Patrizia Berti, Luca Pratelli and Pietro Rigo

Abstract Let (X_n) be a sequence of random variables, adapted to a filtration (G_n) , and let $\mu_n = (1/n) \sum_{i=1}^n \delta_{X_i}$ and $a_n(\cdot) = P(X_{n+1} \in \cdot | \mathcal{G}_n)$ be the empirical and the predictive measures We focus on $\|\mu\| = a \|\mu\| = \sup_{\alpha \in \mathbb{R}} |u(\beta) - a(\beta)|$ where \mathcal{D} predictive measures. We focus on $\|\mu_n - a_n\| = \sup_{B \in \mathcal{D}} |\mu_n(B) - a_n(B)|$, where $\mathcal D$ is a class of measurable sets. Conditions for $\|\mu_n - a_n\| \to 0$, almost surely or in probability, are given. Also, to determine the rate of convergence, the asymptotic behavior of $r_n || \mu_n - a_n ||$ is investigated for suitable constants r_n . Special attention is paid to $r_n = \sqrt{n}$. The sequence (X_n) is exchangeable or, more generally, conditionally identically distributed.

1 Introduction

1.1 The Problem

Throughout, *S* is a Polish space and $X = (X_n : n \ge 1)$ a sequence of *S*-valued random variables on the probability space (Ω, \mathcal{A}, P) . Further, B is the Borel σ -field on *S* and $\mathcal{G} = (\mathcal{G}_n : n \ge 0)$ a filtration on (Ω, \mathcal{A}, P) . We fix a subclass $\mathcal{D} \subset \mathcal{B}$ and we let $\|\cdot\|$ denote the sup-norm over D, namely, $\|\alpha - \beta\| = \sup_{B \in \mathcal{D}} |\alpha(B) - \beta(B)|$ whenever α and β are probabilities on β .

Let

$$
\mu_n = (1/n) \sum_{i=1}^n \delta_{X_i}
$$
 and $a_n(\cdot) = P(X_{n+1} \in \cdot \mid \mathcal{G}_n)$.

P. Berti

L. Pratelli Accademia Navale di Livorno, Livorno, Italy e-mail: pratel@mail.dm.unipi.it

P. Rigo (\boxtimes) Universita' di Pavia, Pavia, Italy e-mail: pietro.rigo@unipv.it

© Springer International Publishing Switzerland 2017 M.B. Ferraro et al. (eds.), *Soft Methods for Data Science*, Advances in Intelligent Systems and Computing 456, DOI 10.1007/978-3-319-42972-4_7

Universita' di Modena e Reggio-Emilia, Modena, Italy e-mail: patrizia.berti@unimore.it

Both μ_n and a_n are regarded as random probability measures on \mathcal{B} ; μ_n is the empirical measure and (if X is G -adapted) a_n is the predictive measure.

Under some conditions, $\mu_n(B) - a_n(B) \xrightarrow{a.s.} 0$ for fixed $B \in \mathcal{B}$. In that case, a (natural) question is whether D is such that $\|\mu_n - a_n\| \stackrel{a.s.}{\longrightarrow} 0$.

Such question is addressed in this paper. Conditions for $\|\mu_n - a_n\| \to 0$, almost surely or in probability, are given. Also, to determine the rate of convergence, the asymptotic behavior of $r_n || \mu_n - a_n ||$ is investigated for suitable constants r_n . Special attention is paid to $r_n = \sqrt{n}$. The sequence *X* is assumed to be exchangeable or, more generally, conditionally identically distributed (see Sect. 2).

Our main concern is to connect and unify a few results from $[1-4]$. Thus, this paper is essentially a survey. However, in addition to report known facts, some new results and examples are given. This is actually the case of Theorem 1(d), Corollary 1 and Examples 1–3.

1.2 Heuristics

There are various (non-independent) reasons for investigating $\mu_n - a_n$. We now list a few of them under the assumption that $G = G^X$, where $G_0^X = {\emptyset, \Omega}$ and $G_n^X =$ $\sigma(X_1, \ldots, X_n)$. Most remarks, however, apply to any filtration G which makes X adapted.

- **Empirical processes for non-ergodic data**. Slightly abusing terminology, say that *X* is ergodic if *P* is 0–1 valued on the sub- σ -field σ (lim sup_{*n*} $\mu_n(B)$: $B \in \mathcal{B}$).
In real problems *X* is often pop-ergodic. Most stationary sequences for instance In real problems, *X* is often non-ergodic. Most stationary sequences, for instance, fail to be ergodic. Or else, an exchangeable sequence is ergodic if and only if is i.i.d. Now, if *X* is i.i.d., the empirical process is defined as $G_n = \sqrt{n} (\mu_n - \mu_0)$ where μ_0 is the probability distribution of X_1 . But this definition has various drawbacks when *X* is not ergodic; see [5]. In fact, unless *X* is i.i.d., the probability distribution of *X* is not determined by that of X_1 . More importantly, if G_n converges in distribution in $l^{\infty}(\mathcal{D})$ (the metric space $l^{\infty}(\mathcal{D})$ is recalled before Corollary 1) then $\|\mu_n - \mu_0\| = n^{-1/2} \|G_n\| \longrightarrow 0$. But $\|\mu_n - \mu_0\|$ typically fails to converge to 0in probability when *X* is not ergodic. Thus, empirical processes for non-ergodic data should be defined in some different way. In this framework, a meaningful option is to replace μ_0 with a_n , namely, to let $G_n = \sqrt{n} (\mu_n - a_n)$.
- **Bayesian predictive inference**. In a number of problems, the main goal is to evaluate a_n but the latter can not be obtained in closed form. Thus, a_n is to be estimated by the available data. Under some assumptions, a reasonable estimate of a_n is just μ_n . In these situations, the asymptotic behavior of the error $\mu_n - a_n$ plays a role. For instance, μ_n is a consistent estimate of a_n provided $\|\mu_n - a_n\| \longrightarrow 0$ in some sense.

- **Predictive distributions of exchangeable sequences**. Let *X* be exchangeable. Just very little is known on the general form of a_n for given n , and a representation theorem for a_n would be actually a major breakthrough. Failing the latter, to fix the asymptotic behavior of $\mu_n - a_n$ contributes to fill the gap.
- **de Finetti**. Historically, one reason for introducing exchangeability (possibly, the main reason) was to justify observed frequencies as predictors of future events. See [8–10]. In this sense, to focus on $\mu_n - a_n$ is in line with de Finetti's ideas. Roughly speaking, μ_n should be a good substitute of a_n in the exchangeable case.

2 Conditionally Identically Distributed Sequences

The sequence *X* is *conditionally identically distributed* (c.i.d.) with respect to G if it is *G*-adapted and $P(X_k \in \cdot | G_n) = P(X_{n+1} \in \cdot | G_n)$ a.s. for all $k > n \ge 0$. Roughly speaking, at each time $n \ge 0$, the future observations $(X_k : k > n)$ are identically distributed given the past \mathcal{G}_n . When $\mathcal{G} = \mathcal{G}^X$, the filtration \mathcal{G} is not mentioned at all and *X* is just called c.i.d. Then, *X* is c.i.d. if and only if $(X_1, ..., X_n, X_{n+2}) \sim (X_1, ..., X_n, X_{n+1})$ for all $n \ge 0$. $X_1, \ldots, X_n, X_{n+1}$ for all $n \geq 0$.

Exchangeable sequences are c.i.d. while the converse is not true. Indeed, *X* is exchangeable if and only if it is stationary and c.i.d. We refer to [3] for more on c.i.d. sequences. Here, it suffices to mention a last fact.

If *X* is c.i.d., there is a random probability measure μ on *B* such that $\mu_n(B) \stackrel{a.s.}{\longrightarrow}$ $\mu(B)$ for every $B \in \mathcal{B}$. As a consequence, if *X* is c.i.d. with respect to \mathcal{G} , for each $n \geq 0$ and $B \in \mathcal{B}$ one obtains

$$
E\{\mu(B) | \mathcal{G}_n\} = \lim_{m} E\{\mu_m(B) | \mathcal{G}_n\} = \lim_{m} \frac{1}{m} \sum_{k=n+1}^{m} P(X_k \in B | \mathcal{G}_n)
$$

= $P(X_{n+1} \in B | \mathcal{G}_n) = a_n(B)$ a.s.

In particular, $a_n(B) = E\{\mu(B) | G_n\} \stackrel{a.s.}{\longrightarrow} \mu(B)$ and $\mu_n(B) - a_n(B) \stackrel{a.s.}{\longrightarrow} 0$.
From now on X is c i.d. with respect to G. In particular, X is identically dis-

From now on, *X* is c.i.d. with respect to G . In particular, *X* is identically distributed and μ_0 denotes the probability distribution of X_1 . We also let

$$
W_n = \sqrt{n} \left(\mu_n - \mu \right),
$$

where μ is the random probability measure on β introduced above. Note that, if X is i.i.d., then $\mu = \mu_0$ a.s. and W_n reduces to the usual empirical process.

56 P. Berti et al.

3 Results

Let $D \subset \mathcal{B}$. To avoid measurability problems, D is assumed to be *countably determined*. This means that there is a countable subclass $\mathcal{D}_0 \subset \mathcal{D}$ such that $\|\alpha - \beta\| = \sup_{B \in \mathcal{D}_0} |\alpha(B) - \beta(B)|$ for all probabilities α , β on β . For instance, $\mathcal{D} = \mathcal{B}$ is countably determined (for \mathcal{B} is countably generated). Or else, if $S = \mathbb{R}^k$, then $\mathcal{D} = \{(-\infty, t] : t \in \mathbb{R}^k\}$, $\mathcal{D} = \{\text{closed balls}\}\$ and $\mathcal{D} = \{\text{closed convex sets}\}\$ are countably determined.

3.1 A General Criterion

Since $a_n(B) = E\{\mu(B) | \mathcal{G}_n\}$ a.s. for each $B \in \mathcal{B}$ and \mathcal{D} is countably determined, one obtains

$$
\|\mu_n - a_n\| = \sup_{B \in \mathcal{D}_0} |E\{\mu_n(B) - \mu(B) | \mathcal{G}_n\}| \le E\{\|\mu_n - \mu\| | \mathcal{G}_n\} \text{ a.s.}
$$

This simple inequality has some nice consequences. Recall that D is a *universal Glivenko-Cantelli class* if $\|\mu_n - \mu_0\| \stackrel{a.s.}{\longrightarrow} 0$ whenever *X* is i.i.d.

Theorem 1 *Suppose* D *is countably determined and X is c.i.d. with respect to* G*. Then,*

- *(a)* $\|\mu_n a_n\| \stackrel{a.s.}{\longrightarrow} 0$ *if* $\|\mu_n \mu\| \stackrel{a.s.}{\longrightarrow} 0$ and $\|\mu_n a_n\| \stackrel{P}{\longrightarrow} 0$ *if* $\|\mu_n \mu\| \stackrel{P}{\longrightarrow} 0$.
 (b) $\|\mu_n a_n\| \stackrel{a.s.}{\longrightarrow} 0$ required X is such proceed to C , C^X and D is a surjecture
- *(b)* $\|\mu_n a_n\| \stackrel{a.s.}{\longrightarrow} 0$ *provided X is exchangeable,* $\mathcal{G} = \mathcal{G}^X$ *and* \mathcal{D} *is a universal Glivenko-Cantelli class Glivenko-Cantelli class.*
- *(c)* $r_n ||\mu_n a_n|| \rightarrow 0$ whenever the constants r_n satisfy $r_n/\sqrt{n} \rightarrow 0$ and $\sup_{n \to \infty} F^{\{||W||\}} > \infty$ for some $h > 1$ $\sup_n E\left\{\|W_n\|^b\right\} < \infty$ for some $b \geq 1$.
- *(d)* $n^u \|\mu_n a_n\| \stackrel{a.s.}{\longrightarrow} 0$ *whenever* $u < 1/2$ *and* $\sup_n E{\{\|W_n\|^b\}} < \infty$ *for each b* ≥ 1*.*

Proof Since $||\mu_n - \mu|| \le 1$, point (a) follows from the martingale convergence theorem in the version of [7]. (If $\|\mu_n - \mu\| \stackrel{P}{\longrightarrow} 0$, it suffices to apply an obvi-
ous argument based on subsequences). Next, suppose *X*, *G* and *D* are as in (b) ous argument based on subsequences). Next, suppose X , G and D are as in (b). By de Finetti's theorem, conditionally on μ , the sequence *X* is i.i.d. with common distribution μ . Since $\mathcal D$ is a universal Glivenko-Cantelli class, it follows that $P(|\mu_n - \mu| \to 0) = \int P\{|\mu_n - \mu| \to 0 | \mu\} dP = \int 1 dP = 1$. Hence, (b) is a consequence of (a) As to (c) just note that consequence of (a) . As to (c) , just note that

$$
E\left\{\left(r_n \left\|\mu_n - a_n\right\|\right)^b\right\} \leq r_n^b E\left\{\left\|\mu_n - \mu\right\|^b\right\} = \left(r_n / \sqrt{n}\right)^b E\left\{\left\|W_n\right\|^b\right\}.
$$

Finally, as to (d), fix $u < 1/2$ and take *b* such that $b(1/2 - u) > 1$. Then,

$$
\sum_{n} P(n^u \|\mu_n - a_n\| > \epsilon) \le \sum_{n} \frac{E\{\|\mu_n - a_n\|^b\}}{\epsilon^b n^{-ub}} \le \sum_{n} \frac{E\{\|\mu_n - \mu\|^b\}}{\epsilon^b n^{-ub}}
$$

$$
= \sum_{n} \frac{E\{\|\mathbf{W}_n\|^b\}}{\epsilon^b n^{(1/2-u)b}} \le \sum_{n} \frac{\text{const}}{n^{(1/2-u)b}} < \infty \quad \text{for each } \epsilon > 0.
$$

Therefore, $n^u \|\mu_n - a_n\| \stackrel{a.s.}{\longrightarrow} 0$ because of the Borel-Cantelli lemma.

Some remarks are in order.

Theorem 1 is essentially known. Apart from (d), it is implicit in [2, 4].

If *X* is exchangeable, the second part of (a) is redundant. In fact, $\|\mu_n - \mu_0\|$ converges a.s. (not necessarily to 0) whenever *X* is i.i.d. Applying de Finetti's theorem as in the proof of Theorem 1(b), it follows that $\|\mu_n - \mu\|$ converges a.s. even if *X* is exchangeable. Thus, $\|\mu_n - \mu\| \stackrel{P}{\longrightarrow} 0$ implies $\|\mu_n - \mu\| \stackrel{a.s.}{\longrightarrow} 0$.

Sometimes, the condition in (a) is necessary as well, namely, $\|\mu_n - a_n\| \stackrel{a.s.}{\longrightarrow} 0$ if and only if $\|\mu_n - \mu\| \stackrel{a.s.}{\longrightarrow} 0$. For instance, this happens when $\mathcal{G} = \mathcal{G}^X$ and $\mu \ll \lambda$ a.s., where λ is a (non-random) σ -finite measure on B. In this case, in fact, $\|a_n - \mu\| \stackrel{a.s.}{\longrightarrow} 0$ by [6, Theorem 1].

Several examples of universal Glivenko-Cantelli classes are available; see [11] and references therein. Similarly, for many choices of D and $b \ge 1$ there is a universal constant $c(b)$ such that $\sup_n E\{\|W_n\|^b\} \le c(b)$ provided *X* is i.i.d.; see e.g. [11, Sects. 2.14.1 and 2.14.2]. In these cases, de Finetti's theorem yields $\sup_n E\{\|W_n\|^b\} \le c(b)$ even if *X* is exchangeable. Thus, points (b)–(d) are especially useful when *X* is exchangeable.

In (c), convergence in probability can not be replaced by a.s. convergence. As a trivial example, take $\mathcal{D} = \mathcal{B}, \mathcal{G} = \mathcal{G}^X, r_n = \sqrt{\frac{n}{\log \log n}}$, and *X* an i.i.d. sequence of indicators. Letting $p = P(X_1 = 1)$, one obtains $E\{||W_n||^2\} = n E\{(\mu_n\{1\} - p)^2\} = n(1 - n)$ for all *n*. However the III vields $p(1-p)$ for all *n*. However, the LIL yields

$$
\limsup_{n} r_n \|\mu_n - a_n\| = \limsup_{n} \frac{|\sum_{i=1}^{n} (X_i - p)|}{\sqrt{n \log \log n}} = \sqrt{2 p (1 - p)}
$$
 a.s.

We finally give a couple of examples.

Example 1 Let $\mathcal{D} = \mathcal{B}$. If *X* is i.i.d., then $\|\mu_n - \mu_0\| \stackrel{a.s.}{\longrightarrow} 0$ if and only if μ_0 is discrete. By de Finetti's theorem, it follows that $\|\mu_n - \mu\| \stackrel{a.s.}{\longrightarrow} 0$ whenever *X* is
exchangeable and *u* is a *s*. discrete. Thus, under such assumptions and $G - G^X$ exchangeable and μ is a.s. discrete. Thus, under such assumptions and $\mathcal{G} = \mathcal{G}^X$, Theorem 1(c) implies the $\mathcal{G} = \mathcal{G}^X$, O. This goal is possible pressible interest. Theorem 1(a) implies $\|\mu_n - a_n\| \stackrel{a.s.}{\longrightarrow} 0$. This result has possible practical interest. In fact, in Bayesian nonparametrics, most priors are such that μ is a.s. discrete.

Example 2 Let $S = \mathbb{R}^k$ and $\mathcal{D} = \{\text{closed convex sets}\}\.$ Given any probability α on \mathcal{B} , denote by $\alpha^{(c)} = \alpha - \sum_{x} \alpha\{x\} \delta_x$ the continuous part of α . If *X* is i.i.d. and $\mu_0^{(c)} \ll m$,

where *m* is Lebesgue measure, then $\|\mu_n - \mu_0\| \stackrel{a.s.}{\longrightarrow} 0$. Applying Theorem 1(a) again, one obtains $\|\mu_n - a_n\| \stackrel{a.s.}{\longrightarrow} 0$ provided *X* is exchangeable, $\mathcal{G} = \mathcal{G}^X$ and $\mu^{(c)} \ll m$ a.s. While "morally true", this argument does not work for $D = \{Borel convex sets\}$ since the latter choice of D is not countably determined.

3.2 The Dominated Case

In this Subsection, $G = G^X$, $A = \sigma(\cup_n G^X)$, Q is a probability on (Ω, \mathcal{A}) and $h(\lambda) = O(X, \lambda) \in \mathcal{A}(\mathcal{A})$ is the predictive measure under Q . Also, we say that Q is $b_n(\cdot) = Q(X_{n+1} \in \cdot \mid \mathcal{G}_n)$ is the predictive measure under *Q*. Also, we say that *Q* is a Ferguson-Dirichlet law if

$$
b_n(\cdot) = \frac{c \ Q(X_1 \in \cdot) + n \ \mu_n(\cdot)}{c + n}, \quad Q\text{-a.s. for some constant } c > 0.
$$

If *P* $\ll Q$, the asymptotic behavior of $\mu_n - a_n$ under *P* should be affected by that of $\mu_n - b_n$ under Q. This (rough) idea is realized by the next result.

Theorem 2 (Theorems 1 and 2 of [4]) *Suppose* D *is countably determined, X is c.i.d., and P* $\ll Q$ *. Then,* $\sqrt{n} || \mu_n - a_n || \stackrel{P}{\longrightarrow} 0$ provided $\sqrt{n} || \mu_n - b_n || \stackrel{Q}{\longrightarrow} 0$
and the sequence (W) is uniformly integrable under both *P* and *Q* In addition *and the sequence* (*Wn*) *is uniformly integrable under both P and Q. In addition,* $n \|\mu_n - a_n\|$ converges a.s. to a finite limit whenever Q is a Ferguson-Dirichlet law, $\sup_n E_{\mathcal{Q}}\big\{\|W_n\|^2\big\}<\infty$, and

$$
\sup_{n} n \left\{ E_{\mathcal{Q}} \left\{ (dP/dQ)^2 \right\} - E_{\mathcal{Q}} \left\{ E_{\mathcal{Q}} (dP/dQ \mid \mathcal{G}_n)^2 \right\} \right\} < \infty.
$$

To make Theorem 2 effective, the condition $P \ll Q$ should be given a simple characterization. This happens in at least one case.

Let *S* be finite, say $S = \{x_1, \ldots, x_k, x_{k+1}\}\$, *X* exchangeable and $\mu_0\{x\} > 0$ for all $x \in S$. Then $P \ll Q$, with Q a Ferguson-Dirichlet law, if and only if the distribution of $(\mu\{x_1\}, \ldots, \mu\{x_k\})$ is absolutely continuous (with respect to Lebesgue measure).
This fact is behind the next result This fact is behind the next result.

Theorem 3 (Corollaries 4 and 5 of [4]) *Suppose S* = {0, 1} *and X is exchangeable. Then,* $\sqrt{n} (\mu_n\{1\} - a_n\{1\}) \longrightarrow 0$ *whenever the distribution of* $\mu\{1\}$ *is absolutely*
continuous Moreover $n (\mu, 11 - a, 11)$ converges as (to a finite limit) provided *continuous. Moreover, n* $(\mu_n\{1\} - a_n\{1\})$ *converges a.s. (to a finite limit) provided*
the distribution of ull l is absolutely continuous with an almost Linschitz density *the distribution of* μ{1} *is absolutely continuous with an almost Lipschitz density.*

In Theorem 3, a real function *f* on (0, 1) is said to be *almost Lipschitz* in case $x \mapsto f(x)x^u(1-x)^v$ is Lipschitz on (0, 1) for some reals $u, v < 1$.

A consequence of Theorem 3 is to be stressed. For each $B \in \mathcal{B}$, define

$$
T_n(B) = \sqrt{n} \left\{ a_n(B) - P\left\{ X_{n+1} \in B \mid \mathcal{G}_n^B \right\} \right\}
$$

where $\mathcal{G}_n^B = \sigma(I_B(X_1), \ldots, I_B(X_n))$. Also, let $l^{\infty}(\mathcal{D})$ be the set of real bounded where $\mathcal{G}_n^D = \sigma(I_B(X_1), \dots, I_B(X_n))$. Also, let $l^{\infty}(D)$ be the set of real bounded functions on D, equipped with uniform distance. In the next result, W_n is regarded as a random element of $l^{\infty}(\mathcal{D})$ and convergence in distribution is meant in Hoffmann-Jørgensen's sense; see [11].

Corollary 1 *Let* D *be countably determined and X exchangeable. Suppose*

- *(i)* $\mu(B)$ *has an absolutely continuous distribution for each* $B \in \mathcal{D}$ *such that* $0 < \infty$ $P(X_1 \in B) < 1$;
- *(ii)* the sequence $(||W_n||)$ is uniformly integrable;
- *(iii)* W_n *converges in distribution to a tight limit in l*[∞](D).

Then, $\sqrt{n} || \mu_n - a_n || \stackrel{P}{\longrightarrow} 0$ *if and only if* $T_n(B) \stackrel{P}{\longrightarrow} 0$ *for each* $B \in \mathcal{D}$ *. Proof* Let $U_n(B) = \sqrt{n} \left\{ \mu_n(B) - P \left\{ X_{n+1} \in B \mid \mathcal{G}_n^B \right\} \right\}$. Then, $U_n(B) \stackrel{P}{\longrightarrow} 0$ for each *B* ∈ *D*. In fact, $U_n(B) = 0$ a.s. if $P(X_1 \in B) \in \{0, 1\}$. Otherwise, $U_n(B) \stackrel{P}{\longrightarrow} 0$ follows from Theorem 3, since $(I_B(X_n))$ is an exchangeable sequence of indicators and $\mu(B)$ has an absolutely continuous distribution. Next, suppose $T_n(B) \stackrel{P}{\longrightarrow} 0$ for each $B \in \mathcal{D}$. Letting $C_n = \sqrt{n} (\mu_n - a_n)$, we have to prove that $||C_n|| \stackrel{P}{\longrightarrow} 0$. Equivalently, regarding C_n as a random element of $l^{\infty}(\mathcal{D})$, we have to prove that $C_n(B) \stackrel{P}{\longrightarrow} 0$ for fixed $B \in \mathcal{D}$ and the sequence (C_n) is asymptotically tight; see e.g. [11, Sect. 1.5]. Given $B \in \mathcal{D}$, since both $U_n(B)$ and $T_n(B)$ converge to 0 in probability, then $C_n(B) = U_n(B) - T_n(B) \xrightarrow{P} 0$. Moreover, since $C_n(B) = E\{W_n(B) \mid$ \mathcal{G}_n a.s., the asymptotic tightness of (C_n) follows from (ii) and (iii); see [3, Remark 4.4]. Hence, $||C_n|| \stackrel{P}{\longrightarrow} 0$. Conversely, if $||C_n|| \stackrel{P}{\longrightarrow} 0$, one trivially obtains

$$
|T_n(B)| = |U_n(B) - C_n(B)| \le |U_n(B)| + ||C_n|| \xrightarrow{P} 0 \text{ for each } B \in \mathcal{D}.
$$

If *X* is exchangeable, it frequently happens that $\sup_n E\{\|W_n\|^2\} < \infty$, which in turn implies condition (ii). Similarly, (iii) is not unusual. As an example, conditions (ii) and (iii) hold if $S = \mathbb{R}, \mathcal{D} = \{(-\infty, t] : t \in \mathbb{R}\}\$ and μ_0 is discrete or $P(X_1 =$ X_2 = 0; see [3, Theorem 4.5].

Unfortunately, as shown by the next example, $T_n(B)$ may fail to converge to 0 even if $\mu(B)$ has an absolutely continuous distribution. This suggests the following general question. In the exchangeable case, in addition to $\mu_n(B)$, which further information is required to evaluate $a_n(B)$? Or at least, are there reasonable conditions for $T_n(B) \stackrel{P}{\longrightarrow} 0$? Even if intriguing, to our knowledge, such a question does not have a satisfactory answer.

Example 3 Let $S = \mathbb{R}$ and $X_n = Y_n Z^{-1}$, where Y_n and Z are independent real random variables, $Y_n \sim N(0, 1)$ for all *n*, and *Z* has an absolutely continuous distribution supported by [1, ∞). Conditionally on *Z*, the sequence $X = (X_1, X_2, \ldots)$ is i.i.d. with common distribution $N(0, Z^{-2})$. Thus, *X* is exchangeable and $\mu(B) = P(X_1 \in$ $B \mid Z$) = $f_B(Z)$ a.s., where

60 P. Berti et al.

$$
f_B(z) = (2\pi)^{-1/2} z \int_B \exp\left(-(xz)^2/2\right) dx \text{ for } B \in \mathcal{B} \text{ and } z \ge 1.
$$

Fix $B \in \mathcal{B}$, with $B \subset [1,\infty)$ and $P(X_1 \in B) > 0$, and define $C = \{-x : x \in B\}$. Since $f_B = f_C$, then $\mu(B) = \mu(C)$ a.s. Further, $\mu(B)$ has an absolutely continuous distribution, for f_B is differentiable and $f'_B \neq 0$. Nevertheless, one between $T_n(B)$ and $T_n(C)$ does not converge to 0in probability. Define in fact $g = I_B - I_C$ and $R_n = n^{-1/2} \sum_{i=1}^n g(X_i)$. Since $\mu(g) = \mu(B) - \mu(C) = 0$ a.s., then R_n converges stably to the kernel $N(0, 2\mu(B))$; see [3, Theorem 3.1]. On the other hand, since $Ff_0(Y, y) | G_1 = Ff_1(\mu(A)) | G_2 = 0$ as one obtains $E\{g(X_{n+1}) | \mathcal{G}_n\} = E\{\mu(g) | \mathcal{G}_n\} = 0$ a.s., one obtains

$$
R_n = \sqrt{n} \left\{ \mu_n(B) - \mu_n(C) \right\} = T_n(C) - T_n(B) +
$$

+
$$
\sqrt{n} \left\{ \mu_n(B) - P \left\{ X_{n+1} \in B \mid \mathcal{G}_n^B \right\} \right\} - \sqrt{n} \left\{ \mu_n(C) - P \left\{ X_{n+1} \in C \mid \mathcal{G}_n^C \right\} \right\}.
$$

Hence, if $T_n(B) \xrightarrow{P} 0$ and $T_n(C) \xrightarrow{P} 0$, Corollary 1 (applied with $\mathcal{D} = \{B, C\}$) implies the contradiction $R_n \xrightarrow{P} 0$.

References

- 1. Berti P, Rigo P (1997) A Glivenko-Cantelli theorem for exchangeable random variables. Stat Probab Lett 32:385–391
- 2. Berti P, Mattei A, Rigo P (2002) Uniform convergence of empirical and predictive measures. Atti Sem Mat Fis Univ Modena 50:465–477
- 3. Berti P, Pratelli L, Rigo P (2004) Limit theorems for a class of identically distributed random variables. Ann Probab 32:2029–2052
- 4. Berti P, Crimaldi I, Pratelli L, Rigo P (2009) Rate of convergence of predictive distributions for dependent data. Bernoulli 15:1351–1367
- 5. Berti P, Pratelli L, Rigo P (2012) Limit theorems for empirical processes based on dependent data. Electron J Probab 17:1–18
- 6. Berti P, Pratelli L, Rigo P (2013) Exchangeable sequences driven by an absolutely continuous random measure. Ann Probab 41:2090–2102
- 7. Blackwell D, Dubins LE (1962) Merging of opinions with increasing information. Ann Math Stat 33:882–886
- 8. Cifarelli DM, Regazzini E (1996) De Finetti's contribution to probability and statistics. Stat Sci 11:253–282
- 9. Cifarelli DM, Dolera E, Regazzini E (2016) Frequentistic approximations to Bayesian prevision of exchangeable random elements. arXiv:1602.01269v1
- 10. Fortini S, Ladelli L, Regazzini E (2000) Exchangeability, predictive distributions and parametric models. Sankhya A 62:86–109
- 11. van der Vaart A, Wellner JA (1996) Weak convergence and empirical processes. Springer