Patrizia Berti, Luca Pratelli and Pietro Rigo

Abstract Let (X_n) be a sequence of random variables, adapted to a filtration (\mathcal{G}_n) , and let $\mu_n = (1/n) \sum_{i=1}^n \delta_{X_i}$ and $a_n(\cdot) = P(X_{n+1} \in \cdot | \mathcal{G}_n)$ be the empirical and the predictive measures. We focus on $\|\mu_n - a_n\| = \sup_{B \in \mathcal{D}} |\mu_n(B) - a_n(B)|$, where \mathcal{D} is a class of measurable sets. Conditions for $\|\mu_n - a_n\| \to 0$, almost surely or in probability, are given. Also, to determine the rate of convergence, the asymptotic behavior of $r_n \|\mu_n - a_n\|$ is investigated for suitable constants r_n . Special attention is paid to $r_n = \sqrt{n}$. The sequence (X_n) is exchangeable or, more generally, conditionally identically distributed.

1 Introduction

1.1 The Problem

Throughout, *S* is a Polish space and $X = (X_n : n \ge 1)$ a sequence of *S*-valued random variables on the probability space (Ω, \mathcal{A}, P) . Further, \mathcal{B} is the Borel σ -field on *S* and $\mathcal{G} = (\mathcal{G}_n : n \ge 0)$ a filtration on (Ω, \mathcal{A}, P) . We fix a subclass $\mathcal{D} \subset \mathcal{B}$ and we let $\|\cdot\|$ denote the sup-norm over \mathcal{D} , namely, $\|\alpha - \beta\| = \sup_{B \in \mathcal{D}} |\alpha(B) - \beta(B)|$ whenever α and β are probabilities on \mathcal{B} .

Let

$$\mu_n = (1/n) \sum_{i=1}^n \delta_{X_i} \quad \text{and} \quad a_n(\cdot) = P(X_{n+1} \in \cdot \mid \mathcal{G}_n).$$

P. Berti

L. Pratelli Accademia Navale di Livorno, Livorno, Italy e-mail: pratel@mail.dm.unipi.it

P. Rigo (⊠) Universita' di Pavia, Pavia, Italy e-mail: pietro.rigo@unipv.it

© Springer International Publishing Switzerland 2017 M.B. Ferraro et al. (eds.), *Soft Methods for Data Science*, Advances in Intelligent Systems and Computing 456, DOI 10.1007/978-3-319-42972-4_7 53

Universita' di Modena e Reggio-Emilia, Modena, Italy e-mail: patrizia.berti@unimore.it

Both μ_n and a_n are regarded as random probability measures on \mathcal{B} ; μ_n is the empirical measure and (if X is \mathcal{G} -adapted) a_n is the predictive measure.

Under some conditions, $\mu_n(B) - a_n(B) \xrightarrow{a.s.} 0$ for fixed $B \in \mathcal{B}$. In that case, a (natural) question is whether \mathcal{D} is such that $\|\mu_n - a_n\| \xrightarrow{a.s.} 0$.

Such question is addressed in this paper. Conditions for $\|\mu_n - a_n\| \to 0$, almost surely or in probability, are given. Also, to determine the rate of convergence, the asymptotic behavior of $r_n \|\mu_n - a_n\|$ is investigated for suitable constants r_n . Special attention is paid to $r_n = \sqrt{n}$. The sequence X is assumed to be exchangeable or, more generally, conditionally identically distributed (see Sect. 2).

Our main concern is to connect and unify a few results from [1-4]. Thus, this paper is essentially a survey. However, in addition to report known facts, some new results and examples are given. This is actually the case of Theorem 1(d), Corollary 1 and Examples 1-3.

1.2 Heuristics

There are various (non-independent) reasons for investigating $\mu_n - a_n$. We now list a few of them under the assumption that $\mathcal{G} = \mathcal{G}^X$, where $\mathcal{G}_0^X = \{\emptyset, \Omega\}$ and $\mathcal{G}_n^X = \sigma(X_1, \ldots, X_n)$. Most remarks, however, apply to any filtration \mathcal{G} which makes X adapted.

- Empirical processes for non-ergodic data. Slightly abusing terminology, say that X is ergodic if P is 0–1 valued on the sub- σ -field $\sigma(\limsup_n \mu_n(B) : B \in \mathcal{B})$. In real problems, X is often non-ergodic. Most stationary sequences, for instance, fail to be ergodic. Or else, an exchangeable sequence is ergodic if and only if is i.i.d. Now, if X is i.i.d., the empirical process is defined as $G_n = \sqrt{n} (\mu_n \mu_0)$ where μ_0 is the probability distribution of X_1 . But this definition has various drawbacks when X is not ergodic; see [5]. In fact, unless X is i.i.d., the probability distribution of X_1 . More importantly, if G_n converges in distribution in $l^{\infty}(\mathcal{D})$ (the metric space $l^{\infty}(\mathcal{D})$ is recalled before Corollary 1) then $\|\mu_n \mu_0\| = n^{-1/2} \|G_n\| \stackrel{P}{\longrightarrow} 0$. But $\|\mu_n \mu_0\|$ typically fails to converge to 0 in probability when X is not ergodic. Thus, empirical processes for non-ergodic data should be defined in some different way. In this framework, a meaningful option is to replace μ_0 with a_n , namely, to let $G_n = \sqrt{n} (\mu_n a_n)$.
- **Bayesian predictive inference.** In a number of problems, the main goal is to evaluate a_n but the latter can not be obtained in closed form. Thus, a_n is to be estimated by the available data. Under some assumptions, a reasonable estimate of a_n is just μ_n . In these situations, the asymptotic behavior of the error $\mu_n a_n$ plays a role. For instance, μ_n is a consistent estimate of a_n provided $\|\mu_n a_n\| \longrightarrow 0$ in some sense.

- **Predictive distributions of exchangeable sequences**. Let *X* be exchangeable. Just very little is known on the general form of a_n for given *n*, and a representation theorem for a_n would be actually a major breakthrough. Failing the latter, to fix the asymptotic behavior of $\mu_n - a_n$ contributes to fill the gap.
- **de Finetti**. Historically, one reason for introducing exchangeability (possibly, the main reason) was to justify observed frequencies as predictors of future events. See [8–10]. In this sense, to focus on $\mu_n a_n$ is in line with de Finetti's ideas. Roughly speaking, μ_n should be a good substitute of a_n in the exchangeable case.

2 Conditionally Identically Distributed Sequences

The sequence X is *conditionally identically distributed* (c.i.d.) with respect to \mathcal{G} if it is \mathcal{G} -adapted and $P(X_k \in \cdot | \mathcal{G}_n) = P(X_{n+1} \in \cdot | \mathcal{G}_n)$ a.s. for all $k > n \ge 0$. Roughly speaking, at each time $n \ge 0$, the future observations $(X_k : k > n)$ are identically distributed given the past \mathcal{G}_n . When $\mathcal{G} = \mathcal{G}^X$, the filtration \mathcal{G} is not mentioned at all and X is just called c.i.d. Then, X is c.i.d. if and only if $(X_1, \ldots, X_n, X_{n+2}) \sim (X_1, \ldots, X_n, X_{n+1})$ for all $n \ge 0$.

Exchangeable sequences are c.i.d. while the converse is not true. Indeed, X is exchangeable if and only if it is stationary and c.i.d. We refer to [3] for more on c.i.d. sequences. Here, it suffices to mention a last fact.

If X is c.i.d., there is a random probability measure μ on \mathcal{B} such that $\mu_n(B) \xrightarrow{a.s.} \mu(B)$ for every $B \in \mathcal{B}$. As a consequence, if X is c.i.d. with respect to \mathcal{G} , for each $n \ge 0$ and $B \in \mathcal{B}$ one obtains

$$E\{\mu(B) \mid \mathcal{G}_n\} = \lim_m E\{\mu_m(B) \mid \mathcal{G}_n\} = \lim_m \frac{1}{m} \sum_{k=n+1}^m P(X_k \in B \mid \mathcal{G}_n)$$
$$= P(X_{n+1} \in B \mid \mathcal{G}_n) = a_n(B) \quad \text{a.s.}$$

In particular, $a_n(B) = E\{\mu(B) \mid \mathcal{G}_n\} \xrightarrow{a.s.} \mu(B) \text{ and } \mu_n(B) - a_n(B) \xrightarrow{a.s.} 0.$

From now on, X is c.i.d. with respect to \mathcal{G} . In particular, X is identically distributed and μ_0 denotes the probability distribution of X_1 . We also let

$$W_n = \sqrt{n} \, (\mu_n - \mu),$$

where μ is the random probability measure on \mathcal{B} introduced above. Note that, if X is i.i.d., then $\mu = \mu_0$ a.s. and W_n reduces to the usual empirical process.

3 Results

Let $\mathcal{D} \subset \mathcal{B}$. To avoid measurability problems, \mathcal{D} is assumed to be *countably determined*. This means that there is a countable subclass $\mathcal{D}_0 \subset \mathcal{D}$ such that $\|\alpha - \beta\| = \sup_{B \in \mathcal{D}_0} |\alpha(B) - \beta(B)|$ for all probabilities α , β on \mathcal{B} . For instance, $\mathcal{D} = \mathcal{B}$ is countably determined (for \mathcal{B} is countably generated). Or else, if $S = \mathbb{R}^k$, then $\mathcal{D} = \{(-\infty, t] : t \in \mathbb{R}^k\}, \mathcal{D} = \{\text{closed balls}\} \text{ and } \mathcal{D} = \{\text{closed convex sets}\} \text{ are }$ countably determined.

3.1 A General Criterion

Since $a_n(B) = E\{\mu(B) \mid \mathcal{G}_n\}$ a.s. for each $B \in \mathcal{B}$ and \mathcal{D} is countably determined, one obtains

$$\|\mu_n - a_n\| = \sup_{B \in \mathcal{D}_0} |E\{\mu_n(B) - \mu(B) | \mathcal{G}_n\}| \le E\{\|\mu_n - \mu\| | \mathcal{G}_n\} \text{ a.s.}$$

This simple inequality has some nice consequences. Recall that \mathcal{D} is a *universal Glivenko-Cantelli class* if $\|\mu_n - \mu_0\| \xrightarrow{a.s.} 0$ whenever X is i.i.d.

Theorem 1 Suppose \mathcal{D} is countably determined and X is c.i.d. with respect to \mathcal{G} . Then,

- (a) $\|\mu_n a_n\| \xrightarrow{a.s.} 0$ if $\|\mu_n \mu\| \xrightarrow{a.s.} 0$ and $\|\mu_n a_n\| \xrightarrow{P} 0$ if $\|\mu_n \mu\| \xrightarrow{P} 0$. (b) $\|\mu_n a_n\| \xrightarrow{a.s.} 0$ provided X is exchangeable, $\mathcal{G} = \mathcal{G}^X$ and \mathcal{D} is a universal Glivenko-Cantelli class.
- (c) $r_n \|\mu_n a_n\| \xrightarrow{P} 0$ whenever the constants r_n satisfy $r_n / \sqrt{n} \to 0$ and $\sup_n E\{\|W_n\|^b\} < \infty$ for some $b \ge 1$.
- (d) $n^u \|\mu_n a_n\| \xrightarrow{a.s.} 0$ whenever u < 1/2 and $\sup_n E\{\|W_n\|^b\} < \infty$ for each $b \ge 0$ 1.

Proof Since $\|\mu_n - \mu\| \le 1$, point (a) follows from the martingale convergence theorem in the version of [7]. (If $\|\mu_n - \mu\| \xrightarrow{P} 0$, it suffices to apply an obvious argument based on subsequences). Next, suppose X, \mathcal{G} and \mathcal{D} are as in (b). By de Finetti's theorem, conditionally on μ , the sequence X is i.i.d. with common distribution μ . Since \mathcal{D} is a universal Glivenko-Cantelli class, it follows that $P(\|\mu_n - \mu\| \to 0) = \int P\{\|\mu_n - \mu\| \to 0 \mid \mu\} dP = \int 1 dP = 1$. Hence, (b) is a consequence of (a). As to (c), just note that

$$E\left\{\left(r_{n} \|\mu_{n}-a_{n}\|\right)^{b}\right\} \leq r_{n}^{b} E\left\{\|\mu_{n}-\mu\|^{b}\right\} = (r_{n}/\sqrt{n})^{b} E\left\{\|W_{n}\|^{b}\right\}.$$

56

Finally, as to (d), fix u < 1/2 and take b such that b(1/2 - u) > 1. Then,

$$\sum_{n} P(n^{u} \| \mu_{n} - a_{n} \| > \epsilon) \leq \sum_{n} \frac{E\{\|\mu_{n} - a_{n}\|^{b}\}}{\epsilon^{b} n^{-ub}} \leq \sum_{n} \frac{E\{\|\mu_{n} - \mu\|^{b}\}}{\epsilon^{b} n^{-ub}}$$
$$= \sum_{n} \frac{E\{\|W_{n}\|^{b}\}}{\epsilon^{b} n^{(1/2-u)b}} \leq \sum_{n} \frac{\text{const}}{n^{(1/2-u)b}} < \infty \quad \text{for each } \epsilon > 0.$$

Therefore, $n^u \|\mu_n - a_n\| \xrightarrow{a.s.} 0$ because of the Borel-Cantelli lemma.

Some remarks are in order.

Theorem 1 is essentially known. Apart from (d), it is implicit in [2, 4].

If X is exchangeable, the second part of (a) is redundant. In fact, $\|\mu_n - \mu_0\|$ converges a.s. (not necessarily to 0) whenever X is i.i.d. Applying de Finetti's theorem as in the proof of Theorem 1(b), it follows that $\|\mu_n - \mu\|$ converges a.s. even if X is exchangeable. Thus, $\|\mu_n - \mu\| \xrightarrow{P} 0$ implies $\|\mu_n - \mu\| \xrightarrow{a.s.} 0$.

Sometimes, the condition in (a) is necessary as well, namely, $\|\mu_n - a_n\| \xrightarrow{a.s.} 0$ if and only if $\|\mu_n - \mu\| \xrightarrow{a.s.} 0$. For instance, this happens when $\mathcal{G} = \mathcal{G}^X$ and $\mu \ll \lambda$ a.s., where λ is a (non-random) σ -finite measure on \mathcal{B} . In this case, in fact, $\|a_n - \mu\| \xrightarrow{a.s.} 0$ by [6, Theorem 1].

Several examples of universal Glivenko-Cantelli classes are available; see [11] and references therein. Similarly, for many choices of \mathcal{D} and $b \ge 1$ there is a universal constant c(b) such that $\sup_n E\{||W_n||^b\} \le c(b)$ provided X is i.i.d.; see e.g. [11, Sects.2.14.1 and 2.14.2]. In these cases, de Finetti's theorem yields $\sup_n E\{||W_n||^b\} \le c(b)$ even if X is exchangeable. Thus, points (b)–(d) are especially useful when X is exchangeable.

In (c), convergence in probability can not be replaced by a.s. convergence. As a trivial example, take $\mathcal{D} = \mathcal{B}, \mathcal{G} = \mathcal{G}^X, r_n = \sqrt{\frac{n}{\log \log n}}$, and *X* an i.i.d. sequence of indicators. Letting $p = P(X_1 = 1)$, one obtains $E\{||W_n||^2\} = n E\{(\mu_n\{1\} - p)^2\} = p(1-p)$ for all *n*. However, the LIL yields

$$\limsup_{n} r_n \|\mu_n - a_n\| = \limsup_{n} \frac{|\sum_{i=1}^n (X_i - p)|}{\sqrt{n \log \log n}} = \sqrt{2 p (1 - p)} \quad \text{a.s}$$

We finally give a couple of examples.

Example 1 Let $\mathcal{D} = \mathcal{B}$. If X is i.i.d., then $\|\mu_n - \mu_0\| \xrightarrow{a.s.} 0$ if and only if μ_0 is discrete. By de Finetti's theorem, it follows that $\|\mu_n - \mu\| \xrightarrow{a.s.} 0$ whenever X is exchangeable and μ is a.s. discrete. Thus, under such assumptions and $\mathcal{G} = \mathcal{G}^X$, Theorem 1(a) implies $\|\mu_n - a_n\| \xrightarrow{a.s.} 0$. This result has possible practical interest. In fact, in Bayesian nonparametrics, most priors are such that μ is a.s. discrete.

Example 2 Let $S = \mathbb{R}^k$ and $\mathcal{D} = \{\text{closed convex sets}\}$. Given any probability α on \mathcal{B} , denote by $\alpha^{(c)} = \alpha - \sum_x \alpha\{x\} \delta_x$ the continuous part of α . If X is i.i.d. and $\mu_0^{(c)} \ll m$,

where *m* is Lebesgue measure, then $\|\mu_n - \mu_0\| \xrightarrow{a.s.} 0$. Applying Theorem 1(a) again, one obtains $\|\mu_n - a_n\| \xrightarrow{a.s.} 0$ provided *X* is exchangeable, $\mathcal{G} = \mathcal{G}^X$ and $\mu^{(c)} \ll m$ a.s. While "morally true", this argument does not work for $\mathcal{D} = \{\text{Borel convex sets}\}$ since the latter choice of \mathcal{D} is not countably determined.

3.2 The Dominated Case

In this Subsection, $\mathcal{G} = \mathcal{G}^X$, $\mathcal{A} = \sigma(\bigcup_n \mathcal{G}_n^X)$, Q is a probability on (Ω, \mathcal{A}) and $b_n(\cdot) = Q(X_{n+1} \in \cdot | \mathcal{G}_n)$ is the predictive measure under Q. Also, we say that Q is a Ferguson-Dirichlet law if

$$b_n(\cdot) = \frac{c Q(X_1 \in \cdot) + n \mu_n(\cdot)}{c+n}, \quad Q\text{-a.s. for some constant } c > 0.$$

If $P \ll Q$, the asymptotic behavior of $\mu_n - a_n$ under P should be affected by that of $\mu_n - b_n$ under Q. This (rough) idea is realized by the next result.

Theorem 2 (Theorems 1 and 2 of [4]) Suppose \mathcal{D} is countably determined, X is c.i.d., and $P \ll Q$. Then, $\sqrt{n} \|\mu_n - a_n\| \xrightarrow{P} 0$ provided $\sqrt{n} \|\mu_n - b_n\| \xrightarrow{Q} 0$ and the sequence (W_n) is uniformly integrable under both P and Q. In addition, $n \|\mu_n - a_n\|$ converges a.s. to a finite limit whenever Q is a Ferguson-Dirichlet law, $\sup_n E_Q\{\|W_n\|^2\} < \infty$, and

$$\sup_{n} n\left\{E_{\mathcal{Q}}\left\{(dP/dQ)^{2}\right\}-E_{\mathcal{Q}}\left\{E_{\mathcal{Q}}(dP/dQ\mid\mathcal{G}_{n})^{2}\right\}\right\}<\infty.$$

To make Theorem 2 effective, the condition $P \ll Q$ should be given a simple characterization. This happens in at least one case.

Let *S* be finite, say $S = \{x_1, \ldots, x_k, x_{k+1}\}$, *X* exchangeable and $\mu_0\{x\} > 0$ for all $x \in S$. Then $P \ll Q$, with *Q* a Ferguson-Dirichlet law, if and only if the distribution of $(\mu\{x_1\}, \ldots, \mu\{x_k\})$ is absolutely continuous (with respect to Lebesgue measure). This fact is behind the next result.

Theorem 3 (Corollaries 4 and 5 of [4]) Suppose $S = \{0, 1\}$ and X is exchangeable. Then, $\sqrt{n} (\mu_n\{1\} - a_n\{1\}) \xrightarrow{P} 0$ whenever the distribution of $\mu\{1\}$ is absolutely continuous. Moreover, $n (\mu_n\{1\} - a_n\{1\})$ converges a.s. (to a finite limit) provided the distribution of $\mu\{1\}$ is absolutely continuous with an almost Lipschitz density.

In Theorem 3, a real function f on (0, 1) is said to be *almost Lipschitz* in case $x \mapsto f(x)x^u(1-x)^v$ is Lipschitz on (0, 1) for some reals u, v < 1.

A consequence of Theorem 3 is to be stressed. For each $B \in \mathcal{B}$, define

$$T_n(B) = \sqrt{n} \left\{ a_n(B) - P\left\{ X_{n+1} \in B \mid \mathcal{G}_n^B \right\} \right\}$$

where $\mathcal{G}_n^B = \sigma(I_B(X_1), \ldots, I_B(X_n))$. Also, let $l^{\infty}(\mathcal{D})$ be the set of real bounded functions on \mathcal{D} , equipped with uniform distance. In the next result, W_n is regarded as a random element of $l^{\infty}(\mathcal{D})$ and convergence in distribution is meant in Hoffmann-Jørgensen's sense; see [11].

Corollary 1 Let D be countably determined and X exchangeable. Suppose

- (i) $\mu(B)$ has an absolutely continuous distribution for each $B \in \mathcal{D}$ such that $0 < P(X_1 \in B) < 1$;
- (ii) the sequence $(||W_n||)$ is uniformly integrable;
- (iii) W_n converges in distribution to a tight limit in $l^{\infty}(\mathcal{D})$.

Then, $\sqrt{n} \|\mu_n - a_n\| \xrightarrow{P} 0$ if and only if $T_n(B) \xrightarrow{P} 0$ for each $B \in \mathcal{D}$. Proof Let $U_n(B) = \sqrt{n} \left\{ \mu_n(B) - P \left\{ X_{n+1} \in B \mid \mathcal{G}_n^B \right\} \right\}$. Then, $U_n(B) \xrightarrow{P} 0$ for each $B \in \mathcal{D}$. In fact, $U_n(B) = 0$ a.s. if $P(X_1 \in B) \in \{0, 1\}$. Otherwise, $U_n(B) \xrightarrow{P} 0$ for follows from Theorem 3, since $(I_B(X_n))$ is an exchangeable sequence of indicators and $\mu(B)$ has an absolutely continuous distribution. Next, suppose $T_n(B) \xrightarrow{P} 0$ for each $B \in \mathcal{D}$. Letting $C_n = \sqrt{n} (\mu_n - a_n)$, we have to prove that $\|C_n\| \xrightarrow{P} 0$. Equivalently, regarding C_n as a random element of $l^{\infty}(\mathcal{D})$, we have to prove that $C_n(B) \xrightarrow{P} 0$ for fixed $B \in \mathcal{D}$ and the sequence (C_n) is asymptotically tight; see e.g. [11, Sect. 1.5]. Given $B \in \mathcal{D}$, since both $U_n(B)$ and $T_n(B)$ converge to 0 in probability, then $C_n(B) = U_n(B) - T_n(B) \xrightarrow{P} 0$. Moreover, since $C_n(B) = E \{W_n(B) \mid \mathcal{G}_n\}$ a.s., the asymptotic tightness of (C_n) follows from (ii) and (iii); see [3, Remark 4.4]. Hence, $\|C_n\| \xrightarrow{P} 0$. Conversely, if $\|C_n\| \xrightarrow{P} 0$, one trivially obtains

$$|T_n(B)| = |U_n(B) - C_n(B)| \le |U_n(B)| + ||C_n|| \xrightarrow{P} 0 \text{ for each } B \in \mathcal{D}.$$

If *X* is exchangeable, it frequently happens that $\sup_n E\{||W_n||^2\} < \infty$, which in turn implies condition (ii). Similarly, (iii) is not unusual. As an example, conditions (ii) and (iii) hold if $S = \mathbb{R}$, $\mathcal{D} = \{(-\infty, t] : t \in \mathbb{R}\}$ and μ_0 is discrete or $P(X_1 = X_2) = 0$; see [3, Theorem 4.5].

Unfortunately, as shown by the next example, $T_n(B)$ may fail to converge to 0 even if $\mu(B)$ has an absolutely continuous distribution. This suggests the following general question. In the exchangeable case, in addition to $\mu_n(B)$, which further information is required to evaluate $a_n(B)$? Or at least, are there reasonable conditions for $T_n(B) \xrightarrow{P} 0$? Even if intriguing, to our knowledge, such a question does not have a satisfactory answer.

Example 3 Let $S = \mathbb{R}$ and $X_n = Y_n Z^{-1}$, where Y_n and Z are independent real random variables, $Y_n \sim N(0, 1)$ for all n, and Z has an absolutely continuous distribution supported by $[1, \infty)$. Conditionally on Z, the sequence $X = (X_1, X_2, ...)$ is i.i.d. with common distribution $N(0, Z^{-2})$. Thus, X is exchangeable and $\mu(B) = P(X_1 \in B | Z) = f_B(Z)$ a.s., where

P. Berti et al.

$$f_B(z) = (2\pi)^{-1/2} z \int_B \exp(-(xz)^2/2) dx$$
 for $B \in \mathcal{B}$ and $z \ge 1$.

Fix $B \in \mathcal{B}$, with $B \subset [1, \infty)$ and $P(X_1 \in B) > 0$, and define $C = \{-x : x \in B\}$. Since $f_B = f_C$, then $\mu(B) = \mu(C)$ a.s. Further, $\mu(B)$ has an absolutely continuous distribution, for f_B is differentiable and $f'_B \neq 0$. Nevertheless, one between $T_n(B)$ and $T_n(C)$ does not converge to 0 in probability. Define in fact $g = I_B - I_C$ and $R_n = n^{-1/2} \sum_{i=1}^n g(X_i)$. Since $\mu(g) = \mu(B) - \mu(C) = 0$ a.s., then R_n converges stably to the kernel $N(0, 2\mu(B))$; see [3, Theorem 3.1]. On the other hand, since $E\{g(X_{n+1}) \mid \mathcal{G}_n\} = E\{\mu(g) \mid \mathcal{G}_n\} = 0$ a.s., one obtains

$$R_n = \sqrt{n} \left\{ \mu_n(B) - \mu_n(C) \right\} = T_n(C) - T_n(B) + \sqrt{n} \left\{ \mu_n(B) - P \left\{ X_{n+1} \in B \mid \mathcal{G}_n^B \right\} \right\} - \sqrt{n} \left\{ \mu_n(C) - P \left\{ X_{n+1} \in C \mid \mathcal{G}_n^C \right\} \right\}.$$

Hence, if $T_n(B) \xrightarrow{P} 0$ and $T_n(C) \xrightarrow{P} 0$, Corollary 1 (applied with $\mathcal{D} = \{B, C\}$) implies the contradiction $R_n \xrightarrow{P} 0$.

References

- 1. Berti P, Rigo P (1997) A Glivenko-Cantelli theorem for exchangeable random variables. Stat Probab Lett 32:385–391
- Berti P, Mattei A, Rigo P (2002) Uniform convergence of empirical and predictive measures. Atti Sem Mat Fis Univ Modena 50:465–477
- 3. Berti P, Pratelli L, Rigo P (2004) Limit theorems for a class of identically distributed random variables. Ann Probab 32:2029–2052
- Berti P, Crimaldi I, Pratelli L, Rigo P (2009) Rate of convergence of predictive distributions for dependent data. Bernoulli 15:1351–1367
- Berti P, Pratelli L, Rigo P (2012) Limit theorems for empirical processes based on dependent data. Electron J Probab 17:1–18
- Berti P, Pratelli L, Rigo P (2013) Exchangeable sequences driven by an absolutely continuous random measure. Ann Probab 41:2090–2102
- 7. Blackwell D, Dubins LE (1962) Merging of opinions with increasing information. Ann Math Stat 33:882–886
- Cifarelli DM, Regazzini E (1996) De Finetti's contribution to probability and statistics. Stat Sci 11:253–282
- 9. Cifarelli DM, Dolera E, Regazzini E (2016) Frequentistic approximations to Bayesian prevision of exchangeable random elements. arXiv:1602.01269v1
- Fortini S, Ladelli L, Regazzini E (2000) Exchangeability, predictive distributions and parametric models. Sankhya A 62:86–109
- 11. van der Vaart A, Wellner JA (1996) Weak convergence and empirical processes. Springer

60