ATOMIC INTERSECTION OF σ -FIELDS AND SOME OF ITS CONSEQUENCES

PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO

ABSTRACT. Let (Ω, \mathcal{F}, P) be a probability space. For each $\mathcal{G} \subset \mathcal{F}$, define $\overline{\mathcal{G}}$ as the σ -field generated by \mathcal{G} and those sets $F \in \mathcal{F}$ satisfying $P(F) \in \{0, 1\}$. Conditions for P to be atomic on $\cap_{i=1}^k \overline{A_i}$, with $A_1, \ldots, A_k \subset \mathcal{F}$ sub- σ -fields, are given. Conditions for P to be 0-1-valued on $\cap_{i=1}^k \overline{A_i}$ are given as well. These conditions are useful in various fields, including Gibbs sampling, iterated conditional expectations and the intersection property.

1. Introduction

Throughout, (Ω, \mathcal{F}, P) is a probability space, $\mathcal{A}_1, \dots, \mathcal{A}_k \subset \mathcal{F}$ sub- σ -fields, $k \geq 2$, and we let

$$\mathcal{N} = \{ F \in \mathcal{F} : P(F) \in \{0, 1\} \}$$
 and $\overline{\mathcal{G}} = \sigma(\mathcal{G} \cup \mathcal{N})$ for any $\mathcal{G} \subset \mathcal{F}$.

As discussed in Section 3, the sub- σ -field

$$\mathcal{D} = \bigcap_{i=1}^k \overline{\mathcal{A}_i}$$

plays a role in various subjects, including Gibbs sampling, iterated conditional expectations and the intersection property. In a previous paper, in a Gibbs sampling framework, we investigated when $\bigcap_{i=1}^k \overline{\mathcal{A}_i} = \overline{\bigcap_{i=1}^k \mathcal{A}_i}$; see [3].

In this paper, instead, we focus on atomicity of P on \mathcal{D} . In fact, atomicity of $P|\mathcal{D}$ (i.e., the restriction of P to \mathcal{D}) has implications in each of the subjects mentioned above. It turns out that $P|\mathcal{D}$ is actually atomic under mild conditions.

An extreme form of atomicity for $P|\mathcal{D}$ is $\mathcal{D} = \mathcal{N}$, that is, P 0-1-valued on \mathcal{D} . Indeed, $\mathcal{D} = \mathcal{N}$ is fundamental for Gibbs sampling and very useful for the intersection property; see [3], [7] and [10].

Our main results are in Sections 4 and 5. Section 4 gives general results on atomicity of $P|\mathcal{D}$. It includes a characterization (Theorem 2), a criterion for identifying the atoms (Theorem 3) and a sufficient condition (Theorem 4). Section 5, motivated by Gibbs sampling applications, concerns the particular case

$$\mathcal{A}_i = \sigma(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_k)$$

where X_1, \ldots, X_k are any random variables on (Ω, \mathcal{F}, P) . It contains working sufficient conditions for $\mathcal{D} = \mathcal{N}$ (Theorem 8) and for $P|\mathcal{D}$ to be atomic (Theorem 10). Indeed, $P|\mathcal{D}$ is atomic whenever the probability distribution of (X_1, \ldots, X_k) is absolutely continuous with respect to a σ -finite product measure.

²⁰⁰⁰ Mathematics Subject Classification. 60A10, 60J22, 62B99.

Key words and phrases. Atomic probability measure – Gibbs sampling – Graphical models – Intersection property – Iterated conditional expectations.

Finally, it is worth noting that $\mathcal{D} = \mathcal{N}$ whenever \mathcal{A}_r is independent of \mathcal{A}_s for some r, s. Given $D \in \mathcal{D}$, in fact, one has $P(A_i \Delta D) = 0$ for some $A_i \in \mathcal{A}_i$, $i = 1, \ldots, k$. Hence, $P(D) = P(A_r \cap A_s) = P(A_r)P(A_s) = P(D)^2$.

2. Preliminaries

Let $(\mathcal{X}, \mathcal{E}, Q)$ be a probability space. A Q-atom is any set $H \in \mathcal{E}$ such that Q(H) > 0 and $Q(\cdot \mid H)$ is 0-1-valued. In general, there are three possible situations: (i) Q is nonatomic, i.e., there are no Q-atoms; (ii) Q is atomic, i.e., the Q-atoms form a (countable) partition of \mathcal{X} ; (iii) there is $K \in \mathcal{E}$, 0 < Q(K) < 1, such that $Q(\cdot \mid K)$ is nonatomic and K^c is a (countable) disjoint union of Q-atoms.

Thus, $D \subset \Omega$ is an atom of $P|\mathcal{D}$ if and only if $D \in \mathcal{D}$, P(D) > 0 and $P(\cdot \mid D)$ is 0-1-valued on \mathcal{D} . In the sequel, when $P|\mathcal{D}$ is atomic, we also say that \mathcal{D} is atomic under P.

For later purposes, we also note that Q is nonatomic if and only if $(\mathcal{X}, \mathcal{E}, Q)$ supports a real random variable with uniform distribution on (0,1). In fact, if U is a uniform random variable on $(\mathcal{X}, \mathcal{E}, Q)$, then Q is nonatomic since $\sigma(U) \subset \mathcal{E}$ and $Q|\sigma(U)$ is nonatomic. Conversely, by Lyapunov's convexity theorem, if Q is nonatomic the range of Q is [0,1]; see e.g. [8] or Theorem 5.1.6 of [4] for a proof (based on transfinite induction or Zorn's lemma, respectively). Since the range of Q is [0,1], a uniform random variable on $(\mathcal{X},\mathcal{E},Q)$ can be obtained by arguing as in the proof of Lemma 2 of [1]; see also Theorem 3.1 of [2].

We finally recall that, for any sub- σ -field $\mathcal{G} \subset \mathcal{F}$,

$$\overline{\mathcal{G}} = \{ F \in \mathcal{F} : P(F\Delta G) = 0 \text{ for some } G \in \mathcal{G} \}.$$

A straightforward consequence is that a real $\overline{\mathcal{G}}$ -measurable function on Ω coincides a.s. with some \mathcal{G} -measurable function. Thus, if $U:\Omega\to\mathbb{R}$ is \mathcal{D} -measurable, then $U=U_i$ a.s. for some \mathcal{A}_i -measurable function $U_i:\Omega\to\mathbb{R},\ i=1,\ldots,k$.

3. Fields where \mathcal{D} appears

We list some fields involving \mathcal{D} , by paying particular attention to the case where $P|\mathcal{D}$ is atomic. We stress by now that, for atomicity of $P|\mathcal{D}$ to be a real advantage, the atoms of $P|\mathcal{D}$ and their probabilities should be known.

Throughout, X_i is a random variable on (Ω, \mathcal{F}, P) with values in the measurable space $(\mathcal{X}_i, \mathcal{B}_i)$, i = 1, ..., k, and

$$X_i^* = (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_k).$$

3.1. **Intersection property.** Let X be a random variable on (Ω, \mathcal{F}, P) with values in the measurable space $(\mathcal{X}, \mathcal{E})$. The intersection property (IP) is

$$X \perp X_i^* \mid X_i \text{ for } i = 1, \dots, k \implies X \perp (X_1, \dots, X_k)$$

where the notation " $U \perp V \mid W$ " stands for "U conditionally independent of V given W". It is well known that IP may fail. As a trivial example, take X not independent of X_1 and $X_i = X_1$ for all i.

IP is involved in a number of arguments. It appears, for instance, in graphical models, zero entries in contingency tables, causal inference and estimation in Markov processes; see [10] and references therein.

The connections between IP and \mathcal{D} are made clear by part (b) of the next (obvious) result. Part (a) is already known for k=2 (see Proposition 2.2 of [10] and references therein) but we give a proof to make the paper self-contained.

Theorem 1. Let $A_i = \sigma(X_i)$ for all i. Then:

- (a) $X \perp X_i^* \mid X_i \text{ for } i = 1, \dots, k \iff E(f(X) \mid X_1, \dots, X_k) = E(f(X) \mid \mathcal{D}) \text{ a.s.}$ for each real bounded measurable function f on $(\mathcal{X}, \mathcal{E})$;
- **(b)** $X \perp X_i^* \mid X_i \text{ for } i = 1, \ldots, k \text{ and } X \perp \mathcal{D} \iff X \perp (X_1, \ldots, X_k);$
- (c) $X \perp \mathcal{D}$ if and only if

$$P(X \in A, X_1 \in B_1) = P(X \in A) P(X_1 \in B_1)$$
 whenever

$$A \in \mathcal{E}, B_1 \in \mathcal{B}_1 \text{ and } P(\{X_1 \in B_1\} \Delta \{X_i \in B_i\}) = 0 \text{ for some } B_i \in \mathcal{B}_i, i = 2, \dots, k.$$

Proof. (a) Suppose $E(f(X) \mid X_1, ..., X_k) = E(f(X) \mid \mathcal{D})$ a.s. for all bounded measurable f on $(\mathcal{X}, \mathcal{E})$. Given i, since $\mathcal{D} \subset \overline{\sigma(X_i)} \subset \overline{\sigma(X_1, ..., X_k)}$, then

$$E(f(X) | X_i) = E(f(X) | D) = E(f(X) | X_1, ..., X_k)$$
 a.s.

for all bounded measurable f, that is, $X \perp X_i^* \mid X_i$. Conversely, suppose $X \perp X_i^* \mid X_i$ for all i. Given a bounded measurable f,

$$E(f(X) | X_1) = E(f(X) | X_1, \dots, X_k) = E(f(X) | X_i)$$
 a.s. for all *i*.

Thus, $E(f(X) \mid X_1)$ is $\overline{\sigma(X_i)}$ -measurable for all i, i.e., it is \mathcal{D} -measurable. Therefore, $E(f(X) \mid X_1, \dots, X_k) = E(f(X) \mid X_1) = E(f(X) \mid \mathcal{D})$ a.s..

- (b) "\(\iff \)" is obvious. As to "\(\iff \)", it suffices noting that $E(f(X) \mid X_1, \dots, X_k) = E(f(X) \mid \mathcal{D}) = Ef(X)$ a.s. for all bounded measurable f, where the first equality is by part (a) and the second is because $X \perp \mathcal{D}$.
 - (c) Just note that

$$\mathcal{D} = \{ F \in \mathcal{F} : P(F\Delta\{X_i \in B_i\}) = 0 \text{ for some } B_i \in \mathcal{B}_i, \ i = 1, \dots, k \}.$$

Thus, $X \perp \mathcal{D}$ is a (natural) sufficient condition for IP. In a sense, it is necessary as well, since it is a consequence of $X \perp (X_1, \ldots, X_k)$. Heuristically, $X \perp \mathcal{D}$ means that X is not affected by that part of information which is common to X_1, \ldots, X_k .

To test whether $X \perp \mathcal{D}$, atomicity of \mathcal{D} under P can help. If $P \mid \mathcal{D}$ is atomic, in fact, $X \perp \mathcal{D}$ reduces to

$$P(X \in A, D) = P(X \in A) P(D)$$
 for all $A \in \mathcal{E}$ and atoms D of $P|\mathcal{D}$.

As shown in Theorem 4, for $P|\mathcal{D}$ to be atomic, it is enough that the distribution of (X_1, \ldots, X_k) is absolutely continuous with respect to a σ -finite product measure; see also Lemma 6.

A last note is that $X \perp \mathcal{D}$ is trivially true whenever $\mathcal{D} = \mathcal{N}$. In [10], a paper which inspired the present Subsection, $\mathcal{D} = \mathcal{N}$ was firstly viewed as a sufficient condition for IP. In [3], in a Gibbs sampling framework, $\mathcal{D} = \mathcal{N}$ was given a characterization and various sufficient conditions.

3.2. Iterated conditional expectations. Let X be a real random variable on (Ω, \mathcal{F}, P) such that $EX^2 < \infty$ and

$$\mathcal{D}_{mk+i} = \mathcal{A}_i$$
 for all $m = 0, 1, \dots$ and $i = 1, \dots, k$.

Define $Z_0 = X$ and $Z_n = E(Z_{n-1} \mid \mathcal{D}_n)$ for $n \geq 1$. Then,

(1)
$$Z_n \stackrel{a.s.}{\to} E(X \mid \mathcal{D}) \text{ as } n \to \infty.$$

This classical result was obtained by Burkholder-Chow [5] for k = 2 and Delyon-Delyon [6] for arbitrary k. See [7] for some historical notes.

Suppose now that \mathcal{D} is atomic under P and the goal is estimating EX. Then, $E(X \mid \mathcal{D}) = \sum_{j} I_{D_j} E(X \mid D_j)$ a.s. where D_1, D_2, \ldots denote the (disjoint) atoms of $P \mid \mathcal{D}$. Thus, one should apply relation (1) on each atom D_j , so as to obtain an estimate for $E(X \mid D_j)$, and then use the formula $EX = \sum_{j} P(D_j) E(X \mid D_j)$.

3.3. **Gibbs sampling.** As noted in [7], the limit theorem of Burkholder-Chow and Delyon-Delyon (Subsection 3.2) is intrinsically connected to Gibbs sampling.

Let X_1, \ldots, X_k be the canonical projections on

$$(\Omega, \mathcal{F}) = (\prod_{i=1}^k \mathcal{X}_i, \prod_{i=1}^k \mathcal{B}_i).$$

Each X_i is assumed to admit a regular conditional distribution γ_i given X_i^* . In the notation $u=(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_k)$, where $x_j\in\mathcal{X}_j$ for all $j\neq i$, this means that: (i) $\gamma_i(u)$ is a probability measure on \mathcal{B}_i for every u; (ii) $u\mapsto\gamma_i(u)(A)$ is measurable for $A\in\mathcal{B}_i$; (iii) $P(B)=\int\int I_B(x_1,\ldots,x_k)\gamma_i(u)(dx_i)\gamma_i^*(du)$ for $B\in\prod_{i=1}^k\mathcal{B}_i$, where γ_i^* denotes the marginal distribution of X_i^* .

The Gibbs-chain

$$Y_n = (Y_{1,n}, \dots, Y_{k,n}), \quad n \ge 0,$$

can be informally described as follows. Starting from $\omega = (x_1, \ldots, x_k)$, the next state $\omega^* = (a_1, \ldots, a_k)$ is obtained by sequentially generating $a_k, a_{k-1}, \ldots, a_1$, each a_i being selected from the conditional distribution of X_i given $X_1 = x_1, \ldots, X_{i-1} = x_{i-1}, X_{i+1} = a_{i+1}, \ldots, X_k = a_k$. Formally, (Y_n) is the homogeneous Markov chain with state space (Ω, \mathcal{F}) and transition kernel

$$K(\omega, B) = K((x_1, \dots, x_k), B)$$

$$= \int \dots \int I_B(a_1, \dots, a_k) \prod_{i=1}^k \gamma_i(x_1, \dots, x_{i-1}, a_{i+1}, \dots, a_k) (da_i).$$

Note that P is a stationary distribution for (Y_n) , i.e., $P(\cdot) = \int K(\omega, \cdot) P(d\omega)$. Let \mathbb{P} denote the law of (Y_n) such that $Y_0 \sim P$.

The Gibbs chain is constructed mainly for sampling from P. To this end, the following SLLN is fundamental

(2)
$$\frac{1}{n} \sum_{i=0}^{n-1} \phi(Y_i) \to \int \phi \, dP, \ \mathbb{P}\text{-a.s., for all } \phi \in L_1(P).$$

Another basic requirement of (Y_n) , stronger than (2), is ergodicity on some set $S \in \mathcal{F}$, that is

$$P(S) = 1$$
, $K(\omega, S) = 1$ and $||K^n(\omega, \cdot) - P|| \to 0$ for each $\omega \in S$,

where $\|\cdot\|$ is total variation norm and K^n the *n*-th iterate of K.

Now, letting $A_i = \sigma(X_i^*)$ for all i, the SLLN under (2) is equivalent to

$$\mathcal{D} = \mathcal{N}$$
.

In addition, in case \mathcal{F} is countably generated and P absolutely continuous with respect to a σ -finite product measure, $\mathcal{D} = \mathcal{N}$ if and only if (Y_n) is ergodic on $S_0 = \{\omega \in \Omega : K(\omega, \cdot) \ll P\}$. See Theorems 4.2, 4.5 and Remark 4.7 of [3].

Conditions for $\mathcal{D} = \mathcal{N}$ (when $\mathcal{A}_i = \sigma(X_i^*)$ for all i) are given in Theorem 8; see also Lemma 6.

Strictly speaking, thus, Gibbs sampling is admissible only if $\mathcal{D} = \mathcal{N}$. At least in principle, however, it makes sense even if $\mathcal{D} \neq \mathcal{N}$, provided \mathcal{D} is atomic under P. In fact, if $P|\mathcal{D}$ is atomic (with disjoint atoms D_1, D_2, \ldots), then (2) turns into

(2*)
$$\frac{1}{n} \sum_{i=0}^{n-1} \phi(Y_i) \to \int \phi(\omega) P(d\omega \mid D_j),$$

$$\mathbb{P}\text{-a.s. on } \{Y_0 \in D_j\}, \text{ for all } j \text{ and } \phi \in L_1(P).$$

The SLLN under (2*) can be proved by the same argument used for Theorem 4.2 of [3] plus the observation that $K(\cdot, B) = I_B(\cdot)$, P-a.s., for each $B \in \mathcal{D}$.

If the atoms D_j are only a finite number, and they are known together with their probabilities $P(D_j)$, then (2^*) can be used to evaluate $\int \phi \, dP$. The chain (Y_n) should be started on each D_j , so as to obtain an estimate for $\int \phi(\omega) \, P(d\omega \mid D_j)$, and then the formula $\int \phi \, dP = \sum_j P(D_j) \int \phi(\omega) \, P(d\omega \mid D_j)$ should be applied.

As shown in Theorem 10, for $P|\mathcal{D}$ to be atomic, it is enough that the distribution of (X_1, \ldots, X_k) is absolutely continuous with respect to a σ -finite product measure.

4. Atomicity of \mathcal{D} under P

We begin with a definition. Say that $H \subset \Omega$ has the trivial intersection property, or briefly that H is TIP, in case $H \in \mathcal{F}$, P(H) > 0, and

$$A_i \in \mathcal{A}_i$$
 and $P(A_i \Delta A_1 \mid H) = 0$ for $i = 1, \dots, k \Longrightarrow P(A_1 \mid H) \in \{0, 1\}$.

Here are some obvious consequences of the definition.

- (i) If H is TIP, $A_i \in \mathcal{A}_i$ and $P(A_i \Delta A_1 \mid H) = 0$ for all i, then either $P(A_i \mid H) = 0$ for all i or $P(A_i \mid H) = 1$ for all i.
- (ii) Let $H \in \mathcal{F}$ with P(H) > 0 and write $P_H = P(\cdot \mid H)$. Then, H is TIP if and only if Ω is P_H -TIP (i.e., Ω is TIP under P_H). Moreover, Ω is TIP if and only if $\mathcal{D} = \mathcal{N}$. Therefore, the definition of TIP set may be rephrased as follows: H is TIP if and only if

$$\mathcal{D}_{P_H} = \mathcal{N}_{P_H}$$
 where $\mathcal{N}_{P_H} = \{F \in \mathcal{F} : P_H(F) \in \{0,1\}\}$ and $\mathcal{D}_{P_H} = \cap_{i=1}^k \sigma(\mathcal{A}_i \cup \mathcal{N}_{P_H})$.

(iii) Let Q be a probability on \mathcal{F} . If P and Q are equivalent (i.e., $P \ll Q$ and $Q \ll P$), then H is Q-TIP if and only if it is P-TIP. If $P \ll Q$ and $H \subset \{\frac{dP}{dQ} > 0\}$, for some given version of $\frac{dP}{dQ}$, then H is Q-TIP if and only if it is P-TIP.

The present notion of TIP set generalizes the one given in [3] for k = 2. Among other things, such a notion is basic for characterizing atomicity of $P|\mathcal{D}$.

Theorem 2. Let $H \subset \Omega$. Then,

- (a) If H is TIP, there is an atom H^* of $P|\mathcal{D}$ satisfying $H^* \supset H$ and $P(D \mid H^*) = P(D \mid H)$ for all $D \in \mathcal{D}$;
- (b) For H to be an atom of $P|\mathcal{D}$ it is necessary and sufficient that $H \in \mathcal{D}$ and H is TIP;
- (c) \mathcal{D} is atomic under P if and only if $P(\cup_n H_n) = 1$ for some countable collection H_1, H_2, \ldots of TIP sets.

Proof. (a) Suppose H is TIP. We first prove that $P(\cdot \mid H)$ is 0-1 on \mathcal{D} . Given $D \in \mathcal{D}$, for each i there is $A_i \in \mathcal{A}_i$ such that $P(A_i \Delta D) = 0$. Hence, $P((A_i \Delta A_1) \cap H) \leq P(A_i \Delta A_1) = 0$ for all i, and H TIP implies $P(D \mid H) = P(A_1 \mid H) \in \{0, 1\}$. Next, by a standard argument, there is $H^* \in \mathcal{D}$ such that $H^* \supset H$ and

$$P(H^*) = \inf\{P(D) : H \subset D \in \mathcal{D}\}.$$

Let $D \in \mathcal{D}$. If $P(D \mid H) = 1$, then

$$H \subset (D \cap H^*) \cup (D^c \cap H) \in \mathcal{D},$$

so that $P(H^*) \leq P((D \cap H^*) \cup (D^c \cap H)) = P(D \cap H^*)$ by definition of H^* . Hence, $P(D \mid H^*) = 1$. Taking complements, if $P(D \mid H) = 0$ then $P(D \mid H^*) = 0$. Thus, H^* is an atom of $P|\mathcal{D}$ and $P(\cdot \mid H^*) = P(\cdot \mid H)$ on \mathcal{D} .

(b) If $H \in \mathcal{D}$ is TIP, then H is an atom of $P|\mathcal{D}$ since $P(H \mid H^*) = P(H \mid H) = 1$, where H^* is as in point (a). Conversely, suppose H is an atom of $P|\mathcal{D}$. To prove H TIP, we fix $A_i \in \mathcal{A}_i$ such that $P(A_i \Delta A_1 \mid H) = 0$ for $i = 1, \ldots, k$. For each i, since $H \in \mathcal{D} \subset \overline{\mathcal{A}_i}$, some $H_i \in \mathcal{A}_i$ meets $P(H \Delta H_i) = 0$. Moreover,

$$P((A_1 \cap H)\Delta(A_i \cap H_i)) \le P(H\Delta H_i) + P((A_i\Delta A_1) \cap H) = 0.$$

Hence, $A_1 \cap H \in \overline{A_i}$ for all i, that is, $A_1 \cap H \in \mathcal{D}$. Since H is an atom of $P|\mathcal{D}$, it follows that $P(A_1 \mid H) = P(A_1 \cap H \mid H) \in \{0, 1\}$. Thus, H is TIP.

(c) If $P|\mathcal{D}$ is atomic, it suffices to take the H_n as the atoms of $P|\mathcal{D}$ and to apply point (b). Conversely, if $P(\cup_n H_n) = 1$ with the H_n TIP, for each n point (a) implies $H_n \subset H_n^*$ for some atom H_n^* of $P|\mathcal{D}$. Then, $P|\mathcal{D}$ is atomic since $P(\cup_n H_n^*) \geq P(\cup_n H_n) = 1$.

By Theorem 2, $P|\mathcal{D}$ is atomic provided Ω can be covered by countably many TIP sets H_1, H_2, \ldots In this case, every atom D admits the representation $D = \bigcup_{i \in I} H_i$ a.s. for some index set I (by point (a)). The next issue, thus, is identifying such atoms using the H_n as building blocks. Indeed, the atoms are maximal TIP sets, according to the following result.

Theorem 3. Suppose $P(\cup_n H_n) = 1$, where H_1, H_2, \ldots are TIP, and let $D \subset \Omega$. Then, D is an atom of $P|\mathcal{D}$ if and only if D is TIP and

(3)
$$D \cup H_n$$
 fails to be TIP whenever $P(H_n \setminus D) > 0$.

Proof. By Theorem 2, it can be assumed D TIP, and we have to prove that condition (3) is equivalent to $D \in \mathcal{D}$. Suppose (3) holds. Let $N = \{n : P(H_n \setminus D) > 0\}$. If $N = \emptyset$, then $P(D^c) \leq \sum_n P(H_n \setminus D) = 0$, so that $D \in \mathcal{N} \subset \mathcal{D}$. If $N \neq \emptyset$, by (3), for each $n \in N$ there are $A_{i,n} \in \mathcal{A}_i$, $i = 1, \ldots, k$, satisfying

$$P\big(A_{i,n}\Delta A_{1,n}\mid D\cup H_n\big)=0 \text{ and } P\big(A_{i,n}\mid D\cup H_n\big)\in (0,1) \text{ for all } i.$$

Since D and H_n are TIP, one also has $P(A_{i,n} \mid D) \in \{0,1\}$ and $P(A_{i,n} \mid H_n) \in \{0,1\}$ for all i, and thus

$$P(A_{i,n} | D) = 1 - P(A_{i,n} | H_n)$$
 for all i.

Define $F_{i,n} = A_{i,n}$ or $F_{i,n} = A_{i,n}^c$ as $P(A_{i,n} \mid D) = 1$ or $P(A_{i,n} \mid D) = 0$, and $A_i = \bigcap_{n \in N} F_{i,n}$.

Then, $P(A_i \mid D) = 1$ and $P(A_i \mid H_n) = 0$ for all i and $n \in N$. Hence, given i,

$$P(A_i \Delta D) = P(A_i \setminus D) \le \sum_{n \in N} P(A_i \cap D^c \cap H_n) \le \sum_{n \in N} P(A_i \cap H_n) = 0.$$

Since $A_i \in \mathcal{A}_i$, it follows that $D \in \overline{\mathcal{A}_i}$, that is, $D \in \mathcal{D}$. Conversely, suppose $D \in \mathcal{D}$ and $D \cup H_n$ is TIP for some n. Since $P(D \mid D \cup H_n) \in \{0,1\}$ (by point (a) of Theorem 2) and P(D) > 0 (as D is TIP), then $P(H_n \setminus D) = 0$.

In real problems, it is not unusual that $P \ll Q$ for some probability Q on \mathcal{F} which makes $\mathcal{A}_1, \ldots, \mathcal{A}_k$ independent. This does not imply $\mathcal{D} = \mathcal{N}$ (see Examples 3.16 and 3.17 of [3]) but it suffices for atomicity of $P|\mathcal{D}$. Actually, it is enough that a couple of the \mathcal{A}_i are independent under Q.

Theorem 4. $P|\mathcal{D}$ is atomic provided $P \ll Q$ for some probability measure Q on \mathcal{F} which makes \mathcal{A}_r and \mathcal{A}_s independent for some r, s.

Proof. Fix $H \in \mathcal{D}$ with P(H) > 0 and let $P_H = P(\cdot \mid H)$. If $P_H \mid \mathcal{D}$ is nonatomic, the probability space $(\Omega, \mathcal{D}, P_H \mid \mathcal{D})$ supports a real random variable with uniform distribution; see Section 2. Hence, it suffices to prove that each \mathcal{D} -measurable function $U: \Omega \to \mathbb{R}$ satisfies $P_H(U \in C) = 1$ for some countable set $C \subset \mathbb{R}$. Further, since $P_H \ll P$, it is enough to show that $P(U \in C) = 1$. Let $U: \Omega \to \mathbb{R}$ be \mathcal{D} -measurable. Then, $U = U_i$ a.s. for some $U_i: \Omega \to \mathbb{R}$ satisfying $\sigma(U_i) \subset \mathcal{A}_i$, $i = 1, \ldots, k$. Define the countable set $C = \{c \in \mathbb{R} : Q(U_s = c) > 0\}$. Since U_r and U_s are independent under Q,

$$Q(U_r \notin C, U_r = U_s) = \int_{\{U_r \notin C\}} Q\{x : U_s(x) = U_r(\omega)\} Q(d\omega) = 0.$$

Thus, $P \ll Q$ yields

$$P(U \in C) = 1 - P(U \notin C, U = U_r = U_s) = 1 - P(U_r \notin C, U_r = U_s) = 1.$$

For k = 2, Theorem 4 reduces to Theorem 3.10 of [3].

Remark 5. Let $A_i = \sigma(X_i)$ for all i, where $X_i : \Omega \to \mathcal{X}_i$ is a random variable and \mathcal{X}_i a separable metric space (equipped with its Borel σ -field \mathcal{B}_i). Then, $P|\mathcal{D}$ need not be atomic even though

$$(4) P(X_i = f(X_i)) = 0$$

for all $i \neq j$ and all measurable functions $f: \mathcal{X}_j \to \mathcal{X}_i$. We mention this fact since, for some time, we conjectured $P|\mathcal{D}$ atomic under (4).

As an example, let k=2, $X_1=(U,W)$ and $X_2=(V,W)$, where U,V,W are real independent random variables with nonatomic distributions. Take $\mathcal{X}_i=\mathbb{R}^2$ and $\mathcal{A}_i=\sigma(X_i)$ for i=1,2. Given a measurable function $f=(f_1,f_2):\mathbb{R}^2\to\mathbb{R}^2$, one obtains $P\big(X_2=f(X_1)\big)\leq P\big(V=f_1(U,W)\big)=0$ since V has nonatomic distribution and is independent of (U,W). Likewise, $P\big(X_1=f(X_2)\big)=0$. However, $P|\mathcal{D}$ is nonatomic, as $\sigma(W)\subset\mathcal{D}$ and W has nonatomic distribution.

Finally, we state a simple but useful fact as a lemma. Let Q be a probability measure on \mathcal{F} . Say that P and Q are equivalent on rectangles in case

$$P(A) = 0 \Leftrightarrow Q(A) = 0 \text{ for each } A \in \mathcal{R},$$

where $\mathcal{R} = \{ \cap_{i=1}^k A_i : A_i \in \mathcal{A}_i, i = 1, \dots, k \}.$

If $A \in \mathcal{R}$, then A^c is a finite union of elements of \mathcal{R} . Hence, $P(A) = 1 \Leftrightarrow Q(A) = 1$ and $P(A\Delta B) = 0 \Leftrightarrow Q(A\Delta B) = 0$ whenever $A, B \in \mathcal{R}$ and $P(A\Delta B) = 0$ are equivalent on rectangles. Note that $A_i \subset \mathcal{R}$ for all i. Note also that P and Q need not be equivalent on $\sigma(\mathcal{R})$ even though they are equivalent on rectangles.

Lemma 6. Let P and Q be equivalent on rectangles. If D is an atom of $Q|\mathcal{D}_Q$, there is $A \in \mathcal{R}$ such that $Q(A\Delta D) = 0$ and A is an atom of $P|\mathcal{D}_P$. Moreover,

$$\mathcal{D}_Q = \mathcal{N}_Q \Leftrightarrow \mathcal{D}_P = \mathcal{N}_P, \ and$$

 \mathcal{D}_Q is atomic under $Q \Leftrightarrow \mathcal{D}_P$ is atomic under P.

(Here, $\mathcal{N}_Q = \{ F \in \mathcal{F} : Q(F) \in \{0,1\} \}$, $\mathcal{D}_Q = \bigcap_{i=1}^k \sigma(\mathcal{A}_i \cup \mathcal{N}_Q)$, $\mathcal{N}_P = \mathcal{N}$ and $\mathcal{D}_P = \mathcal{D}$).

Proof. We first prove that, for each $D \in \mathcal{D}_Q$ with Q(D) > 0, there is A = A(D) satisfying $A \in \mathcal{A}_1 \cap \mathcal{D}_P$, $Q(A \Delta D) = 0$ and P(A) > 0. Take in fact $A_i \in \mathcal{A}_i$ with $Q(A_i \Delta D) = 0$, $i = 1, \ldots, k$, and let $A = A_1$. Then $A \in \mathcal{A}_1$, $Q(A \Delta D) = 0$ and P(A) > 0. Since $Q(A_i \Delta A) = 0$ for all i, then $P(A_i \Delta A) = 0$ for all i, so that $A \in \mathcal{D}_P$. Next, let D be an atom of $Q|\mathcal{D}_Q$ and A = A(D). Then, $A \in \mathcal{A}_1 \subset \mathcal{R}$. Given $G \in \mathcal{D}_P$, for each i there is $G_i \in \mathcal{A}_i$ such that $P(G \Delta G_i) = 0$. Again, $P(G_i \Delta G_1) = 0$ for all i implies $Q(G_i \Delta G_1) = 0$ for all i, so that $G_1 \in \mathcal{D}_Q$. Since A is an atom of $Q|\mathcal{D}_Q$ (as $Q(A \Delta D) = 0$), either $Q(A \cap G_1) = 0$ or $Q(A \cap G_1^c) = 0$. Accordingly, either $P(A \cap G) = P(A \cap G_1) = 0$ or $P(A \cap G_1) = 0$ or $P(A \cap G_1) = 0$, i.e., A is an atom of $P|\mathcal{D}_P$. Next, if $\mathcal{D}_Q = \mathcal{N}_Q$, then Ω is an atom of $Q|\mathcal{D}_Q$. Thus, $A = A(\Omega)$ is an atom of $P|\mathcal{D}_P$ and P(A) = 1, i.e., $\mathcal{D}_P = \mathcal{N}_P$. Finally, suppose $Q|\mathcal{D}_Q$ is atomic with (disjoint) atoms D_1, D_2, \ldots . Let $A_j = A(D_j)$ and $A = \cup_j A_j$. Then, each A_j is an atom of $P|\mathcal{D}_P$, and P(A) = 1 since Q(A) = 1 and $A \in \mathcal{A}_1 \subset \mathcal{R}$. Therefore, $P|\mathcal{D}_P$ is atomic.

5. Applications to Gibbs sampling

As remarked in Subsection 3.3, in a Gibbs sampling framework it is fundamental that $\mathcal{D} = \mathcal{N}$, or at least that \mathcal{D} is atomic under P, when the \mathcal{A}_i are given by

$$\mathcal{A}_i = \sigma(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_k).$$

In this section, we let $\mathcal{A}_i = \sigma(X_i^*)$ for all i, where $X_i^* = (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_k)$ and the X_i are random variables on (Ω, \mathcal{F}, P) with values in the measurable spaces $(\mathcal{X}_i, \mathcal{B}_i)$, $i = 1, \dots, k$. We also let $\mathcal{D}_0 = \cap_i \overline{\sigma(X_i)}$. Since $\mathcal{D}_0 \subset \mathcal{D}$, P is 0-1-valued or atomic on \mathcal{D}_0 whenever it is so on \mathcal{D} .

Let $\mathcal{X} = \prod_{i=1}^k \mathcal{X}_i$ and let $\mathcal{B} = \prod_{i=1}^k \mathcal{B}_i$ denote the product σ -field on \mathcal{X} . Define two measures on \mathcal{B} as

$$\gamma(\cdot) = P((X_1, \dots, X_k) \in \cdot)$$
 and $\mu = \mu_1 \times \dots \times \mu_k$

where each μ_i is a σ -finite measure on \mathcal{B}_i . Thus, γ is the probability distribution of (X_1, \ldots, X_k) and μ a σ -finite product measure.

By Theorem 4, it follows that $P|\mathcal{D}_0$ is atomic whenever $\gamma \ll \mu$. Whether or not $\gamma \ll \mu$ implies $P|\mathcal{D}$ atomic is a bit more delicate and is the main focus of this section. We start by noting that, in the independent case, things are as expected.

Lemma 7. Let $A_i = \sigma(X_i^*)$ for all i and

$$\mathcal{D}_j = \bigcap_{i=1}^j \overline{\sigma(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_j)}, \quad j = 2, \dots, k.$$

If X_j is independent of (X_1, \ldots, X_{j-1}) , then $\mathcal{D}_j = \mathcal{D}_{j-1}$. In particular, if X_1, \ldots, X_k are independent, then $\mathcal{D} = \mathcal{N}$ and $H = \{X_1 \in B_1, \ldots, X_k \in B_k\}$ is TIP as far as $B_i \in \mathcal{B}_i$ for all i and P(H) > 0.

Proof. Since $\mathcal{D}_{j-1} \subset \mathcal{D}_j$, it suffices to prove $\mathcal{D}_{j-1} \supset \mathcal{D}_j$. Let $A \in \mathcal{D}_j$. Then, $I_A = f_i(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_j)$ a.s. for some bounded measurable function f_i , $i = 1, \ldots, j$. Let α_j denote the probability distribution of X_j . If X_j is independent of (X_1, \ldots, X_{j-1}) , then

$$I_A = E(I_A \mid X_1, \dots, X_{j-1})$$

$$= E(f_i(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_j) \mid X_1, \dots, X_{j-1})$$

$$= \int f_i(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_{j-1}, t) \alpha_j(dt) \quad \text{a.s. for each } i < j.$$

Thus, $A \in \mathcal{D}_{j-1}$. Next, suppose X_1, \ldots, X_k are independent. By what already proved,

$$\mathcal{D} = \mathcal{D}_k = \mathcal{D}_{k-1} = \ldots = \mathcal{D}_2 = \overline{\sigma(X_1)} \cap \overline{\sigma(X_2)} = \mathcal{N},$$

or equivalently Ω is TIP. Since X_1, \ldots, X_k are still independent under $P(\cdot \mid H)$, it follows that Ω is $P(\cdot \mid H)$ -TIP, that is, H is P-TIP.

The independence assumption can be considerably relaxed. Next result is inspired to Corollary 3.7 of [3].

Theorem 8. Suppose $A_i = \sigma(X_i^*)$ for all $i, \gamma \ll \mu$ and f is a version of $\frac{d\gamma}{d\mu}$. Let $H = \{(X_1, \dots, X_k) \in B\}$ where $B \in \mathcal{B}$ and $B \subset \{f > 0\}$.

Then, H is TIP provided

(5)
$$\bigcup_{i=1}^{k} \{X_i^* \in B_i^*\} \supset H \supset \bigcap_{i=1}^{k} \{X_i \in B_i\}, \text{ where } B_i^* = \times_{j \neq i} B_j,$$
 for some $B_i \in \mathcal{B}_i, i = 1, ..., k, \text{ with } P(X_1 \in B_1, ..., X_k \in B_k) > 0.$

Proof. It can be assumed $(\Omega, \mathcal{F}, P) = (\mathcal{X}, \mathcal{B}, \gamma)$ and X_1, \ldots, X_k the canonical projections (so that H = B). For each i, since μ_i is σ -finite, there is a probability Q_i on \mathcal{B}_i equivalent to μ_i . Let $Q = Q_1 \times \ldots \times Q_k$ denote the corresponding product probability on \mathcal{B} . Since $P \ll Q$ and P(H) > 0, then Q(H) > 0. Since f > 0 on H, then $Q(\cdot \mid H)$ is equivalent to $P(\cdot \mid H)$. Thus, H is P-TIP if and only if it is Q-TIP. We next prove that H is Q-TIP. Let $K = \{X_1 \in B_1, \ldots, X_k \in B_k\}$. Since Q(K) > 0 (due to P(K) > 0) and X_1, \ldots, X_k are independent under Q, Lemma 7 implies that K is Q-TIP. Fix $A_i \in \mathcal{A}_i$ with $Q(A_i \Delta A_1 \mid H) = 0$, $i = 1, \ldots, k$. Since $Q(A_i \mid K) = 0$ for all $Q(A_i \mid K) = 0$

 $Q(A_j, X_j^* \in B_j^*) Q(X_j \in B_j) = Q(A_j, X_j^* \in B_j^*, X_j \in B_j) = Q(A_j \cap K) = 0,$ then $Q(A_j, X_j^* \in B_j^*) = 0$. Also, $\{X_j^* \in B_j^*\} \cap \{X_r \notin B_r\} = \emptyset$ for $j \neq r$ and $H \subset \bigcup_{i=1}^k \{X_i^* \in B_i^*\}$. Thus, letting $A = \bigcap_i A_i$,

$$Q(A_{1} \cap H) = Q(A \cap H) = Q(A \cap H \cap K^{c})$$

$$\leq Q(A \cap (\cup_{j} \{X_{j}^{*} \in B_{j}^{*}\}) \cap (\cup_{r} \{X_{r} \notin B_{r}\}))$$

$$\leq \sum_{j} \sum_{r} Q(A, X_{j}^{*} \in B_{j}^{*}, X_{r} \notin B_{r})$$

$$= \sum_{j} Q(A, X_{j}^{*} \in B_{j}^{*}, X_{j} \notin B_{j})$$

$$\leq \sum_{j} Q(A_{j}, X_{j}^{*} \in B_{j}^{*}) = 0.$$

Thus, H is Q-TIP, and this concludes the proof.

By Theorem 8, $\mathcal{D} = \mathcal{N}$ in case $\gamma \ll \mu$ and condition (5) holds with $B = \{f > 0\}$.

Example 9. Let $X_3 = X_1 X_2$ where X_1 and X_2 are i.i.d. random variables with values in $\{-1,1\}$ and $P(X_1 = -1) = P(X_1 = 1) = \frac{1}{2}$. Let $\mu_1 = \mu_2 = \mu_3$ be counting measure on $\{-1,1\}$ and $\mathcal{D}_0 = \bigcap_i \overline{\sigma(X_i)}$. Since the X_i are pairwise independent (even if not independent), $\mathcal{D}_0 = \mathcal{N}$. Since $P(X_3 = 1) = \frac{1}{2}$ and $\mathcal{D} \supset \sigma(X_3)$, then $\mathcal{D} \neq \mathcal{N}$. Thus, $\mathcal{D}_0 = \mathcal{N}$ and $\gamma \ll \mu$ do not imply $\mathcal{D} = \mathcal{N}$. Note also that $\bigcup_{i=1}^3 \{X_i = 1\} = \Omega$, $P(X_1 = X_2 = X_3 = 1) > 0$ while $H = \Omega$ is not TIP. Thus, condition (5) cannot be weakened into

$$\bigcup_{i=1}^{k} \{X_i \in B_i\} \supset H \supset \bigcap_{i=1}^{k} \{X_i \in B_i\} \text{ with } P(X_1 \in B_1, \dots, X_k \in B_k) > 0.$$

Our last and main result is that \mathcal{D} is atomic under P as far as $\gamma \ll \mu$.

Theorem 10. Let $A_i = \sigma(X_i^*)$ for all i. If $\gamma \ll \mu$, then $P|\mathcal{D}$ is atomic.

Proof. Let Q be a probability measure on \mathcal{F} which makes X_1, \ldots, X_k independent. Denote M_Q the class of those probabilities \mathbb{P} on \mathcal{F} such that $\mathbb{P} \ll Q$ and

$$\mathcal{N}_{\mathbb{P}} = \{ F \in \mathcal{F} : \mathbb{P}(F) \in \{0,1\} \}, \quad \mathcal{D}_{\mathbb{P}} = \bigcap_{i=1}^{k} \sigma(\sigma(X_i^*) \cup \mathcal{N}_{\mathbb{P}}), \text{ with } \mathbb{P} \in M_Q.$$

Arguing by induction on k, we now prove that each $\mathbb{P} \in M_Q$ is atomic on $\mathcal{D}_{\mathbb{P}}$.

Let k=2 and $\mathbb{P} \in M_Q$. Since $X_1^*=X_2$ and $X_2^*=X_1$, then \mathbb{P} is atomic on $\mathcal{D}_{\mathbb{P}}$ by Theorem 4.

Given $k \geq 3$, define $V_i = (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_{k-1})$. By induction, suppose that each $\mathbb{P} \in M_Q$ is atomic on

$$\mathcal{V}_{\mathbb{P}} = \bigcap_{i=1}^{k-1} \sigma(\sigma(V_i) \cup \mathcal{N}_{\mathbb{P}}).$$

We have to prove that each $\mathbb{P} \in M_Q$ is atomic on $\mathcal{D}_{\mathbb{P}}$. Accordingly, we fix $\mathbb{P} \in M_Q$ and a $\mathcal{D}_{\mathbb{P}}$ -measurable function $U:\Omega \to \mathbb{R}$. Arguing as in the proof of Theorem 4, it suffices to show that $\mathbb{P}(U \in C) = 1$ for some countable set $C \subset \mathbb{R}$.

Since $\sigma(U) \subset \mathcal{D}_{\mathbb{P}}$ and $\mathcal{A}_i = \sigma(X_i^*)$, one obtains $\mathbb{P}(U = f_i(X_i^*)) = 1$, $i = 1, \ldots, k$, for some real measurable function f_i on $(\prod_{j \neq i} \mathcal{X}_j, \prod_{j \neq i} \mathcal{B}_j)$. Let

$$A_x = \{ f_1(V_1, x) = \dots = f_{k-1}(V_{k-1}, x) \}$$
 for $x \in \mathcal{X}_k$,
 $F(t, x) = Q(A_x \cap \{ f_1(V_1, x) \le t \})$ for $t \in \mathbb{R}$ and $x \in \mathcal{X}_k$.

Since $F(t,\cdot)$ is \mathcal{B}_k -measurable for fixed t, F is a real cadlag process on the measurable space $(\mathcal{X}_k, \mathcal{B}_k)$. Let $J = \{(t,x) : F(t,x) > F(t-,x)\}$ be the jump set of F. By a well known result (see e.g. [9], Proposition 2.26), J is contained in a countable union of graphs, that is,

$$J \subset \cup_n \{(g_n(x), x) : x \in \mathcal{X}_k\}$$

for suitable \mathcal{B}_k -measurable functions $g_n: \mathcal{X}_k \to \mathbb{R}, n = 1, 2, \dots$

Fix $x \in \mathcal{X}_k$ with $Q(A_x) > 0$ and define $Q_x(\cdot) = Q(\cdot \mid A_x)$. Then, Q_x is atomic on \mathcal{V}_{Q_x} (since $Q_x \in M_Q$) and $f_1(V_1, x)$ is \mathcal{V}_{Q_x} -measurable (since $Q_x(A_x) = 1$). Thus, $F(\cdot, x)$ is a purely jump function, that is, $Q(A_x \cap \{f_1(V_1, x) \notin J_x\}) = 0$ where $J_x = \{t : F(t, x) > F(t-, x)\}$. Integrating over x yields

$$Q(f_1(X_1^*) = \dots = f_{k-1}(X_{k-1}^*))$$

= $Q(f_1(X_1^*) = \dots = f_{k-1}(X_{k-1}^*) = g_n(X_k)$ for some n).

Let $C = \{c \in \mathbb{R} : Q(f_k(X_k^*) = c) > 0\}$. Since $f_k(X_k^*)$ and $g_n(X_k)$ are independent under Q, then $Q(f_k(X_k^*) \notin C, f_k(X_k^*) = g_n(X_k)) = 0$ for all n. Hence,

$$Q(f_k(X_k^*) \notin C \text{ and } f_1(X_1^*) = \dots = f_k(X_k^*))$$

$$\leq Q(f_k(X_k^*) \notin C \text{ and } f_k(X_k^*) = g_n(X_k) \text{ for some } n) = 0.$$

Therefore, $\mathbb{P} \ll Q$ and $\mathbb{P}(U = f_i(X_i^*)) = 1$ for all $i = 1, \ldots, k$ imply

$$\mathbb{P}(U \in C) = 1 - \mathbb{P}(f_k(X_k^*) \notin C \text{ and } f_1(X_1^*) = \ldots = f_k(X_k^*)) = 1.$$

Since C is countable, \mathbb{P} is atomic on $\mathcal{D}_{\mathbb{P}}$. This concludes the induction argument and proves that each $\mathbb{P} \in M_Q$ is atomic on $\mathcal{D}_{\mathbb{P}}$.

Finally, to prove P atomic on $\mathcal{D} = \mathcal{D}_P$, it can be assumed $(\Omega, \mathcal{F}, P) = (\mathcal{X}, \mathcal{B}, \gamma)$ and X_1, \ldots, X_k the canonical projections. Also, since μ is a σ -finite product measure, μ is equivalent to some probability Q on $\mathcal{B} = \mathcal{F}$ which makes X_1, \ldots, X_k independent. Hence, $\gamma \ll \mu$ implies $P = \gamma \ll Q$. This concludes the proof.

Note that Theorem 4 could be obtained as a corollary of previous Theorem 10. However, Theorem 4 has been stated as an autonomous result, since it is a useful preliminary step toward Theorem 10.

Finally, the scope of Theorems 8 and 10 can be enlarged via Lemma 6. Following this route, sometimes, the assumption $\gamma \ll \mu$ can be circumvented. Let $Z_i: \mathcal{X} \to \mathcal{X}_i$ denote the *i*-th canonical projection and $Z_i^* = (Z_1, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_k)$. Moreover, suppose γ is equivalent on rectangles to some probability ν on \mathcal{B} , i.e., $\gamma(A) = 0 \Leftrightarrow \nu(A) = 0$ for each set A of the form $A = \{Z_1^* \in C_1, \ldots, Z_k^* \in C_k\}$ with $C_i \in \prod_{j \neq i} \mathcal{B}_j$ for all i. Then, \mathcal{D} is atomic under P provided $\nu \ll \mu$; cfr. Lemma 6 and Theorem 10. Or else, $\mathcal{D} = \mathcal{N}$ whenever $\nu \ll \mu$ and

$$\bigcup_{i=1}^{k} \{Z_i^* \in B_i^*\} \supset \{\frac{d\nu}{d\mu} > 0\} \supset \bigcap_{i=1}^{k} \{Z_i \in B_i\}$$

for some B_1, \ldots, B_k such that $\nu(Z_1 \in B_1, \ldots, Z_k \in B_k) > 0$; cfr. Lemma 6 and Theorem 8. Note also that, for k = 2, equivalence on rectangles reduces to

$$\gamma(B_1 \times B_2) = 0 \Leftrightarrow \nu(B_1 \times B_2) = 0$$
 whenever $B_1 \in \mathcal{B}_1, B_2 \in \mathcal{B}_2$.

As an example (suggested by an anonymous referee) suppose $(X_n : n \ge 1)$ is an exchangeable sequence of real random variables with Ferguson-Dirichlet mixing measure. For k = 2, (X_1, X_2) is distributed as

$$\gamma(B_1 \times B_2) = a \,\beta(B_1) \,\beta(B_2) + (1 - a) \,\beta(B_1 \cap B_2)$$

where 0 < a < 1 and β is a probability on the real Borel sets. Then $\mathcal{D} = \mathcal{N}$, as γ is equivalent on rectangles to $\beta \times \beta$. However, if β is nonatomic, γ fails to be absolutely continuous with respect to any σ -finite product measure. It can be shown that, for every $k \geq 2$, one obtains $\mathcal{D} = \mathcal{N}$ for (X_1, \ldots, X_k) as well.

Acknowledgment: This paper benefited from the helpful suggestions of an anonymous referee.

References

- [1] Berti P., Pratelli L., Rigo P. (2006) Asymptotic behaviour of the empirical process for exchangeable data, *Stoch. Proc. Appl.*, 116, 337-344.
- [2] Berti P., Pratelli L., Rigo P. (2007) Skorohod representation on a given probability space, *Prob. Theo. Rel. Fields*, 137, 277-288.
- [3] Berti P., Pratelli L., Rigo P. (2008) Trivial intersection of σ -fields and Gibbs sampling, Ann. Probab., 36, 2215-2234.
- [4] Bhaskara Rao K.P.S., Bhaskara Rao M. (1983) *Theory of charges*, Academic Press.
- [5] Burkholder D.L., Chow Y.S. (1961) Iterates of conditional expectation operators, *Proc. Amer. Math. Soc.*, 12, 490-495.
- [6] Delyon B., Delyon F. (1999) Generalization of von Neumann's spectral sets and integral representation of operators, *Bull. Soc. Math. Fr.*, 127, 25-41.
- [7] Diaconis P., Khare K., Saloff-Coste L. (2007) Stochastic alternating projections, *Preprint*, Dept. of Statistics, Stanford University, currently available at: http://www-stat.stanford.edu/~cgates/PERSI/papers/altproject-2.pdf
- [8] Halmos P.R. (1947) On the set of values of a finite measure, *Bull. Amer. Math. Soc.*, 53, 138-141.
- [9] Karatzas I., Shreve S.E. (1991) Brownian motion and stochastic calculus (second edition), Springer.
- [10] San Martin E., Mouchart M., Rolin J.M. (2005) Ignorable common information, null sets and Basu's first theorem, *Sankhya*, 67, 674-698.

PATRIZIA BERTI, DIPARTIMENTO DI MATEMATICA PURA ED APPLICATA "G. VITALI", UNIVERSITA' DI MODENA E REGGIO-EMILIA, VIA CAMPI 213/B, 41100 MODENA, ITALY E-mail address: patrizia.berti@unimore.it

LUCA PRATELLI, ACCADEMIA NAVALE, VIALE ITALIA 72, 57100 LIVORNO, ITALY E-mail address: pratel@mail.dm.unipi.it

PIETRO RIGO (CORRESPONDING AUTHOR), DIPARTIMENTO DI ECONOMIA POLITICA E METODI QUANTITATIVI, UNIVERSITA' DI PAVIA, VIA S. FELICE 5, 27100 PAVIA, ITALY *E-mail address*: prigo@eco.unipv.it