann-
Jørgensen’s sense; see [11].

Corollary 1 Let D be countably determined and X exchangeable. Suppose

(i) μ(B) has an absolutely continuous distribution for each B ∈ D such that 0 <

P(X1 ∈ B) < 1;
(ii) the sequence (‖Wn‖) is uniformly integrable;

(iii) Wn converges in distribution to a tight limit in l∞(D).

Then,
√

n ‖μn − an‖ P−→ 0 if and only if Tn(B)
P−→ 0 for each B ∈ D.

Proof Let Un(B) = √
n

{
μn(B) − P

{
Xn+1 ∈ B | GB

n

}}
. Then, Un(B)

P−→ 0 for

each B ∈ D. In fact, Un(B) = 0 a.s. if P(X1 ∈ B) ∈ {0, 1}. Otherwise, Un(B)
P−→ 0

follows from Theorem 3, since (IB(Xn)) is an exchangeable sequence of indicators

and μ(B) has an absolutely continuous distribution. Next, suppose Tn(B)
P−→ 0

for each B ∈ D. Letting Cn = √
n (μn − an), we have to prove that ‖Cn‖ P−→ 0.

Equivalently, regarding Cn as a random element of l∞(D), we have to prove that

Cn(B)
P−→ 0 for fixed B ∈ D and the sequence (Cn) is asymptotically tight; see e.g.

[11, Sect. 1.5]. Given B ∈ D, since both Un(B) and Tn(B) converge to 0 in proba-

bility, then Cn(B) = Un(B) − Tn(B)
P−→ 0. Moreover, since Cn(B) = E

{
Wn(B) |

Gn
}

a.s., the asymptotic tightness of (Cn) follows from (ii) and (iii); see [3, Remark

4.4]. Hence, ‖Cn‖ P−→ 0. Conversely, if ‖Cn‖ P−→ 0, one trivially obtains

|Tn(B)| = |Un(B) − Cn(B)| ≤ |Un(B)| + ‖Cn‖ P−→ 0 for each B ∈ D.

If X is exchangeable, it frequently happens that supn E
{‖Wn‖2

}
< ∞, which in

turn implies condition (ii). Similarly, (iii) is not unusual. As an example, conditions
(ii) and (iii) hold if S = R, D = {(−∞, t] : t ∈ R} and μ0 is discrete or P(X1 =
X2) = 0; see [3, Theorem 4.5].

Unfortunately, as shown by the next example, Tn(B) may fail to converge to 0
even if μ(B) has an absolutely continuous distribution. This suggests the following
general question. In the exchangeable case, in addition to μn(B), which further
information is required to evaluate an(B)? Or at least, are there reasonable conditions

for Tn(B)
P−→ 0? Even if intriguing, to our knowledge, such a question does not have

a satisfactory answer.

Example 3 Let S = R and Xn = Yn Z−1, where Yn and Z are independent real ran-
dom variables, Yn ∼ N (0, 1) for all n, and Z has an absolutely continuous distribution
supported by [1,∞). Conditionally on Z , the sequence X = (X1, X2, . . .) is i.i.d.
with common distribution N (0, Z−2). Thus, X is exchangeable and μ(B) = P(X1 ∈
B | Z) = fB(Z) a.s., where
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fB(z) = (2 π)−1/2z
∫

B
exp

(−(xz)2/2
)

dx for B ∈ B and z ≥ 1.

Fix B ∈ B, with B ⊂ [1,∞) and P(X1 ∈ B) > 0, and define C = {−x : x ∈ B}.
Since fB = fC , then μ(B) = μ(C) a.s. Further, μ(B) has an absolutely continuous
distribution, for fB is differentiable and f ′

B �= 0. Nevertheless, one between Tn(B)

and Tn(C) does not converge to 0 in probability. Define in fact g = IB − IC and
Rn = n−1/2 ∑n

i=1 g(Xi ). Since μ(g) = μ(B) − μ(C) = 0 a.s., then Rn converges
stably to the kernel N (0, 2μ(B)); see [3, Theorem 3.1]. On the other hand, since
E

{
g(Xn+1) | Gn

} = E
{
μ(g) | Gn

} = 0 a.s., one obtains

Rn = √
n

{
μn(B) − μn(C)

} = Tn(C) − Tn(B)+
+√

n
{
μn(B) − P

{
Xn+1 ∈ B | GB

n

}} − √
n

{
μn(C) − P

{
Xn+1 ∈ C | GC

n

}}
.

Hence, if Tn(B)
P−→ 0 and Tn(C)

P−→ 0, Corollary 1 (applied with D = {B, C})
implies the contradiction Rn

P−→ 0.

References

1. Berti P, Rigo P (1997) A Glivenko-Cantelli theorem for exchangeable random variables. Stat
Probab Lett 32:385–391

2. Berti P, Mattei A, Rigo P (2002) Uniform convergence of empirical and predictive measures.
Atti Sem Mat Fis Univ Modena 50:465–477

3. Berti P, Pratelli L, Rigo P (2004) Limit theorems for a class of identically distributed random
variables. Ann Probab 32:2029–2052

4. Berti P, Crimaldi I, Pratelli L, Rigo P (2009) Rate of convergence of predictive distributions
for dependent data. Bernoulli 15:1351–1367

5. Berti P, Pratelli L, Rigo P (2012) Limit theorems for empirical processes based on dependent
data. Electron J Probab 17:1–18

6. Berti P, Pratelli L, Rigo P (2013) Exchangeable sequences driven by an absolutely continuous
random measure. Ann Probab 41:2090–2102

7. Blackwell D, Dubins LE (1962) Merging of opinions with increasing information. Ann Math
Stat 33:882–886

8. Cifarelli DM, Regazzini E (1996) De Finetti’s contribution to probability and statistics. Stat
Sci 11:253–282

9. Cifarelli DM, Dolera E, Regazzini E (2016) Frequentistic approximations to Bayesian prevision
of exchangeable random elements. arXiv:1602.01269v1

10. Fortini S, Ladelli L, Regazzini E (2000) Exchangeability, predictive distributions and paramet-
ric models. Sankhya A 62:86–109

11. van der Vaart A, Wellner JA (1996) Weak convergence and empirical processes. Springer


