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Abstract. Let S be a Borel subset of a Polish space and (Xn : n ≥ 1) a

sequence of S-valued random variables. Fix a Borel probability measure σ0
on S, a constant q0 ∈ [0, 1] and a measurable function qi : Si → [0, 1] for each

i ≥ 1. Suppose X1 ∼ σ0 and

P
(
Xn+1 ∈ · | X1, . . . , Xn

)
= σ0

n∏
i=1

Qi + δXn (1−Qn) +

n−1∑
i=1

δXi
(1−Qi)

n∏
j=i+1

Qj

where Qi = qi−1(X1, . . . , Xi−1). Sequences of this type, introduced in [10],
are conditionally identically distributed and play a role in Bayesian predictive

inference. This paper deals with the asymptotics of (Xn). As expected, (Xn)

exhibits different behaviors depending on the Qi. For instance, (Xn) converges
a.s. if α ≤ Qi ≤ β a.s. for all i, where 0 < α ≤ β < 1 are constants, while

(Xn) does not converge even in probability if σ0 is nondegenerate, Qi > 0 for

all i and
∑

i(1−Qi) <∞ a.s. A stable CLT for (Xn) is proved as well.

1. Introduction

Throughout, S is a Borel subset of a Polish space, B the Borel σ-field on S,
and P the collection of all probability measures on B. Moreover, Xn is the n-th
coordinate projection on S∞, i.e.

Xn(s1, . . . , sn, . . .) = sn

for each n ≥ 1 and each (s1, . . . , sn, . . .) ∈ S∞.
Following Dubins and Savage [14], a strategy is a sequence σ = (σ0, σ1, . . .) such

that

• σ0 ∈ P and σn = {σn(x) : x ∈ Sn} is a collection of elements of P;

• The map x 7→ σn(x)(B) is Bn-measurable for fixed n ≥ 1 and B ∈ B.

Here, σ0 should be regarded as the marginal distribution of X1 and σn(x) as the
conditional distribution of Xn+1 given that (X1, . . . , Xn) = x. The probabilities σ0
and σn(x) are also called the predictive distributions of the sequence (Xn).

According to the Ionescu-Tulcea theorem, for any strategy σ, there is a unique
probability measure P on (S∞,B∞) satisfying

P (X1 ∈ ·) = σ0 and P
(
Xn+1 ∈ · | (X1, . . . , Xn) = x

)
= σn(x)

for all n ≥ 1 and P -almost all x ∈ Sn.
Such a P is denoted Pσ in the sequel.
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The Ionescu-Tulcea theorem plays a role in Bayesian predictive inference. In fact,
in a Bayesian framework, to make predictions on the sequence (Xn) the inferrer
needs to select a strategy σ. At each time n ≥ 1, having observed (X1, . . . , Xn) = x,
the next observation Xn+1 is predicted through the predictive distribution σn(x).
This procedure makes sense, for any strategy σ, because of the Ionescu-Tulcea
theorem.

1.1. Standard and non-standard approach for exchangeable data. Usu-
ally, (Xn) is requested to be exchangeable. Under this assumption, the standard
approach to obtain σ is quite involved. Indeed, to get σ, the inferrer should:

(i) Select a prior π, namely, a probability measure on P;

(ii) Calculate the posterior of π given that (X1, . . . , Xn) = x, say πn(x);

(iii) Evaluate σ as

σ0(B) =

∫
P
p(B)π(dp) and σn(x)(B) =

∫
P
p(B)πn(x)(dp) for all B ∈ B.

Steps (i)-(ii) are troublesome. To assess a prior π is clearly hard. But even when
π is selected, to evaluate the posterior πn may be not straightforward. Frequently,
πn can not be written in closed form but only approximated numerically.

A non-standard approach (henceforth, NSA) is to assign σn directly, without
passing through π and πn. Merely, instead of choosing π and then evaluating πn
and σn, the inferrer just selects his/her predictive distribution σn. As noted above,
this procedure makes sense because of the Ionescu-Tulcea theorem. See [3], [6], [10],
[12], [13], [14], [15], [18], [19]; see also [16], [21], [22], [23] and references therein.

NSA is in line with de Finetti, Dubins and Savage, among others. Recently, NSA
has been adopted in [18] to obtain a fast online Bayesian prediction via copulas. In
addition, NSA is quite implicit in most of the machine learning literature. From
our point of view, NSA has essentially two merits. Firstly, it requires to place
probabilities on observable facts only. The value of the next observation Xn+1 is
actually observable, while π and πn (being probabilities on P) do not deal with
observable facts. Secondly, NSA is much more direct than the standard approach.
In fact, if the main goal is to predict future observations, why to select the prior π
explicitly ? Rather than wondering about π, it looks reasonable to reflect on how
the next observation Xn+1 is affected by (X1, . . . , Xn).

However, if (Xn) is requested to be exchangeable, NSA has a gap. Given an
arbitrary strategy σ, the Ionescu-Tulcea theorem does not grant exchangeability of
(Xn) under Pσ. Therefore, for NSA to apply, one should first characterize those
strategies σ which make (Xn) exchangeable under Pσ. A nice characterization is
[15, Theorem 3.1]. However, the conditions on σ for making (Xn) exchangeable are
quite hard to be checked in real problems. This is the main reason for NSA has not
developed so far.

1.2. Predictive inference with conditionally identically distributed data.
To bypass the gap mentioned in the above paragraph, the exchangeability assump-
tion could be weakened. One option is to request (Xn) to be conditionally identically
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distributed (c.i.d.), namely

(1) P
(
Xk ∈ · | Fn

)
= P

(
Xn+1 ∈ · | Fn

)
a.s. for all k > n ≥ 0

where Fn = σ(X1, . . . , Xn) and F0 is the trivial σ-field.
Roughly speaking, condition (1) means that, at each time n ≥ 0, the future

observations (Xk : k > n) are identically distributed given the past Fn. Condition
(1) is actually weaker than exchangeability. Indeed, (Xn) is exchangeable if and
only if is stationary and c.i.d.

We refer to Subsection 2.1 for the essentials of c.i.d. sequences. Here, we just
mention three reasons for taking c.i.d. data into account.

(j) It is not hard to characterize the strategies σ which make (Xn) c.i.d. under
Pσ; see Theorem 1. Therefore, unlike the exchangeable case, NSA can be
easily implemented.

(jj) C.i.d. sequences behave asymptotically much in the same way as exchange-
able ones; see Subsection 2.1.

(jjj) A number of meaningful strategies can not be used if (Xn) is requested
to be exchangeable, but are available if (Xn) is only asked to be c.i.d. A
trivial example is the strategy (3) reported below. Various other examples
are in [1], [2] and [10].

Motivated by (j)-(jjj), in [10], a few strategies σ which makes (Xn) c.i.d. are
introduced. One of such strategies is the following.

Fix σ0 ∈ P, a constant q0 ∈ [0, 1] and the measurable functions qn : Sn → [0, 1].
For all n ≥ 1 and x = (x1, . . . , xn) ∈ Sn, define

σn(x) = σ0

n−1∏
i=0

qi + δxn
(1− qn−1) +

n−1∑
i=1

δxi
(1− qi−1)

n−1∏
j=i

qj(2)

where δxi is the unit mass at xi and qi is a shorthand notation to denote

qi = qi(x1, . . . , xi).

Then, (Xn) is c.i.d. under Pσ. Further, σ satisfies the recursive equation

σn+1(x, y) = qn(x)σn(x) +
{

1− qn(x)
}
δy

for all n ≥ 0, x ∈ Sn and y ∈ S. Thus, when a new observation y becomes available,
σn+1(x, y) can be obtained by a simple recursive update of σn(x).

The strategy (2) is connected to Beta-GOS processes, as meant in [1], and is
analogous to formula (10) of [18]. Note also that, if σ0 vanishes on singletons, the qi
have the following interpretation. Let x = (x1, . . . , xn). Since σ0

(
{x1, . . . , xn}

)
= 0

and δxi

(
{x1, . . . , xn}

)
= 1 for i ≤ n, it follows that

Pσ

(
Xn+1 = Xi for some i ≤ n | (X1, . . . , Xn) = x

)
= σn(x)

(
{x1, . . . , xn}

)
= (1− qn−1) +

n−1∑
i=1

(1− qi−1)

n−1∏
j=i

qj = 1−
n−1∏
i=0

qi.

More importantly, choosing qi suitably, various real situations can be modeled
by σ. As an example, if q ∈ (0, 1) is a constant and qi = q for each i ≥ 0, one
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obtains

σn(x) = qnσ0 + (1− q)
n∑
i=1

qn−iδxi ;(3)

see also [1] and [2]. Roughly speaking, this choice of σ makes sense when the inferrer
has only vague opinions on the dependence structure of the data, and yet he/she
feels that the weight of the i-th observation xi should be a decreasing function of
n − i. In this case, σn(x) is not invariant under permutations of x, so that (Xn)
fails to be exchangeable under Pσ.

As another example, take a constant c > 0 and define qi = i+c
i+1+c . Then, formula

(2) yields the predictive distributions of a Dirichlet sequence, i.e.

σn(x) =
c σ0 +

∑n
i=1 δxi

n+ c
.

In the above two examples, qi does not depend on (x1, . . . , xi). Clearly, much
more elaborated strategies can be obtained if qi actually depends on (x1, . . . , xi).
We refer to [10] for examples of this type, including generalized Polya urns and
species sampling sequences.

1.3. Main results. If a strategy σ is used to make predictions, a meaningful in-
formation is the asymptotic behavior of the data sequence (Xn) under Pσ. This
paper investigates the asymptotics of (Xn) under Pσ when σ is given by (2). Our
main results, formally stated in Section 3, are a strong limit theorem and a stable
CLT. Here, we briefly sketch such results.

Consider the probability space (S∞,B∞, Pσ), where σ is given by (2), and define

Qn = qn−1(X1, . . . , Xn−1).

The strong limit theorem is

• Xn converges a.s. whenever α ≤ Qn ≤ β a.s. for all n, where 0 < α ≤ β < 1
are constants;

• Xn does not converge even in probability whenever σ0 is nondegenerate,
Qn > 0 for all n and

∑
n(1−Qn) <∞ a.s.

Thus, it may be that Xn is non-trivial and yet it converges a.s. This is a big
difference with respect to the exchangeable case. In fact, an exchangeable sequence
Yn converges in probability if and only if Yn = Y1 a.s. for each n.

Let us turn to the stable CLT. We first recall that stable convergence is a strong
form of convergence in distribution; see Subsection 2.2. In particular, stable con-
vergence implies convergence in distribution.

For definiteness, suppose S = [a, b] is a bounded interval of the real line. (Oth-
erwise, as in Section 3, it suffices to replace Xn with f(Xn) where f : S → R is a
bounded measurable function). Since (Xn) and (X2

n) are both c.i.d. under Pσ,

1

n

n∑
i=1

Xi
a.s.−→ V and

1

n

n∑
i=1

X2
i
a.s.−→ V ∗

for some random variables V and V ∗; see Subsection 2.1. Our CLT is
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• If
∑
n

{
1− E(Qn)

}
<∞ and Qn ≤ Qn+1 a.s. for all n, then

√
n
(
Xn − V

)
→ N (0, L) stably

where

Xn =
1

n

n∑
i=1

Xi and L = V ∗ − V 2 a.s.= lim
n

1

n

n∑
i=1

{
Xi −Xn

}2
.

In a Bayesian framework, the limit V of the sample means can be seen as a ran-
dom parameter and the above CLT is useful to make inference on V . In particular,
it allows to build (approximate) credible intervals for V .

Finally, under the same assumptions of the previous CLT, it is also shown that

√
n
{
Xn − E

(
Xn+1 | X1, . . . , Xn

)}
→ N (0, L) stably.

2. Preliminaries

From now on, (Ω,A, P ) is a probability space, (Yn : n ≥ 1) a sequence of S-
valued random variables on (Ω,A, P ), and

F0 = {∅,Ω}, Fn = σ(Y1, . . . , Yn).

2.1. Conditionally identically distributed random variables. C.i.d. sequences
have been introduced in [4] and [20] and then investigated in various papers; see
e.g. [1], [2], [6], [8], [9], [10], [11], [17]. Here, we just recall a few basic facts.

Let (Gn : n ≥ 0) be a filtration on (Ω,A, P ). Then, (Yn) is c.i.d. with respect to
(Gn) if is adapted to (Gn) and

P
(
Yk ∈ · | Gn

)
= P

(
Yn+1 ∈ · | Gn

)
a.s. for all k > n ≥ 0.

If Gn = Fn, the filtration is not mentioned at all and (Yn) is just called c.i.d. In
this case, by a result in [20], (Yn) is exchangeable if and only if is stationary and
c.i.d.

Asymptotically, a c.i.d. sequence (Yn) looks like an exchangeable one. We sup-
port this claim by three facts.

First, (Yn) is asymptotically exchangeable, in the sense that

(Yn, Yn+1, . . .)→ (Z1, Z2, . . .) in distribution, as n→∞,

where (Z1, Z2, . . .) is an exchangeable sequence.
Second, for each bounded measurable function f : S → R, one obtains

1

n

n∑
i=1

f(Yi)
a.s.−→ V and E

{
f(Yn+1) | Fn

} a.s.−→ V

for some real random variable V .
To state the third fact, let µn = 1

n

∑n
i=1 δYi

be the empirical measure. Then,
there is a random probability measure µ on (S,B) satisfying

µn(B)
a.s.−→ µ(B) as n→∞ for every fixed B ∈ B.
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As a consequence, for fixed n ≥ 0 and B ∈ B, one obtains

E
{
µ(B) | Fn

}
= lim

m
E
{
µm(B) | Fn

}
= lim

m

1

m

m∑
i=n+1

P
(
Yi ∈ B | Fn

)
= P

(
Yn+1 ∈ B | Fn

)
a.s.

Thus, as in the exchangeable case, the predictive distribution P
(
Yn+1 ∈ · | Fn

)
can be written as E

{
µ(·) | Fn

}
, where µ is the a.s. weak limit of the empirical

measures µn.
Finally, to complete claim (j) of Subsection 1.2, we report a characterization of

c.i.d. sequences in terms of strategies.

Theorem 1. ([8, Theorem 3.1]). Let σ be a strategy. Then, (Xn) is c.i.d. under
Pσ if and only if

σ0(B) =

∫
σ1(y)(B)σ0(dy) and σn(x)(B) =

∫
σn+1(x, y)(B)σn(x)(dy)

for all B ∈ B, all n ≥ 1 and Pσ-almost all x ∈ Sn.

2.2. Stable convergence. Stable convergence is a strong form of convergence in
distribution. In a sense, it is intermediate between the latter and convergence in
probability.

A kernel on S (or a random probability measure on S) is a map K : Ω→ P such
that ω 7→ K(ω)(B) is A-measurable for fixed B ∈ B. Say that Yn converges stably
to K, where K is a kernel on S, if

P
(
Yn ∈ · | H

)
→ E

(
K(·) | H

)
weakly

for all H ∈ A with P (H) > 0.

In particular, if Yn → K stably, then Yn converges in distribution to the probability
measure E

(
K(·)

)
(just let H = Ω). Further, given any random variable Y : Ω→ S,

it is not hard to see that Yn
P−→ Y if and only if Yn converges stably to the kernel

K = δY .
Let N (0, b) denote the one-dimensional Gaussian law with mean 0 and variance

b ≥ 0 (where N (0, 0) = δ0). Then, N (0, L) is a kernel on R provided L is a real non-
negative random variable on (Ω,A, P ). The next corollary provides conditions for
stable convergence toward a kernel of this type. It is a straightforward consequence
of [7, Theorem 1].

Corollary 2. Fix a bounded measurable function f : S → R and define

Mn =
1

n

n∑
i=1

f(Yi) and Zn = E
{
f(Yn+1) | Fn

}
.

Suppose (Yn) c.i.d. and denote by V the a.s. limit of Mn (or, equivalently, the a.s.
limit of Zn). Suppose also that

(a) 1√
n
E
{

max1≤k≤n k |Zk−1 − Zk|
}
−→ 0,

(b) 1
n

∑n
k=1

{
f(Yk)− Zk−1 + k(Zk−1 − Zk)

}2 P−→ F ,
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(c)
√
nE
{

supk≥n|Zk−1 − Zk|
}
−→ 0,

(d) n
∑
k≥n(Zk−1 − Zk)2

P−→ G,

where F and G are real nonnegative random variables. Then,
√
n (Mn − Zn)→ N (0, F ) stably and
√
n (Mn − V )→ N (0, F +G) stably.

Proof. Just note that the sequence (f(Yn)2) is uniformly integrable (for f is bounded)
and

E(Zn+1 | Fn) = E
{
f(Yn+2) | Fn

}
= E

{
f(Yn+1) | Fn

}
= Zn a.s.

since (Yn) is c.i.d. Hence, it suffices to apply [7, Theorem 1]. �

3. Results

We begin with introducing a sequence (Yn : n ≥ 1) of S-valued random variables
whose predictive distributions agree with (2).

Fix σ0 ∈ P, a constant q0 ∈ [0, 1] and the measurable functions qn : Sn → [0, 1],
n ≥ 1. Moreover, on some probability space (Ω,A, P ), take random variables
(Tn : n ≥ 1) and (Ui,j : j ∈ N, 1 ≤ i ≤ j) such that

• (Tn) is an i.i.d. sequence of S-valued random variables with T1 ∼ σ0;

• (Ui,j) is an i.i.d. array of [0, 1]-valued random variables with U1,1 uniformly
distributed on [0, 1];

• (Tn) is independent of (Ui,j).

Next, define (Yn) as follows. Let Y1 = T1. At step 2, let Q1 = q0 and define
Y2 = T2 or Y2 = Y1 according to whether U1,1 ≤ Q1 or U1,1 > Q1. At step n + 1,
after Y1, . . . , Yn have been defined, let

Qi+1 = qi(Y1, . . . , Yi) for i = 0, . . . , n− 1

and then define

Yn+1 = Tn+1 if Ui,n ≤ Qi for all i,

Yn+1 = Yi if Ui,n > Qi and Uj,n ≤ Qj for some i and all j > i.

The predictive distributions of (Yn) are actually given by (2). Recall that

F0 = {∅,Ω} and Fn = σ(Y1, . . . , Yn).

Lemma 3. Y1 ∼ σ0 and

P
(
Yn+1 ∈ · | Fn

)
= σ0

n∏
i=1

Qi + δYn (1−Qn) +

n−1∑
i=1

δYi (1−Qi)
n∏

j=i+1

Qj

a.s. for each n ≥ 1.

Proof. It is clear that Y1 = T1 ∼ σ0. Fix n ≥ 1, B ∈ B, and let

Gn = σ(Y1, . . . , Yn, U1,n, . . . , Un,n), An = {Ui,n ≤ Qi for all i}.
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Since An ∈ Gn and Tn+1 is independent of Gn,

P
(
An ∩ {Yn+1 ∈ B} | Fn

)
= E

(
1An

P
(
Tn+1 ∈ B | Gn

)
| Fn

)
= σ0(B)P (An | Fn) = σ0(B)

n∏
i=1

Qi a.s.

Similarly,

P
(
Un,n > Qn, Yn+1 ∈ B | Fn

)
= 1B(Yn)P

(
Un,n > Qn | Fn

)
= δYn

(B) (1−Qn) a.s.

Finally, if i < n and Ai,n = {Ui,n > Qi and Uj,n ≤ Qj for j = i + 1, . . . , n}, one
obtains

P
(
Ai,n ∩ {Yn+1 ∈ B} | Fn

)
= 1B(Yi)P

(
Ai,n | Fn

)
= δYi(B) (1−Qi)

n∏
j=i+1

Qj a.s.

�

One consequence of Lemma 3 is that

P
(

(Y1, Y2, . . .) ∈ ·
)

= Pσ

(
(X1, X2, . . .) ∈ ·

)
where the strategy σ is given by (2). Since (Xn) is c.i.d. under Pσ (by [10]) it
follows that (Yn) is c.i.d. as well. More importantly, to fix the asymptotic behavior
of (Xn) under Pσ, we may work with (Yn).

Our first result is the following.

Theorem 4. If α ≤ Qn ≤ β a.s. for each n, where 0 < α ≤ β < 1 are constants,
then Yn converges a.s.

Proof. Since S is a Borel subset of a Polish space, each probability measure on B
is tight. Hence, by [5, Theorem 2.2], it suffices to show that f(Yn) converges a.s.
for each bounded continuous function f : S → R.

Fix a bounded continuous f : S → R and define ∆m = E
{
f(Ym+1) | Fm

}
−

f(Ym). Then,

∆m+1

Qm+1
=
E
{
f(Ym+2) | Fm+1

}
− f(Ym+1)

Qm+1

=

∫
f dσ0

m∏
i=1

Qi + f(Ym)(1−Qm) +

m−1∑
i=1

f(Yi)(1−Qi)
m∏

j=i+1

Qj − f(Ym+1)

= E
{
f(Ym+1) | Fm

}
− f(Ym+1) = ∆m + f(Ym)− f(Ym+1).

Summing over m = 1, . . . , n,

∆n+1/Qn+1 +

n−1∑
m=1

∆m+1/Qm+1 =

n∑
m=1

∆m + f(Y1)− f(Yn+1)

or equivalently
n∑

m=2

∆m

(
1/Qm − 1

)
= −∆n+1/Qn+1 + ∆1 + f(Y1)− f(Yn+1).
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Next, since (Yn) is c.i.d. and Qj is Fj−1-measurable, then

E
{

∆i

( 1

Qi
− 1
)

∆j

( 1

Qj
− 1
)}

= E
{

∆i

( 1

Qi
− 1
) ( 1

Qj
− 1
)
E(∆j | Fj−1)

}
= 0 for all i < j.

Therefore,

E
{( n∑

m=2

∆m

( 1

Qm
− 1
))2}

=

n∑
m=2

E
{

∆2
m

( 1

Qm
− 1
)2}

.

Further, since α ≤ Qm ≤ β a.s., one obtains

(1− β)2

β2

n∑
m=2

E(∆2
m) ≤

n∑
m=2

E
{

∆2
m

( 1

Qm
− 1
)2}

= E
{( n∑

m=2

∆m

( 1

Qm
− 1
))2}

= E
{(
−∆n+1

Qn+1
+ ∆1 + f(Y1)− f(Yn+1)

)2}
≤
(2 sup|f |

α
+ 4 sup|f |

)2
.

Hence, E
{∑∞

n=2 ∆2
n

}
=
∑∞
n=2E(∆2

n) < ∞, so that ∆n
a.s.−→ 0. To conclude the

proof, just recall that E
{
f(Yn+1) | Fn

} a.s.−→ V for some real random variable V ;

see Subsection 2.1. Therefore, f(Yn)
a.s.−→ V . �

Incidentally we note that, as apparent from the previous proof, the assumption
Qn ≥ α a.s. for all n can be weakened into lim infnE(Q−2n ) < ∞. We also note
that, when the strategy σ is given by (3) (i.e., when Qn = q for all n and some
constant 0 < q < 1) Theorem 4 implies that Yn converges a.s.

In Theorem 4, the Qn are separated from 0 and 1 and Yn converges a.s. Things
change drastically if Qn approaches 1 quickly enough.

Theorem 5. Yn does not converge in probability provided σ0 is nondegenerate,
Qn > 0 for all n and

∑
n(1−Qn) <∞ a.s.

Proof. Let d be the distance on S. It suffices to show that d(Yn, Yn+1) does not
converge to 0 in probability. Since σ0 is nondegenerate, there is ε > 0 such that
P
(
d(T1, T2) > ε

)
is strictly positive. Define

Hn = {Ui,n ≤ Qi for each i ≤ n and Ui,n−1 ≤ Qi for each i < n}.

Since (Q1, . . . , Qn) is a function of (Y1, . . . , Yn−1), then (Tn, Tn+1) is independent
of Hn. Hence,

P
(
d(Yn, Yn+1) > ε

)
≥ P

(
Hn ∩ {d(Tn, Tn+1) > ε}

)
= P

(
d(T1, T2) > ε

)
P (Hn)

= P
(
d(T1, T2) > ε

)
E
{ n∏
i=1

Qi

n−1∏
i=1

Qi

}
.



10 PATRIZIA BERTI, EMANUELA DREASSI, LUCA PRATELLI, AND PIETRO RIGO

Finally, Qn > 0 for all n and
∑
n(1 − Qn) < ∞ a.s. implies that

∏n
i=1Qi

a.s.−→ Q,
where Q is a random variable such that Q > 0 a.s. Therefore,

lim inf
n

P
(
d(Yn, Yn+1) > ε

)
≥ P

(
d(T1, T2) > ε

)
E(Q2) > 0.

�

We finally turn to the CLT. Fix a bounded measurable function f : S → R and
define

Mn =
1

n

n∑
i=1

f(Yi) and Zn = E
{
f(Yn+1) | Fn

}
.

Since (Yn) is c.i.d., there is a real random variable V such that

Mn
a.s.−→ V and Zn

a.s.−→ V.

Our last result deals with

Cn =
√
n (Mn − Zn) and Wn =

√
n (Mn − V ).

Indeed, both Cn and Wn are often involved in the CLT for dependent data; see
e.g. [4], [6], [7], [8]. Note also that, in the special case where (Yn) is i.i.d. (namely,
when Qn = 1 for all n) one obtains Cn = Wn =

√
n
{
Mn − E(f(Y1))

}
.

Theorem 6. Suppose
∑
n

{
1−E(Qn)

}
<∞ and Qn ≤ Qn+1 a.s. for all n. Then,

for each bounded measurable function f : S → R, one obtains

Cn → N (0, L) stably and Wn → N (0, L) stably

where

L = V ∗ − V 2 with V ∗ = lim
n

1

n

n∑
i=1

f2(Yi) a.s.

Proof. By Corollary 2, it suffices to prove conditions (a)-(d) with F = V ∗−V 2 and
G = 0.

First note that

Qn Zn−1 = Zn − f(Yn)(1−Qn) a.s.

Letting c = 2 sup|f |, it follows that

|Zn − Zn−1| = (1−Qn) |f(Yn)− Zn−1| ≤ c (1−Qn) a.s.

Since Qn ≤ Qn+1 a.s. for all n, one also obtains

n
{

1− E(Qn)
}

= j
{

1− E(Qn)
}

+ (n− j)
{

1− E(Qn)
}

≤ j
{

1− E(Qn)
}

+

n∑
i=j+1

{
1− E(Qi)

}
for each j < n.

Hence,
∑
n

{
1− E(Qn)

}
<∞ implies

lim sup
n

n
{

1− E(Qn)
}

= 0.

We next prove conditions (a) and (c). As to (c),
√
n E

{
sup
k≥n
|Zk−1 − Zk|

}
≤ c
√
n E

{
sup
k≥n

(1−Qk)
}

= c
√
nE(1−Qn)→ 0.
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As to (a), since

n |Zn−1 − Zn| ≤ c n (1−Qn) ≤ c
n∑
i=1

(1−Qi) a.s.,

one obtains

1√
n
E
{

max
1≤k≤n

k |Zk−1 − Zk|
}
≤ c√

n
E
{ n∑
k=1

(1−Qk)
}
≤ c√

n

∞∑
k=1

{
1− E(Qk)

}
→ 0.

It remains to prove conditions (b) and (d) with F = V ∗ − V 2 and G = 0. On
the other hand, since

1

n

n∑
k=1

{
f(Yk)− Zk−1

}2 a.s.−→ V ∗ − V 2,

conditions (b) and (d) are actually true with F = V ∗ − V 2 and G = 0 provided

n (Zn − Zn−1)
a.s.−→ 0.

Since

E
{∑

n

(1−Qn)
}

=
∑
n

{
1− E(Qn)

}
<∞,

then
∑
n(1−Qn) <∞ a.s. Hence, arguing as above,

n (1−Qn) ≤ j (1−Qn) +

∞∑
i=j+1

(1−Qi) a.s. for each j < n.

Therefore,

lim sup
n

n |Zn − Zn−1| ≤ c lim sup
n

n (1−Qn) = 0 a.s.

and this concludes the proof. �
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