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Abstract. Let (Xn) be a sequence of random variables (with values in a

separable metric space) and (Nn) a sequence of random indices. Conditions

for XNn to converge stably (in particular, in distribution) are provided. Some
examples, where such conditions work but those already existing fail, are given

as well.

1. Introduction

Anscombe’s theorem (AT) gives conditions for XNn to converge in distribution,
where (Xn) is a sequence of random variables and (Nn) a sequence of random
indices. Roughly speaking, such conditions are: (i) Nn →∞ in some sense; (ii) Xn

converges in distribution; (iii) For large n, Xj is close to Xn provided j is close to
n. (Precise definitions are given in Subsection 3.2).

In particular, in AT, condition (i) is realized as

(a) Nn/kn
P−→ u, where kn > 0 and u > 0 are constants and kn →∞.

Under (a), it is very hard to improve on AT. The only possibility is to look for some
optimal form of condition (iii). See e.g. [7].

But condition (a) is often generalized into

(a*) Nn/kn
P−→ U , where U > 0 is a random variable.

For instance, condition (a*) suffices for XNn to converge in distribution in case
Xn = n−1/2

∑n
i=1

{
Zi−E(Z1)

}
, where (Zn) is an i.i.d. sequence with E(Z2

1 ) <∞.
However, under (a*), convergence in distribution of Xn is not enough. To get
converge in distribution of XNn , condition (ii) is to be strengthened.

One natural solution is to request stable convergence of Xn. This is made precise
by a result of Zhang Bo [9] (Theorem 1 in the sequel). According to Theorem 1,
XNn

converges stably (in particular, in distribution) provided Xn converges stably,
condition (a*) holds, and some form of (iii) is satisfied. The statement of (iii)
depends on whether U is, or it is not, discrete.

In this paper, Theorem 1 is (strictly) improved. Our main result (Theorem 2 in
the sequel) has two possible merits. It does not depend on whether U is discrete.
And, more importantly, it requests a form of (iii) weaker than the corresponding
one in Theorem 1. Indeed, in Theorem 1, the asked version of (iii) does not involve
the Nn. As a consequence, it potentially works for every sequence (Nn) of random
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times but it is also rather strong. Instead, in Theorem 2, we exploit a form of (iii)
which is tailor-made on the particular sequence of random times at hand.

A few examples, where Theorem 2 works but Theorem 1 fails, are given as
well. We mention Examples 6 and 7 concerning the exchangeable CLT and the
exchangeable empirical process.

2. Stable convergence

Let X be a metric space and (Ω,A, P ) a probability space. A kernel (or a random
probability measure) on X is a map K on Ω such that:

− K(ω) is a Borel probability measure on X for each ω ∈ Ω;
− ω 7→ K(ω)(B) is A-measurable for each Borel set B ⊂ X .

For every bounded Borel function f : X → R, we let K(f) denote the real random
variable

K(ω)(f) =
∫
f(x)K(ω)(dx).

Let (Xn) be a sequence of X -valued random variables on (Ω,A, P ). Given a
Borel probability measure µ on X , say that Xn converges in distribution to µ if
µ(f) = limnE

{
f(Xn)

}
for all bounded continuous functions f : X → R. In this

case, we also write Xn
d−→ X for any X -valued random variable X with distribution

µ. Next, let G ⊂ A be a sub-σ-field and K a kernel on X . Say that Xn converges
G-stably to K if

E
{
K(f) | H

}
= lim

n
E
{
f(Xn) | H

}
for all H ∈ G with P (H) > 0 and all bounded continuous f : X → R.
G-stable convergence always implies convergence in distribution (just let H = Ω).

Further, it reduces to convergence in distribution for G = {∅,Ω} and is connected
to convergence in probability for G = A. Suppose in fact X is separable and take
an X -valued random variable X on (Ω,A, P ). Then, Xn

P−→ X if and only if Xn

converges A-stably to the kernel K = δX .
We refer to [3] and references therein for more on stable convergence.

3. Results

3.1. Notation. All random variables appearing in the sequel, unless otherwise
stated, are defined on a fixed probability space (Ω,A, P ).

Let (S, d) be a separable metric space. The basic ingredients are three sequences

(Xn : n ≥ 0), (Nn : n ≥ 0), (kn : n ≥ 0),

where the Xn are S-valued random variables, the Nn are random times (i.e., random
variables with values in {0, 1, 2, . . .}) and the kn are strictly positive constants such
that kn →∞. We let

Mn(δ) = max
j:|n−j|≤n δ

d(Xj , Xn)

for all n ≥ 0 and δ > 0. Finally, K denotes a kernel on S.



ANSCOMBE THEOREM 3

3.2. Classical Anscombe’s theorem and one of its developments. Let µ
be a Borel probability measure on S. According to AT, for XNn

to converge in
distribution to µ, it suffices that

(a) Nn/kn
P−→ u, where u > 0 is a constant;

(b) Xn converges in distribution to µ;
(c) infδ>0 lim supn P

(
Mn(δ) > ε

)
= 0 for all ε > 0.

Soon after its appearance, AT has been investigated and developed in various
ways. See e.g. [4], [5], [7], [8], [9] and references therein. To our knowledge, most
results preserve the structure of the classical AT, for they lead to convergence of
XNn

(in distribution or stably) under suitable versions of conditions (a)-(b)-(c). In
particular, much attention is paid to possible alternative versions of condition (c).
Also, as remarked in Section 1, condition (a) is often generalized into

(a*) Nn/kn
P−→ U , where U > 0 is a random variable.

Replacing (a) with (a*) is not free but implies strengthening (b) and/or (c).
A remarkable example is the following. In the sequel, U denotes a real random
variable and G a sub-σ-field of A such that

U > 0 and σ(U) ⊂ G.

Theorem 1. (Zhang Bo [9]). Let U be strictly positive and G-measurable. Sup-
pose condition (a*) holds and

(b*) Xn converges G-stably to K.

Then, XNn
converges G-stably to K provided condition (c) holds and U is discrete.

Or else, XNn converges G-stably to K provided

(c*) For each ε > 0, there is δ > 0 such that

lim sup
n

P
(
Mn(δ) > ε | H

)
< ε for all H ∈ G with P (H) > 0.

Theorem 1 is our starting point. Roughly speaking, it can be summarized as
follows. Suppose (a*) and (c) hold but (a) fails. If U is discrete, XNn

still converges
in distribution (in fact, it converges stably) up to replacing (b) with (b*). If U is
not discrete, instead, condition (c) should be strengthened as well.

3.3. Improving Theorem 1. Suppose conditions (a*)-(b*) hold but U is not
necessarily discrete. As implicit in Theorem 1, it may be that (c) holds and yet

XNn
fails to converge G-stably to K; see Example 4. Hence, to get XNn

G−stably−→ K,
condition (c) is to be modified. Plainly, a number of conditions could serve to this
purpose. We now investigate two of them.

One (crude) possibility is just replacing n with Nn in condition (c), that is,

(d) infδ>0 lim supn P
(
MNn

(δ) > ε
)

= 0 for all ε > 0,

where
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MNn
(δ) = max

j:|Nn−j|≤Nn δ
d(Xj , XNn

).

Unlike condition (c*) of Theorem 1, which works for every sequence Nn (as far as
(a*) and (b*) are satisfied), condition (d) is tailor-made on the particular sequence
of random times at hand.

In view of (a*), another option is replacing Mn(δ) with

M[kn U ](δ) = max
j:|[kn U ]−j|≤[kn U ] δ

d(Xj , X[kn U ]).

The corresponding condition is

(e) infδ>0 lim supn P
(
M[kn U ](δ) > ε

)
= 0 for all ε > 0.

Conditions (d) and (e) are actually equivalent and both are special cases of the
so called Anscombe random condition, introduced in [6]. More importantly, they
lead to the desired conclusion.

Theorem 2. Let U be strictly positive and G-measurable. Conditions (d) and (e)
are equivalent under (a*). Moreover,

XNn

G−stably−→ K and X[kn U ]
G−stably−→ K

under conditions (a*)-(b*)-(d) (or equivalently (a*)-(b*)-(e)).

Proof. Let Rn = [kn U ]. We first show that (d) and (e) are equivalent under (a*).
This is actually a consequence of Lemma 3 of [6] but we give a proof to make the
paper self-contained.

Suppose (a*) and (e) hold and fix δ ∈ (0, 1]. If |Rn −Nn| ≤ δ Rn and j is such
that |j −Nn| ≤ δ Nn, then

|j −Rn| ≤ |j −Nn|+ δ Rn ≤ δ Nn + δ Rn ≤ 2 δ Rn + δ |Rn −Nn| ≤ 3 δ Rn.

Hence, |Rn −Nn| ≤ δ Rn implies

MNn
(δ) ≤ d(XRn

, XNn
) + max

j:|j−Rn|≤3δ Rn

d(Xj , XRn
) ≤ 2MRn

(3 δ).

Given ε > 0, it follows that

P
(
MNn

(δ) > ε
)
≤ P

(
|Rn −Nn| > δRn

)
+ P

(
MRn

(3 δ) > ε/2
)
.

By (a*), Nn/Rn
P−→ 1 so that limn P

(
|Rn −Nn| > δRn

)
= 0. Therefore,

lim sup
n

P
(
MNn

(δ) > ε
)
≤ lim sup

n
P
(
MRn

(3 δ) > ε/2
)

and condition (d) follows from condition (e). By precisely the same argument, it
can be shown that (a*) and (d) imply (e).

Next, assume conditions (a*)-(b*)-(e). Since

d(XRn
, XNn

) ≤MRn
(δ) provided |Rn −Nn| ≤ δ Rn,

conditions (a*) and (e) yield d(XRn
, XNn

) P−→ 0. Thus, it suffices to prove that

XRn

G−stably−→ K. To this end, for each δ ∈ (0, 1], define

Uδ = δ I{0<U≤δ} +
∞∑
j=1

j δ I{j δ<U≤(j+1) δ} and Rn(δ) = [kn Uδ].
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Since Uδ is discrete, strictly positive and G-measurable, condition (b*) yields

XRn(δ)
G−stably−→ K. Fix in fact H ∈ G with P (H) > 0 and let Hj = H ∩ {Uδ = j δ}

for all j ≥ 1. Then, (b*) implies

lim
n
E
{
f(XRn(δ)) | H

}
= lim

n

∑
j

E
{
f(X[kn j δ]) | Hj

}
P (Hj | H)

=
∑
j

E
{
K(f) | Hj

}
P (Hj | H) = E

{
K(f) | H

}
for each bounded continuous f , where the sum is over those j such that P (Hj) > 0.

Note also that, on the set {U > δ}, one obtains

|Rn −Rn(δ2)| = Rn −Rn(δ2) = Rn
[kn U ]− [kn Uδ2 ]

[kn U ]

< Rn
kn (U − Uδ2) + 1

kn U − 1
< Rn

kn δ
2 + 1

kn δ − 1
< 2 δ Rn for large n.

Thus, for ε > 0 and large n,

P
(
d(XRn , XRn(δ2) ) > ε

)
≤ P (U ≤ δ) + P

(
MRn(2 δ) > ε

)
.

By condition (e) and since U > 0, it follows that

inf
δ>0

lim sup
n

P
(
d(XRn , XRn(δ2) ) > ε

)
= 0.(1)

Finally, fix ε > 0, H ∈ G with P (H) > 0, and a closed set C ⊂ S. Let
Cε = {x ∈ S : d(x,C) ≤ ε}. By (1), there is δ ∈ (0, 1] such that

lim sup
n

P
(
d(XRn

, XRn(δ2) ) > ε
)
< εP (H).

With such a δ, since XRn(δ2)
G−stably−→ K, one obtains

lim sup
n

P
(
XRn ∈ C | H

)
≤ lim sup

n

{
P
(
d(XRn , XRn(δ2) ) > ε | H

)
+ P

(
XRn(δ2) ∈ Cε | H

)}
< ε+ lim sup

n
P
(
XRn(δ2) ∈ Cε | H

)
≤ ε+ E

{
K(Cε) | H

}
.

As ε → 0, it follows that lim supn P
(
XRn ∈ C | H

)
≤ E

{
K(C) | H

}
. Therefore,

XRn

G−stably−→ K and this concludes the proof.
�

Theorem 2 unifies the two parts of Theorem 1 (U discrete and U not discrete).
In addition, Theorem 2 strictly improves Theorem 1. In fact, condition (c*) implies
condition (e) but not conversely. Two (natural) examples where (e) holds and (c*)
fails are given in the next section; see Examples 5 and 6. Here, we prove the direct
implication.

Theorem 3. Let U be strictly positive and G-measurable. If condition (c) holds
and U is discrete, or if condition (c*) holds, then condition (e) holds.
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Proof. Let Rn = [kn U ]. Suppose (c) holds and U is discrete. Then it suffices to
note that, for each ε > 0 and u > 0 such that P (U = u) > 0, one obtains

lim sup
n

P
(
MRn

(δ) > ε | U = u
)

= lim sup
n

P
(
M[kn u](δ) > ε | U = u

)
≤ P (U = u)−1 lim sup

n
P
(
Mn(δ) > ε

)
−→ 0 as δ → 0.

Next, suppose (c*) holds. Given ε > 0, take δ > 0 such that

lim sup
n

P
(
Mn(δ) > ε/2 | H

)
< ε/2 for all H ∈ G with P (H) > 0.

Fix u, γ > 0 and define H = {u− γ ≤ U < u+ γ}. Take j and n such that

|j −Rn| ≤ (δ/4)Rn, kn γ > 1, kn u < 2 [kn u].

On the set H, one obtains

|j − [kn u]| ≤ |j −Rn|+ |Rn − [kn u]| ≤ (δ/4)Rn + |[kn U ]− [kn u]|

< (δ/4) kn (u+ γ) + kn γ + 1 < [kn u]
2
u
{(δ/4) (u+ γ) + 2 γ}.

Letting δ∗ = (2/u)
{

(δ/4) (u+ γ) + 2 γ
}

, it follows that

MRn
(δ/4) ≤M[kn u](δ∗) + d

(
XRn

, X[kn u]

)
≤ 2M[kn u](δ∗)

on H for large n. Since H ∈ G,

lim sup
n

P
(
MRn

(δ/4) > ε | H
)
≤ lim sup

n
P
(
M[kn u](δ∗) > ε/2 | H

)
≤ lim sup

n
P
(
Mn(δ∗) > ε/2 | H

)
< ε/2

provided P (H) > 0 and u, γ are such that δ∗ ≤ δ, or equivalently

γ

u
≤ δ

8 + δ
.

Finally, take 0 < a < b such that P (a ≤ U < b) > 1− (ε/2). The set {a ≤ U < b}
can be partitioned into sets Hi = {ui−γ ≤ U < ui+γ} such that (γ/a) ≤ δ/(8+δ)
and u1 = a+ γ < u2 < . . .. On noting that (γ/ui) ≤ δ/(8 + δ) for all i,

lim sup
n

P
(
MRn

(δ/4) > ε
)
< ε/2 + lim sup

n
P
(
MRn

(δ/4) > ε, a ≤ U < b
)

≤ ε/2 +
∑
i

lim sup
n

P
(
MRn

(δ/4) > ε | Hi

)
P (Hi) < ε

where the sum is over those i with P (Hi) > 0. This concludes the proof. �

4. Examples

It is implicit in Theorem 1 that, when U is not discrete, conditions (a*)-(b*)-(c)

are not enough for XNn

G−stably−→ K (where K is the kernel involved in condition
(b*)). However, we do not know of any explicit example. So, we begin with one
such example.

Example 4. (Conditions (a*)-(b*)-(c) do not imply XNn

G−stably−→ K). Let
Ω = [0, 1), A the Borel σ-field and P the Lebesgue measure. For each n ≥ 1, define

An =
[
log n, log(n+ 1)

)
modulo 1,
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that is, A1 = [0, log 2), A2 = [log 2, 1) ∪ [0, (log 3) − 1) and so on. Define also
X0 = 0 and Xn = IAn

for n ≥ 1. Since P (An) = log((n+ 1)/n), then Xn
P−→ 0, or

equivalently Xn converges A-stably to the point mass at 0 (see Section 2). Thus,
condition (b*) holds with G = A and K the point mass at 0. Given ε > 0,

P
(
Mn(δ) > ε, Xn = 0

)
≤ P

( ⋃
j:|n−j|≤n δ

Aj

)
≤

∑
j:|n−j|≤n δ

P (Aj) ≤ log
[n (1 + δ)] + 1

[n (1− δ)]
.

Since P (Xn = 0)→ 1, it follows that

lim sup
n

P
(
Mn(δ) > ε

)
= lim sup

n
P
(
Mn(δ) > ε, Xn = 0

)
≤ log

1 + δ

1− δ
,

that is, condition (c) holds. Finally, define U(ω) = exp (ω) for all ω ∈ [0, 1) and

Nn = [U exp (rn)],

where the rn are non-negative integers such that rn →∞. Condition (a*) is trivially
true. Further, for each n, one obtains {Nn = k} ⊂ Ak for all k, so that XNn = 1.
Thus, XNn

fails to converge A-stably to the point mass at 0.

We next prove that condition (e) does not imply condition (c*). We give two
examples. The first is just a modification of Example 4, while the second (which
requires some more calculations) concerns the exchangeable CLT. Recall that (d)
and (e) are equivalent under (a*).

Example 5. (Example 4 revisited). Conditions (b*)-(c)-(c*) depend on (Xn)
and G only. In view of Theorem 1, condition (c*) fails in Example 4. Hence, to
build an example where (c*) fails but (a*)-(b*)-(c)-(d) hold, it suffices to suitably
modify the random times Nn of Example 4. Precisely, suppose (Ω,A, P ), U , (Xn)
and G are as in Example 4, but the random times are now

Nn =
[ Tn−1 + Tn

2

]
where Tn = inf{j : j > Tn−1 and Xj = 1} and N0 = T0 = 0.

Then, (c*) fails while (b*)-(c) hold. It is not hard to see that Tn = [exp (n− 1)U ]
for n ≥ 1. Thus, conditions (a*) and (d) are both trivially true. (As to (d), just
note that Tn−1 < Nn (1− δ) < Nn (1 + δ) < Tn for large n and small δ).

Example 6. (Exchangeable CLT). Let (Zn : n ≥ 1) be an exchangeable se-
quence of real random variables with tail σ-field T . By de Finetti’s theorem, (Zn)
is i.i.d. conditionally on T . Basing on this fact, if E(Z2

1 ) <∞, it is not hard to see
that ∑n

i=1{Zi − E(Z1 | T )}√
n

A−stably−→ N(0, L)

where L = E(Z2
1 | T ) − E(Z1 | T )2 and N(0, σ2) denotes the Gaussian law with

mean 0 and variance σ2 (with N(0, 0) the point mass at 0); see e.g. Theorem 3.1
of [1] and the subsequent remark. Fix a T -measurable random variable U > 0 and
define

Nn = [nU ], X0 = 0, Xn =
∑n
i=1{Zi − E(Z1 | T )}√

n
.
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Then, conditions (a*)-(b*)-(c)-(d) are satisfied (with G = A and K = N(0, L)) so
that ∑Nn

i=1{Zi − E(Z1 | T )}√
Nn

A−stably−→ N(0, L)

because of Theorem 2. Indeed, (a*)-(b*) are obvious and (c) can be checked pre-
cisely as (d). As to (d), given ε > 0, just note that

lim sup
n

P
(
MNn

(δ) > ε | T
)
≤ lim sup

n
P
(
Mn(δ) > ε | T

)
a.s.

for Nn is T -measurable, and

lim sup
n

P
(
Mn(δ) > ε | T

) a.s.−→ 0 as δ → 0

for (Zn) is i.i.d. conditionally on T . Thus,

lim sup
n

P
(
MNn

(δ) > ε
)
≤
∫

lim sup
n

P
(
MNn

(δ) > ε | T
)
dP

≤
∫

lim sup
n

P
(
Mn(δ) > ε | T

)
dP −→ 0 as δ → 0.

It remains to see that condition (c*) may fail. We verify this fact for

G = σ(U) and Zn = U Vn

where

• U is any random variable such that U > 0, E(U2) <∞ and P (U > u) > 0
for all u > 0;

• (Vn) is i.i.d., V1 ∼ N(0, 1), and (Vn) is independent of U .

Such a sequence (Zn) is exchangeable and E(Z2
1 ) = E(U2) < ∞. Furthermore,

E(Z1 | T ) = 0 a.s. and U is T -measurable (up to modifications on P -null sets) for∑n
i=1 Zi
n

= U

∑n
i=1 Vi
n

a.s.−→ 0 and
∑n
i=1 Z

2
i

n
= U2

∑n
i=1 V

2
i

n

a.s.−→ U2.

Next, a direct calculation shows that∑n
i=1 Vi√
n
−
∑m
i=1 Vi√
m

∼ N
(
0, 2− 2

√
n/m

)
for 1 ≤ n ≤ m.

Thus, conditionally on U ,

Xn −X[n (1−δ)] = U
{∑n

i=1 Vi√
n
−
∑[n (1−δ)]
i=1 Vi√
[n (1− δ)]

}
∼ N

(
0, U2 σ2

n(δ)
)

where δ ∈ (0, 1) and

σ2
n(δ) = 2− 2

√
[n (1− δ)]

n
≥ 2− 2

√
1− δ.

Define H = {U > u} and f(δ) = 2
√

2− 2
√

1− δ for some u > 0 and δ ∈ (0, 1/2).
Letting Φ denote the standard normal distribution function, for each n such that
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n− [n (1− δ)] ≤ n 2 δ, one obtains

P
(
Mn(2 δ) > 1/2 | H

)
≥ P

(
|Xn −X[n (1−δ)]| > 1/2 | H

)
= P (H)−1

∫
H

P
(
|Xn −X[n (1−δ)]| > 1/2 | U

)
dP

= P (H)−1

∫
H

2 Φ
(
− 1

2U σn(δ)
)
dP

≥ 2P (H)−1

∫
H

Φ
(
− 1
U f(δ)

)
dP ≥ 2 Φ

(
− 1
u f(δ)

)
.

Since P (U > u) > 0 for all u > 0, condition (c*) (applied with ε = 1/2) would
imply Φ

(
− 1
u f(δ)

)
< 1/4 for some fixed δ and all u > 0. But this is absurd for

limu→∞Φ
(
− 1
u f(δ)

)
= Φ(0) = 1/2. Therefore, (c*) fails in this example.

Our last example deals with empirical processes for non independent data. Let
l∞(R) denote the space of real bounded functions on R equipped with uniform
distance.

Example 7. (Exchangeable empirical processes). Again, let (Zn : n ≥ 1) be
an exchangeable sequence of real random variables with tail σ-field T . Let F be a
random distribution function satisfying

F (t) = P (Z1 ≤ t | T ) a.s. for all t ∈ R.

The n-th empirical process can be defined as

Xn(t) =
√
n
{

(1/n)
n∑
i=1

I{Zi≤t} − F (t)
}

for t ∈ R.

Define also the process X(t) = B
(
F (t)

)
, t ∈ R, where B is a Brownian-bridge pro-

cess independent of F . (Such a B is available up to enlarging the basic probability
space (Ω,A, P )). If P (Z1 = Z2) = 0 or if Z1 is discrete, then Xn

d−→ X in the
metric space l∞(R); see [1]-[2] for details. But l∞(R) is not separable and working
with it yields various measurability issues. So, to avoid technicalities, we assume
0 ≤ Z1 ≤ 1 and we take S to be the space of real cadlag functions on [0, 1] equipped
with Skorohod distance. Then, Xn

d−→ X in the separable metric space S; see e.g.
Theorem 3 of [2]. Actually, basing on de Finetti’s theorem, it can be shown that
Xn converges A-stably to a certain kernel K on S. Precisely, for each distribution
function H, let QH denote the probability distribution (on the Borel sets of S) of
the process XH(t) = B

(
H(t)

)
, t ∈ [0, 1]. Then, K can be written as

K(A) = QF (A) for all Borel sets A ⊂ S.

Finally, let Nn = [nU ] where U > 0 is any T -measurable random variable. Then,
condition (a*) is trivially true, (b*) holds with G = A, and (d) can be checked as

in Example 6. Thus, Theorem 2 implies XNn

A−stably−→ K. This fact can not be
deduced by Theorem 1, however, for condition (c*) may fail.
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