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Abstract. Let L be a linear space of real bounded random variables on the

probability space (Ω,A, P0). A finitely additive probability P on A such that

P ∼ P0 and EP (X) = 0 for each X ∈ L

is called EMFA (equivalent martingale finitely additive probability). In this

paper, EMFA’s are investigated in case P0 is atomic. Existence of EMFA’s
is characterized and a question raised in [3] is answered. Some results of the

following type are obtained as well. Let y ∈ R and Y a bounded random

variable. Then Xn + y
a.s.−→ Y , for some sequence (Xn) ⊂ L, provided EMFA’s

exist and EP (Y ) = y for each EMFA P .

1. Introduction

Let S = (St : t ∈ T ) be a real process on the measurable space (Ω,A), where
T ⊂ R is any index set. Suppose S is adapted to a filtration F = (Ft : t ∈ T )
and St is a bounded random variable for each t ∈ T . Then, (St,Ft : t ∈ T ) is a
martingale, under a probability measure P on A, if and only if EP (X) = 0 for all
X in the linear space

L(F , S) = Span {IA (St − Ss) : s, t ∈ T, s < t, A ∈ Fs}.
Basing on this fact, given any linear space L of bounded random variables on

(Ω,A), a probability measure P on A such that EP (X) = 0 for all X ∈ L is
said to be a martingale measure. Suppose now that, in addition to L, we are
given a reference measure P0 on A. A martingale measure P satisfying P ∼ P0 is
an equivalent martingale measure (EMM). Similarly, a finitely additive probability
(f.a.p.) P on A such that

P ∼ P0 and EP (X) = 0 for each X ∈ L
is an equivalent martingale f.a.p. (EMFA). Here, P ∼ P0 means that P and P0

have the same null sets. Also, from an economic point of view, each X ∈ L should
be viewed as the final outcome of some (admissible) investing strategy.

Existence of EMFA’s is investigated in [3]. The main results are recalled in
Subsection 2.2. Here, we try to motivate EMFA’s and we describe the content of
this paper.

Quoting from [3], we list some reasons for dealing with EMFA’s.

(i) Dating from de Finetti, the finitely additive theory of probability is well
founded and developed, even if not prevailing. F.a.p.’s can be always extended to
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the power set and have a solid motivation in terms of coherence. Also, there are
problems which can not be solved in the usual countably additive setting, while
admit a finitely additive solution. Examples are in conditional probability, conver-
gence in distribution of non measurable random elements, Bayesian statistics, sto-
chastic integration and the first digit problem. See e.g. [2] and references therein.
Note also that, in the finitely additive approach, one can clearly use σ-additive
probabilities. Merely, one is not obliged to do so.

(ii) Martingale probabilities play a role in various financial frameworks. Their
economic motivations, however, do not depend on whether they are σ-additive
or not. See e.g. Chapter 1 of [6]. In option pricing, for instance, EMFA’s give
arbitrage-free prices just as EMM’s. Note also that many underlying ideas, in
arbitrage price theory, were anticipated by de Finetti and Ramsey.

(iii) It may be that EMM’s fail to exist and yet EMFA’s are available; see
Examples 1, 7 and 9. In addition, existence of EMFA’s can be given simple char-
acterizations; see Theorems 2, 4 and 5.

(iv) Each EMFA P can be written as P = αP1 + (1 − α)Q, where α ∈ [0, 1),
P1 is a pure f.a.p. and Q a probability measure equivalent to P0; see Theorem 2.
Even if one does not like f.a.p.’s, when EMM’s do not exist one may be content
with an EMFA P whose α is small enough. In other terms, a fraction α of the
total mass must be sacrificed for having equivalent martingale probabilities, but
the approximation may look acceptable for small α. An extreme situation of this
type is exhibited in Example 9. In such example, EMM’s do not exist and yet, for
each ε > 0, there is an EMFA P with α ≤ ε.

In connection with points (ii)-(iii) above, and to make the notion of EMFA more
transparent, we report a simple example from [3].

Example 1. (Example 7 of [3]). Let Ω = {1, 2, . . .}, A the power set of Ω, and
P0{ω} = 2−ω for all ω ∈ Ω. For each n ≥ 0, define Dn = {n+ 1, n+ 2, . . .}. Define
also L = L(F , S), where

F0 = {∅,Ω}, Fn = σ
(
{1}, . . . , {n}

)
, S0 = 1, and

Sn(ω) =
1
2n

IDn(ω) +
ω2 + 2ω + 2

2ω
(1− IDn(ω)) for all ω ∈ Ω.

The process S has been introduced in [1]. Loosely speaking, ω could be regarded
as a (finite) stopping time and Sn(ω) as a price at time n. Such a price falls by
50% at each time n < ω. Instead, for n ≥ ω, the price is constant with respect to
n and depends on ω only.

If a f.a.p. P satisfies EP (X) = 0 for all X ∈ L(F , S), then

1 = EP (S0) = EP (Sn) =
P (Dn)

2n
+

n∑
j=1

j2 + 2j + 2
2j

P{j}.

Letting n = 1 in the above equation yields P{1} = 1/4. By induction, one obtains
2P{n} = 1/n(n + 1) for all n ≥ 1. Since

∑∞
n=1 P{n} = 1/2, then P is not σ-

additive. Thus, EMM’s do not exist. Instead, EMFA’s are available. Define in
fact

P =
P1 +Q

2
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where P1 and Q are probabilities on A such that P1{n} = 0 and Q{n} = 1/n(n+1)
for all n ≥ 1. (Note thatQ is σ-additive while P1 is purely finitely additive). Clearly,
P ∼ P0. Given X ∈ L(F , S), since Sn+1 = Sn on Dc

n, one obtains

X =
k∑
j=0

bj IDj (Sj+1 − Sj) for some k ≥ 0 and b0, . . . , bk ∈ R.

Since Dj = {j + 1} ∪Dj+1 and Sj+1 − Sj = −1/2j+1 on Dj+1, it follows that

EP1(X) =
k∑
j=0

bj
2j+1

{(
(j + 1)2 + 2(j + 1)

)
P1{j + 1} − P1(Dj+1)

}
= −

k∑
j=0

bj
2j+1

and

EQ(X) =
k∑
j=0

bj
2j+1

{(
(j + 1)2 + 2(j + 1)

)
Q{j + 1} −Q(Dj+1)

}
=

k∑
j=0

bj
2j+1

{ (j + 1)2 + 2(j + 1)
(j + 1)(j + 2)

− 1
(j + 2)

}
=

k∑
j=0

bj
2j+1

.

Therefore EP (X) = 0, that is, P is an EMFA.

This paper investigates EMFA’s when P0 is an atomic probability measure.
There are essentially two reasons for focusing on atomic P0. One is that atomic
models look appropriate in several real situations. The second is the following ver-
sion of the FTAP (fundamental theorem of asset pricing). Let P0 be atomic and L
any linear space of bounded random variables. Then, existence of EMFA’s amounts
to

L− L+
∞ ∩ L+

∞ = {0} with the closure in the norm-topology;

we refer to Subsection 2.2 for details.
Two types of results are obtained for atomic P0. First, in Subsection 3.1, ex-

istence of EMFA’s is given a new characterization. Such a characterization looks
practically more useful than the existing ones. A question raised in [3] is answered
as well (Example 7). Second, in Subsection 3.3, the following problem is addressed.
Suppose EMFA’s exist and fix a bounded random variable Y . If

EP (Y ) = y for some y ∈ R and all EMFA’s P,

does Y − y belong to the closure of L in some topology ? Or else, if EP (Y ) ≥ 0 for
all EMFA’s P , can Y be approximated by random variables of the form X+Z with
X ∈ L and Z ≥ 0 ? Indeed, with EMM’s instead of EMFA’s, these questions are
classical; see [4], [8], [9], [13] and references therein. For instance, if Y is regarded
as a contingent claim, EP (Y ) = y for all EMFA’s P means that y is the unique
arbitrage-free price of Y . Similarly Y − y ∈ L, with the closure in a suitable
topology, can be seen as a weak form of completeness for the underlying market.

A last remark pertains the choice of L in the examples scattered throughout
the paper. Recall that L is regarded as the collection of final outcomes of possi-
ble investing strategies. This interpretation makes some sense in Examples 1, 7
and 8. Instead, Examples 9 and 13 aim essentially at exhibiting certain technical
phenomena.
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2. Known results

2.1. Notation. In what follows, L is a linear space of real bounded random vari-
ables on the probability space (Ω,A, P0). We let

ess sup(X) = inf{a ∈ R : P0(X > a) = 0} = inf{ sup
A
X : A ∈ A, P0(A) = 1},

‖X‖ = ‖X‖∞ = ess sup(|X|)

for each essentially bounded random variable X.
Let P denote the set of f.a.p.’s on A and P0 = {P ∈ P : P is σ-additive}. In

particular, P0 ∈ P0. Given P, T ∈ P, we write P � T if P (A) = 0 whenever A ∈ A
and T (A) = 0, and P ∼ T if P � T and T � P . We also write

EP (X) =
∫
X dP

whenever P ∈ P and X is a real bounded random variable.
A f.a.p. P is pure if it does not have a non trivial σ-additive part. Precisely, if

P is pure and Γ is a σ-additive measure such that 0 ≤ Γ ≤ P , then Γ = 0. By a
result of Yosida-Hewitt, any P ∈ P can be written as P = αP1 + (1− α)Q where
α ∈ [0, 1], P1 ∈ P is pure and Q ∈ P0.

A P0-atom is a set A ∈ A with P0(A) > 0 and P0(· | A) ∈ {0, 1}; P0 is atomic if
there is a countable partition A1, A2, . . . of Ω such that An is a P0-atom for all n.

2.2. Existence of EMFA’s. We next state a couple of results from [3]. Let

M = {P ∈ P : P ∼ P0 and EP (X) = 0 for all X ∈ L}

be the set of EMFA’s. Note that M ∩ P0 is the set of EMM’s.

Theorem 2. Each P ∈ M admits the representation P = αP1 + (1 − α)Q where
α ∈ [0, 1), P1 ∈ P is pure, Q ∈ P0 and Q ∼ P0. Moreover, M 6= ∅ if and only if

(1) EQ(X) ≤ k ess sup(−X), X ∈ L,

for some constant k > 0 and Q ∈ P0 with Q ∼ P0. In particular, under condition
(1), one obtains

k P1 +Q

k + 1
∈M for some P1 ∈ P.

Remark 3. In condition (1), Q can be replaced by any T ∈ P such that T ∼ P0.
Precisely, if ET (X) ≤ k ess sup(−X), X ∈ L, for some k > 0 and T ∈ P with
T ∼ P0, then (k P1 + T )/(k + 1) ∈ M for some P1 ∈ P. This is easily seen by
repeating the proof of Theorem 3 of [3] with T in the place of Q.

In addition to characterizing M 6= ∅, Theorem 2 provides some information on
the weight 1 − α of the σ-additive part Q of an EMFA. Indeed, under (1), there
is P ∈ M such that α ≤ k/(k + 1). On the other hand, condition (1) is not very
helpful in real problems, for it requires to have Q in advance. A characterization
independent of Q would be more effective. We will come back to this point in the
next section.

We next turn to separation theorems. Write U − V = {u − v : u ∈ U, v ∈ V }
whenever U, V are subsets of a linear space. Let

Lp = Lp(Ω,A, P0) for all p ∈ [0,∞].
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We regard L as a subspace of L∞ and we let L+
p = {X ∈ Lp : X ≥ 0}. Since L∞ is

the dual of L1, it can be equipped with the weak-star topology σ(L∞, L1). Thus,
σ(L∞, L1) is the topology on L∞ generated by the maps X 7→ EP0

(
X Y ) for all

Y ∈ L1.
By a result of Kreps [11] (see also [12]) existence of EMM’s amounts to

L− L+
∞ ∩ L+

∞ = {0} with the closure in σ(L∞, L1).

On the other hand, it is usually argued that the norm topology on L∞ is geometri-
cally more transparent than σ(L∞, L1), and results involving the former are often
viewed as superior. Thus, a (natural) question is what happens if the closure is
taken in the norm-topology.

Theorem 4. M 6= ∅ if and only if

L+
∞ ⊂ U ∪ {0} and (L− L+

∞) ∩ U = ∅
for some norm-open convex set U ⊂ L∞.

In particular, a necessary condition for M 6= ∅ is

(2) L− L+
∞ ∩ L+

∞ = {0} with the closure in the norm-topology.

If P0 is atomic, condition (2) is sufficient for M 6= ∅ as well.

Condition (2) is essentially the no free lunch with vanishing risk condition of [5].
See also [6]. The main difference is that, in [5], L is a suitable class of stochastic
integrals (in a fixed time interval and driven by a fixed semi-martingale) and fails
to be a linear space. In this paper, instead, L is an arbitrary subspace of L∞.

One more remark concerns the classical no-arbitrage condition

(3) P0(X > 0) > 0 ⇐⇒ P0(X < 0) > 0 for each X ∈ L,

or equivalently (L−L+
0 )∩L+

0 = {0}. Since L ⊂ L∞, such condition can be written
as (L− L+

∞) ∩ L+
∞ = {0}. Hence, M 6= ∅ implies no-arbitrage (just apply Theorem

4). Instead, it may be that M = ∅ and yet P0 is atomic and condition (3) holds;
see Example 8. Thus, (2) implies (3) but not conversely, even if P0 is atomic.

It is still open whether condition (2) implies M 6= ∅ for arbitrary P0 ∈ P0.
However, (2) is equivalent to M 6= ∅ when P0 is atomic. This is a first reason for
paying special attention to the latter case. A second (and more important) reason
is that atomic models are suitable in various real situations. Accordingly, in the
sequel we focus on atomic P0.

3. New results

In this section, (Ω,A, P0) is an atomic probability space. Everything is well
understood if P0 has finitely many atoms only (such a case can be reduced to that
of Ω finite). Thus, the P0-atoms are assumed to be infinitely many. Let A1, A2, . . .
be a countable partition of Ω such that An is a P0-atom for each n. Also, X|An
denotes the a.s.-constant value of the random variable X on An.

3.1. Existence of EMFA’s in the atomic case. Theorem 2 gives a general char-
acterization of existence of EMFA’s. As already noted, however, a characterization
not involving Q would be more usable in real problems. In case P0 is atomic, one
such characterization is actually available.
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Theorem 5. Let P0 be atomic. Suppose that, for each n ≥ 1, there is a constant
kn > 0 satisfying

(4) X|An ≤ kn ess sup(−X) for each X ∈ L.

Letting β = infn kn, for each α ∈
(

β
1+β , 1

)
one obtains

αP1 + (1− α)Q ∈M for some P1 ∈ P and Q ∈ P0 with Q ∼ P0.

Moreover, condition (4) is necessary for M 6= ∅ (so that M 6= ∅ if and only if (4)
holds).

Proof. Suppose first M 6= ∅. Fix P ∈M, n ≥ 1 and X ∈ L. Since EP (X) = 0,

P (An)X|An ≤ P (An)X+|An ≤ EP (X+)

= EP (X) + EP (X−) = EP (X−) ≤ ess sup(−X).

Therefore, condition (4) holds with kn = 1/P (An). Conversely, suppose (4) holds.
Fix any sequence (qn : n ≥ 1) satisfying qn > 0 for all n,

∑
n qn = 1 and∑

n(qn/kn) <∞. For each A ∈ A, define

I(A) = {n : P0(A ∩An) > 0} and Q(A) =

∑
n∈I(A)(qn/kn)∑

n(qn/kn)
.

Then, Q ∈ P0 and Q ∼ P0. Also, for each X ∈ L, condition (4) yields

EQ(X) =
∑
n

Q(An)X|An ≤ ess sup(−X)
∑
n

Q(An) kn =
ess sup(−X)∑

n(qn/kn)
.

Thus, condition (1) holds with k =
{∑

n(qn/kn)
}−1. By Theorem 2, there is P1 ∈ P

such that (k P1 +Q)/(k+ 1) ∈M. Finally, fix α ∈
(

β
1+β , 1

)
. Condition (4) remains

true if the kn are replaced by arbitrary constants k∗n ≥ kn. Thus, it can be assumed
supn kn =∞. In this case, it suffices to note that

k =
1∑

n(qn/kn)
=

α

1− α
for a suitable choice of (qn : n ≥ 1). �

It is not hard to see that condition (4) can be written as

sup
X∈L∗

X|An <∞ for each n ≥ 1, where

L∗ = {X ∈ L : X ≥ −1 a.s.}.

Thus, (4) can be given the following interpretation. Let K ⊂ L be any set of
final outcomes of possible investing strategies. Roughly speaking, if K is uniformly
bounded from below (on all of Ω) then K can not be unbounded from above on
some atom An. This is a viability condition for the market.

Another such condition, called no-arbitrage of the first kind (say NA1), is inves-
tigated in [10]. NA1 is stated in terms of a nonnegative semi-martingale S, to be
viewed as the discounted price process of a financial asset. It turns out that NA1

amounts to the existence of a f.a.p. P ∈ P such that: (i) P is σ-additive when
restricted to certain sub-σ-fields; (ii) P makes S a local martingale; (iii) P ∼ P0.
We refer to [10] for the precise statement of NA1 in terms of S. Here we note that,
when adapted to the present framework, NA1 can be written as:
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(NA1) For each Z ∈ L+
0 , P0(Z > 0) > 0, there is a constant a ∈ (0, 1) such that

P0

{
a (X + 1) < Z

}
> 0 whenever X ∈ L∗.

Actually, NA1 is a no-arbitrage condition for the collection L of possible final
outcomes. In particular, NA1 is stronger than (3).

If P ∈M, Z ∈ L+
0 and P0(Z > 0) > 0, then EP (Z) > 0 and EP {a (X + 1)} = a

for all a > 0 and X ∈ L∗. Thus, M 6= ∅ implies NA1. A (natural) question is
whether the converse holds as well. This is actually true when P0 is atomic.

Corollary 6. If P0 is atomic,

NA1 ⇐⇒ M 6= ∅ ⇐⇒ L− L+
∞ ∩ L+

∞ = {0}
with the closure in the norm-topology.

Proof. By Theorem 4, since P0 is atomic, M 6= ∅ amounts to L− L+
∞ ∩L+

∞ = {0}.
It has been noted above that M 6= ∅ implies NA1. Hence, we have only to prove
that NA1 implies M 6= ∅. Suppose that NA1 holds. Fix n ≥ 1. By NA1, applied to
Z = IAn , there is a constant an ∈ (0, 1) such that P0

{
an (Y + 1) < IAn

}
> 0 for

all Y ∈ L∗. Since an (Y + 1) ≥ 0 = IAn a.s. on Acn, it follows that

Y |An < (1/an)− 1 for all Y ∈ L∗.
Define kn = (1/an) − 1 and fix X ∈ L with P0(X 6= 0) > 0. If ess sup(−X) ≤ 0,
then X ∈ L+

0 and P0(X > 0) > 0, and NA1 fails for Z = X. (In fact, X/a ∈
L∗ and a

{
(X/a) + 1

}
> X for each a > 0). Thus, ess sup(−X) > 0. Let

Y = X/ess sup(−X). Since Y ∈ L∗, one obtains X|An < kn ess sup(−X). Thus,
Theorem 5 yields M 6= ∅. �

3.2. Examples. In view of Theorem 2, a sufficient (but not necessary) condition
for M 6= ∅ is

(5) ess sup (X) ≤ k ess sup(−X), X ∈ L,
for some constant k > 0. In the atomic case, condition (5) can be seen as a uniform
version of (4). Indeed, (5) amounts to (4) and supn kn <∞.

If limnX|An = 0 for all X ∈ L, condition (5) implies M ∩ P0 6= ∅ (that is,
existence of EMM’s); see Example 5 of [3]. An open problem is whether condition
(5) alone yields M ∩ P0 6= ∅. We now prove that the answer is no.

Example 7. Let Ω = {−1, 1}∞ and Xn : Ω → {−1, 1} the n-th coordinate map,
n ≥ 1. Take A = σ(X1, X2, . . .) and L the linear space generated by the sequence
(Xn). Also, take P0 such that (Xn) is independent with P0(Xn = −1) = 1/(n+1)2.
Define A = ∪n≥1 ∩k≥n {Xk = 1}. Since

∑
n P0(Xn = −1) < ∞, then P0(A) = 1.

Thus, P0 is atomic (for A is countable) and EQ|Xn − 1| → 0 for each Q ∈ P0 with
Q ∼ P0. In particular, no Q ∈ P0 satisfies Q ∼ P0 and EQ(Xn) = 0 for all n.
However, condition (5) holds with k = 1. Fix in fact X ∈ L, say X =

∑n
i=1 biXi

for some n ≥ 1 and b1, . . . , bn ∈ R. Since P0(X1 = x1, . . . , Xn = xn) > 0 for all
x1, . . . , xn ∈ {−1, 1}, one obtains

ess sup (X) = |b1|+ . . .+ |bn| = ess sup (−X).

Even if P0 is atomic, it may be that M = ∅ and yet the classical no-arbitrage
condition (3) is satisfied. We prove this fact by adapting Example 6 of [3].
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Example 8. Take (Ω,A, P0) and (Xn) as in previous Example 7. Define

S0 = 0, Sn =
n∑
i=1

Xi, Fn = σ(S0, S1, . . . , Sn), L = L(F , S),

where L(F , S) has been defined in Section 1. Since P0

(
X1 = x1, . . . , Xn = xn

)
> 0

for all n and x1, . . . , xn ∈ {−1, 1}, the no-arbitrage condition (3) applies. However,
M = ∅. Suppose in fact P ∈ M. Since EP (X) = 0 for all X ∈ L, it is easily seen
that (Xn) is i.i.d. under P with P (X1 = 1) = P (X1 = −1) = 1/2; see Example 6 of
[3]. Let Q0 ∈ P0 be the unique σ-additive probability on A which makes (Xn) i.i.d.
with Q0(X1 = 1) = Q0(X1 = −1) = 1/2. Then, Q0 = P on ∪nFn. By Theorem 2,

Q0 = P ≥ (1− α)Q on ∪n Fn
for some α < 1 and Q ∈ P0 such that Q ∼ P0. Since Q, Q0 ∈ P0 and ∪nFn is a
field, it follows that Q0 ≥ (1− α)Q on σ

(
∪nFn

)
= A. Hence, P0 ∼ Q� Q0. But

this is a contradiction, for P0(A) = Q0(Ac) = 1 where A = ∪n≥1 ∩k≥n {Xk = 1}.

Our last example has been discussed in point (iv) of Section 1.

Example 9. Let Ω = {1, 2, . . .}. Take A to be the power set and P0{ω} = 2−ω

for all ω ∈ Ω. Define T = (2P0 + P ∗ − δ1)/2, where P ∗ ∈ P is any pure f.a.p.
and δ1 the point mass at 1. Since P ∗{ω} = 0 for all ω ∈ Ω, then T{1} = 0
and T ∈ P. Let B = {2, 3, . . .} and define L to be the linear space generated by
{IA − T (A) IB : A ⊂ B}. If P ∈ P satisfies EP (X) = 0 for all X ∈ L, then

P{n, n+ 1, . . .} = T{n, n+ 1, . . .}P (B) ≥ P (B)
2

for all n > 1.

Thus, P /∈ P0 as far as P (B) > 0, so that M ∩ P0 = ∅. On the other hand,

Pε := ε T + (1− ε) δ1 ∈M for all ε ∈ (0, 1).

In fact, Pε{ω} > 0 for all ω ∈ Ω (so that Pε ∼ P0) and

EPε(X) = εET (X) + (1− ε)X(1) = 0 for all X ∈ L.
To sum up, in this example, EMM’s do not exist and yet, for each ε > 0, there is
P ∈ M such that α(P ) ≤ ε. Here, α(P ) denotes the weight of the pure part of P ,
in the sense that P = α(P )P1 + (1− α(P ))Q for some pure f.a.p. P1 and Q ∈ P0

with Q ∼ P0.

3.3. Superhedging and attainability type results. Suppose M 6= ∅ and fix
Y ∈ L∞. If EP (Y ) = y for some y ∈ R and all P ∈ M, does Y − y belong
to the closure of L in some reasonable topology ? Or else, if EP (Y ) ≥ 0 for all
P ∈M, can Y be approximated by random variables of the form X+Z with X ∈ L
and Z ∈ L+

∞ ? Up to replacing EMFA’s with EMM’s, questions of this type are
classical; see [4], [8], [9], [13] and references therein. Indeed, regarding Y as a
contingent claim, EP (Y ) = y for all P ∈ M means that y is the unique arbitrage-
free price of Y . Similarly Y − y ∈ L, with the closure in a suitable topology, can
be seen as a weak form of completeness for the underlying market.

In the sequel, L∞ is equipped with the norm-topology. Accordingly, for each
H ⊂ L∞, H denotes the closure of H in the norm-topology.
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Theorem 10. Suppose P0 atomic, M 6= ∅, and fix Y ∈ L∞. Then,

(i) Y ∈ L− L+
∞ ⇐⇒ EP (Y ) ≤ 0 for each P ∈M,

(ii) Y ∈
⋂
P∈M L

P ⇐⇒ EP (Y ) = 0 for each P ∈M,

where L
P

denotes the closure of L in the L1(P )-topology. In addition, if EP (Y ) = 0
for each P ∈M, then Xn

a.s.−→ Y for some sequence (Xn) ⊂ L.

Proof. First note that ”=⇒” is obvious in both (i) and (ii). Suppose Y /∈ L− L+
∞.

Fix A ∈ A with P0(A) > 0 and define

U = L− L+
∞, V = {αIA + (1− α)Y : 0 ≤ α ≤ 1}.

Then, U ∩ V = ∅. In fact, IA /∈ U because of M 6= ∅ and Theorem 4. If αIA +
(1 − α)Y ∈ U for some α < 1, there are (Xn) ⊂ L and (Zn) ⊂ L+

∞ such that
Xn − Zn

L∞−→ αIA + (1− α)Y , which in turn implies

Xn − (Zn + αIA)
1− α

L∞−→ Y.

But this is a contradiction, as Y /∈ U . Next, since U and V are convex and closed
with V compact, some linear (continuous) functional Φ : L∞ → R satisfies

inf
f∈V

Φ(f) > sup
f∈U

Φ(f).

It is routine to verify that Φ is positive and Φ(1) > 0. Hence, Φ(f) = Φ(1)EPA(f)
for all f ∈ L∞ and some PA ∈ P with PA � P0. Since L is a linear space and
supf∈L Φ(f) ≤ supf∈U Φ(f) < ∞, then Φ = 0 on L. To sum up, PA satisfies
PA � P0, PA(A) > 0, EPA(Y ) > 0, and EPA(X) = 0 for all X ∈ L. It follows that

(6) P :=
∑
n

1
2n

PAn ∈M and EP (Y ) > 0.

This concludes the proof of (i). Suppose now that EP (Y ) = 0 for all P ∈ M. By
(i), there are sequences (Xn) ⊂ L and (Zn) ⊂ L+

∞ such that Xn − Zn
L∞−→ Y . For

each P ∈M, since Zn ∈ L+
∞ and EP (Xn) = EP (Y ) = 0, one obtains

EP |Xn − Y | ≤ EP |Xn − Zn − Y |+ EP (Zn)

= EP |Xn − Zn − Y | − EP (Xn − Zn − Y ) ≤ 2 ‖Xn − Zn − Y ‖ −→ 0.

This proves (ii). Finally, take P ∈ M, say P = αP1 + (1 − α)Q where α ∈ [0, 1),
P1 ∈ P, Q ∈ P0 and Q ∼ P0. Arguing as above,

EQ(Zn) ≤ EP (Zn)
1− α

≤ ‖Xn − Zn − Y ‖
1− α

−→ 0.

Thus, Znj
a.s.−→ 0 and Xnj = Znj + (Xnj − Znj )

a.s.−→ Y for some subsequence (nj).
�

Remark 11. In the above proof, P0 atomic is used only in definition (6), to get
an EMFA P such that EP (Y ) > 0 starting from the collection

P = {PA : A ∈ A, P0(A) > 0}.
If the PA were σ-additive, such a P could be obtained without assuming atomicity of
P0. In fact, the model P is dominated (by P0) so that, by Halmos-Savage theorem,
P is equivalent to some countable subset {PA1 , PA2 , . . .} ⊂ P. See e.g. Theorem
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5.2.3 of [6] and Theorem 1.61 of [7]. But this classical argument does not work
here, for the PA need not be σ-additive.

As regards part (ii) of Theorem 10, a question is whether EP (Y ) = 0 for all
P ∈ M implies Y ∈ L. The answer is generally no, while it is yes if M is rich
enough. We finally prove these two facts. To this end, the following lemma is
useful.

Lemma 12. Let P0 be atomic and P ∈ P. If P � P0 and P (An) = P0(An) for all
n, then P = P0.

Proof. Fix A ∈ A and n ≥ 1. If P0(A∩An) = 0, then P (A∩An) = 0 = P0(A∩An).
If P0(A ∩An) > 0, then P0(Ac ∩An) = 0, and thus

P (A ∩An) = P (An) = P0(An) = P0(A ∩An).

It follows that P (A) ≥
∑n
i=1 P (A∩Ai) =

∑n
i=1 P0(A∩Ai). As n→∞, one obtains

P (A) ≥ P0(A). Finally, taking complements yields P = P0. �

Example 13. Let L be the linear space generated by {IAn − P0(An) : n ≥ 1} and

Y =
IA

P0(A)
− IAc

P0(Ac)
where A = ∪∞n=1A2n.

Each P ∈M meets P � P0 and P (An) = P0(An) for all n. Thus, Lemma 12 yields
M = {P0}. Further, EP0(Y ) = 0. However, Y /∈ L. Fix in fact X ∈ L. Since
X = x a.s. on the set

(
∪ni=1Ai

)c, for some n ≥ 1 and x ∈ R, one obtains

‖Y −X‖ = sup
i
|(Y −X)|Ai| ≥ sup

i>n
|(Y − x)|Ai|

= max
{∣∣∣ 1
P0(A)

− x
∣∣∣ , ∣∣∣ 1

P0(Ac)
+ x
∣∣∣ } ≥ 1

P0(A)
∧ 1
P0(Ac)

.

Suppose condition (5) holds. Arguing as in the proof of the next corollary, for
each P ∈ P such that P � P0, there is P ∗ ∈ M of the form P ∗ = γ P + (1 − γ) P̃
where γ > 0 and P̃ ∈ P. Thus, a plenty of EMFA’s are available under (5).

Corollary 14. Suppose P0 atomic, condition (5) holds, and fix Y ∈ L∞. Then,
Y ∈ L if and only if EP (Y ) = 0 for all P ∈M.

Proof. By (5), M 6= ∅. Suppose EP (Y ) = 0 for all P ∈M. By part (i) of Theorem
10, one obtains Xn −Zn

L∞−→ Y for some sequences (Xn) ⊂ L and (Zn) ⊂ L+
∞. Fix

P ∈ P such that P � P0 and define T = (P + P0)/2. By (5),

ET (X) ≤ ess sup(X) ≤ k ess sup(−X), X ∈ L,

for some constant k > 0. Since T ∼ P0, Remark 3 yields

P ∗ :=
2k P1 + P + P0

2(k + 1)
=
k P1 + T

k + 1
∈M for some P1 ∈ P.

As P ∗ ∈M, arguing as in the proof of Theorem 10 one obtains

EP (Zn) ≤ 2(k + 1)EP∗(Zn) = −2(k + 1)EP∗(Xn − Zn − Y )

≤ 2(k + 1) ‖Xn − Zn − Y ‖ −→ 0.
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Since P is arbitrary (as far as P ∈ P and P � P0) it follows that Zn −→ 0 in
the weak topology of L∞. In turn, Zn −→ 0 weakly implies ‖Z∗n‖ −→ 0 for some
sequence (Z∗n) of convex combinations of (Zn), say

Z∗n =
mn∑
i=n

bi,nZi

where n ≤ mn < ∞, bi,n ≥ 0 and
∑mn
i=n bi,n = 1. Let X∗n =

∑mn
i=n bi,nXi. Then,

X∗n ∈ L and

‖X∗n − Y ‖ ≤ ‖Z∗n‖+
mn∑
i=n

bi,n ‖Xi − Zi − Y ‖ −→ 0.

This concludes the proof of the ”if” part, while the ”only if’ is trivial. �

Example 7 exhibits a situation where condition (5) holds, so that Corollary 14
applies.

Acknowledgment: This paper benefited from the helpful suggestions of two anony-
mous referees.
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