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Abstract. Let (Ω,A, P ) be a probability space, S a metric space, µ a prob-

ability measure on the Borel σ-field of S, and Xn : Ω → S an arbitrary map,
n = 1, 2, . . .. If µ is tight and Xn converges in distribution to µ (in Hoffmann-

Jørgensen’s sense), then X ∼ µ for some S-valued random variable X on

(Ω,A, P ). If, in addition, the Xn are measurable and tight, there are S-valued

random variables
∼
Xn and X, defined on (Ω,A, P ), such that

∼
Xn ∼ Xn, X ∼ µ

and
∼
Xnk → X a.s. for some subsequence (nk). Further,

∼
Xn → X a.s. (with-

out need of taking subsequences) if µ{x} = 0 for all x, or if P (Xn = x) = 0
for some n and all x. When P is perfect, the tightness assumption can be

weakened into separability up to extending P to σ(A∪ {H}) for some H ⊂ Ω

with P ∗(H) = 1. As a consequence, in applying Skorohod representation the-
orem with separable probability measures, the Skorohod space can be taken

((0, 1), σ(U ∪ {H}), mH), for some H ⊂ (0, 1) with outer Lebesgue measure 1,

where U is the Borel σ-field on (0, 1) and mH the only extension of Lebesgue
measure such that mH(H) = 1. In order to prove the previous results, it is

also shown that, if Xn converges in distribution to a separable limit, then Xnk

converges stably for some subsequence (nk).

1. Introduction

Let S be a metric space, µ a probability measure on the Borel subsets of S,
and Xn an S-valued random variable on some probability space (Ωn,An, Pn),
n = 1, 2, . . .. According to Skorohod representation theorem and its subsequent
generalizations by Dudley and Wichura, if µ is separable and Pn ◦X−1

n → µ weakly
then, on a suitable probability space, there are S-valued random variables Zn and
Z such that Zn ∼ Xn, Z ∼ µ and Zn → Z a.s.. See Theorem 3.5.1 of [4] and
Theorem 1.10.4 of [8]; see also p. 77 of [8] for historical notes. Let us call Skorohod
space the probability space where Zn and Z are defined.

In a number of real problems, the Xn are all defined on the same probability
space, that is,

(Ωn,An, Pn) = (Ω,A, P ) for all n.

In this case, provided P ◦X−1
n → µ weakly, a first question is:

(a) Is there an S-valued random variable X, defined on (Ω,A, P ), such that
X ∼ µ ?

One more question is:
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(b) Is it possible to take (Ω,A, P ) as the Skorohod space ? In other terms,

are there S-valued random variables
∼
Xn and X, defined on (Ω,A, P ), such

that
∼
Xn ∼ Xn, X ∼ µ and

∼
Xn → X a.s. ?

Answering questions (a)-(b), the main purpose of this paper, can be useful at
least from the foundational point of view.

As to (a), unlike Skorohod theorem, separability of µ is not enough for X to
exist. However, a sufficient condition for X to exist is that µ is tight. Under this
assumption, moreover, the Xn : Ω → S can be taken to be arbitrary functions (not
necessarily measurable) converging in distribution to µ in Hoffmann-Jørgensen’s
sense. Thus, for example, the result applies to convergence in distribution of em-
pirical processes under uniform distance. See Corollary 5.4 and Examples 5.1 and
5.6.

As to (b), in addition to µ tight, suppose the Xn are (measurable and) tight.
This happens, in particular, whenever S is Polish (and the Xn measurable). In spite
of these assumptions, (b) can have a negative answer all the same. However, there

are S-valued random variables
∼
Xn and X on (Ω,A, P ), with the given marginal

distributions, such that
∼
Xnk

→ X a.s. for some subsequence (nk). Furthermore,
∼
Xn → X a.s. (without need of taking subsequences) in case µ{x} = 0 for all x ∈ S,
or in case P (Xn = x) = 0 for some n ≥ 1 and all x ∈ S. See Examples 5.2 and 5.7,
Theorem 5.3 and Corollary 5.5.

So far, one basic assumption is tightness. If P is perfect, tightness can be

weakened into separability. In this case, however,
∼
Xn and X are to be defined on

the enlarged probability space

(Ω, σ(A ∪ {H}), PH)

where H ⊂ Ω is a suitable subset with P ∗(H) = 1 and PH is the only extension of
P to σ(A ∪ {H}) such that PH(H) = 1.

The latter fact has, among others, the following consequence; cf. Theorem 3.2.
Let m be Lebesgue measure on the Borel σ-field U on (0, 1). Suppose µn → µ
weakly, where µ and µn are separable probabilities on the Borel subsets of S. Then,
the corresponding Skorohod space can be taken to be ((0, 1), σ(U ∪ {H}),mH), for
some H ⊂ (0, 1) with m∗(H) = 1, where mH is the only extension of m such
that mH(H) = 1. Roughly speaking, provided all probabilities are separable, the
Skorohod space can be obtained by just extending m to one more set, without need
of taking some involved product space.

As a main tool for proving the previous results, we also get a proposition, of
possible independent interest, on stable convergence. If Xn converges in distribution
to a separable limit (the Xn being possibly non measurable), then Xnk

converges
stably for some subsequence (nk); see Theorem 4.1.

This paper is organized as follows. Section 2 includes notation and Section 3
provides answers to questions (a)-(b) in case P is nonatomic. The nonatomicity
condition is removed in Section 5, after dealing with stable convergence in Section
4.
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2. Notation

Throughout, S is a metric space, B the Borel σ-field on S, µ a probability on B,
(Ω,A, P ) a probability space and Xn : Ω → S an arbitrary function, n = 1, 2, . . ..
We let d denote the distance on S. A probability ν on B is separable in case
ν(S0) = 1 for some separable set S0 ∈ B. In particular, ν is separable whenever
it is tight. A map Z : Ω → S is called measurable, or a random variable, in case
Z−1(B) ⊂ A. If Z is measurable, we write Z ∼ ν to mean that ν = P ◦ Z−1 and
Z is said to be separable or tight in case P ◦ Z−1 is separable or tight. Similarly,
Z ∼ Z ′ means that Z and Z ′ are identically distributed. Moreover, U is the Borel
σ-field on (0, 1) and m the Lebesgue measure on U .

A set A ∈ A is a P -atom in case P (A) > 0 and P (A ∩ H) ∈ {0, P (A)} for all
H ∈ A, and P is said to be nonatomic in case there are not P -atoms. If P is not
nonatomic, there are countably many pairwise disjoint P -atoms, A1, A2, . . ., such
that either

∑
j≥1 P (Aj) = 1 or P

(
· | (∪j≥1Aj)c

)
is nonatomic.

The probability P is perfect in case, for each measurable f : Ω → R, there is a
real Borel set B ⊂ f(Ω) such that P (f ∈ B) = 1. For instance, P is perfect if Ω is
a universally measurable subset of a Polish space and A the Borel σ-field on Ω.

Given any probability space (X ,F , Q), we let Q∗ and Q∗ denote outer and inner
probabilities, i.e., for all H ⊂ X we let

Q∗(H) = inf{Q(A) : A ∈ F , A ⊃ H}, Q∗(H) = 1−Q∗(Hc).

If Q∗(H) = 1, Q admits an unique extension QH to σ(F∪{H}) such that QH(H) =
1, that is, QH

(
(A1 ∩H) ∪ (A2 ∩Hc)

)
= Q(A1) for all A1, A2 ∈ F .

Finally, if Zn and Z are S-valued maps on some probability space (X ,F , Q),
Zn → Z almost surely (a.s.) means that Q∗

(
Zn → Z

)
= 1. If the Zn are measurable

and Z is measurable and separable, this is equivalent to Zn → Z almost uniformly,
i.e., for each ε > 0 there is A ∈ F with Q(Ac) < ε and Zn → Z uniformly on A; see
Lemma 1.9.2 and Theorem 1.9.6 of [8].

3. Existence of random variables with given distribution
on a nonatomic probability space

We start by giving conditions for (Ω,A, P ) to support a random variable with
given distribution ν, where ν is a (separable) probability on B. To this end, if ν
is not tight, nonatomicity and perfectness of P are not enough; see Example 5.1.
However, a random variable with distribution ν is available up to extending P to
one more subset of Ω. In the sequel, given H ⊂ Ω with P ∗(H) = 1, PH denotes
the only extension of P to σ(A ∪ {H}) such that PH(H) = 1. We also recall that
((0, 1),U ,m) supports a random variable with distribution ν provided S is Polish.

Theorem 3.1. Let P be nonatomic and ν a separable probability on B. Then:

(i) If ν is tight, X ∼ ν for some S-valued random variable X on (Ω,A, P );
(ii) If P is perfect, there are H ⊂ Ω with P ∗(H) = 1 and X : Ω → S such that

X−1(B) ⊂ σ(A ∪ {H}) and X ∼ ν under PH .

Proof. Since P is nonatomic, there is a measurable map U : Ω → (0, 1) such that
U ∼ m; see e.g. the proof of Lemma 2 of [2]. Take a separable set S0 ∈ B with
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ν(S0) = 1, and fix a countable subset {x1, x2, . . .} ⊂ S0, dense in S0. Define

h(x) =
(
d(x, x1) ∧ 1, d(x, x2) ∧ 1, . . .) for all x ∈ S.

Letting C = [0, 1]∞ be the Hilbert cube, h : S → C is continuous and it is an
homeomorphism as a map h : S0 → h(S0). Since C is Polish and ν ◦ h−1 is a
probability on the Borel subsets of C, there is a C-valued random variable Z on
((0, 1),U ,m) such that Z ∼ ν ◦ h−1. Fix x0 ∈ S and define

H = {Z ◦ U ∈ h(S0)}, X = h−1(Z ◦ U) on H, X = x0 on Hc.

Given B ∈ B, since h : S0 → h(S0) is an homeomorphism, h(B ∩ S0) = h(S0) ∩D
for some Borel set D ⊂ C. Hence,

{X ∈ B} ∩H = {Z ◦ U ∈ h(B ∩ S0)} = {Z ◦ U ∈ D} ∩H ∈ σ(A ∪ {H}).

If ν is tight, S0 can be taken σ-compact, and thus h(S0) is Borel in C (it is
in fact σ-compact). It follows that H ∈ A and X−1(B) ⊂ A. On noting that
P (H) = ν ◦ h−1(h(S0)) = ν(S0) = 1, one easily obtains X ∼ ν.

If P is perfect, Lemma 1 of [2] (see also Theorem 3.4.1 of [4]) implies

P ∗(H) = (ν ◦ h−1)∗(h(S0)) ≥ ν(S0) = 1.

If B ∈ B and h(B ∩ S0) = h(S0) ∩D for some Borel set D ⊂ C, then

PH(X ∈ B) = PH(Z ◦ U ∈ D) = P (Z ◦ U ∈ D)

= ν ◦ h−1(D) ≥ ν(B ∩ S0) = ν(B).

Taking complements yields PH ◦X−1 = ν and concludes the proof. �

Our next result is a consequence of Theorem 3.1. Let µn be probabilities on B
such that µn → µ weakly, where µ is separable. Then, Skorohod theorem applies,
and a question is whether ((0, 1),U ,m) can be taken as Skorohod space. As shown
in [6], this is possible in case µ and the µn are tight. Up to extending m to one
more subset of (0, 1), this is still possible in case the µn are only separable. Indeed,
it suffices to let (Ω,A, P ) = ((0, 1),U ,m) in the following Theorem 3.2.

Theorem 3.2. Suppose P is nonatomic, µ and each µn are separable probabilities
on B, and µn → µ weakly. Then:

(i) If µ and each µn are tight, there are S-valued random variables
∼
Xn and X

on (Ω,A, P ) such that
∼
Xn ∼ µn, X ∼ µ and

∼
Xn → X a.s.;

(ii) If P is perfect, there are H ⊂ Ω with P ∗(H) = 1 and S-valued random

variables
∼
Xn and X on (Ω, σ(A ∪ {H}), PH) satisfying

∼
Xn ∼ µn, X ∼ µ

and
∼
Xn → X a.s..

Proof. By Skorohod theorem, on some probability space (X ,F , Q), there are S-
valued random variables Zn and Z such that Zn ∼ µn, Z ∼ µ and Zn → Z a.s..
Let

γ(B) = Q
(
(Z,Z1, Z2, . . .) ∈ B

)
for all B ∈ B∞.

Then γ is separable, since its marginals µ, µ1, µ2, . . . are separable, and thus γ can
be extended to a separable probability ν on the Borel σ-field of S∞. Moreover, ν
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is tight if and only if µ, µ1, µ2, . . . are tight. Thus, Theorem 3.1 applies. Precisely,
if µ and the µn are tight, Theorem 3.1 yields

Y = (X,
∼
X1,

∼
X2, . . .) ∼ ν

for some S∞-valued random variable Y on (Ω,A, P ). Otherwise, if P is perfect,
Y ∼ ν for some S∞-valued random variable Y on (Ω, σ(A ∪ {H}), PH), where
H ⊂ Ω and P ∗(H) = 1. �

In Theorem 3.2, unlike Skorohod theorem, the µn are asked to be separable. We
recall that it is consistent with the usual axioms of set theory (i.e., with the ZFC
set theory) that non separable probability measures on B do not exist; see [4], p.
403, and [8], p. 24.

To apply Theorems 3.1 and 3.2, conditions for nonatomicity of P are useful.

Lemma 3.3. For P to be nonatomic, it is enough that (Ω,A, P ) supports a sepa-
rable S-valued random variable X such that P (X = x) = 0 for all x ∈ S.

Proof. Suppose A is a P -atom and Z a separable S-valued random variable on
(Ω,A, P ). Let ν(B) = P (Z ∈ B | A), B ∈ B. Then, ν is separable and 0-1 valued,
so that ν{x} = 1 for some x ∈ S. Thus, P (Z = x) ≥ P (A,Z = x) = P (A) > 0. �

Theorems 3.1 and 3.2 provide answers to questions (a)-(b), though under some
assumptions on P . In Section 5, these assumptions are weakened or even dropped.
To this end, we need to show that some subsequence Xnk

also converges in distri-
bution under P (· | A), for each possible P -atom A. This naturally leads to stable
convergence.

4. Stable convergence

Given a probability ν on B, say that Xn converges in distribution to ν in case
E∗f(Xn) →

∫
fdν for all bounded continuous functions f : S → R, where E∗

denotes outer expectation; see [4] and [8]. Such a definition, due to Hoffmann-
Jørgensen, reduces to the usual one if the Xn are measurable. Say also that Xn

converges stably in case Xn converges in distribution under P (· | H) for each H ∈ A
with P (H) > 0. Stable convergence has been introduced by Renyi in [7] and
subsequently investigated by various authors (in case the Xn are measurable). We
refer to [3] and [5] for more on stable convergence.

Theorem 4.1. If µ is separable and Xn converges in distribution to µ, then Xnk

converges stably for some subsequence (nk).

Proof. We first suppose that µ is tight and the Xn are measurable with sepa-
rable range. As Xn converges in distribution to a tight limit, Xn is asymptoti-
cally tight; see Lemma 1.3.8 of [8]. Thus, Xn is also asymptotically tight under
P (· | H) whenever H ∈ A and P (H) > 0. Moreover, σ(X1, X2, . . .) is a countably
generated sub-σ-field of A, due to the Xn being measurable with separable range.
Let G be a countable field such that σ(G) = σ(X1, X2, . . .). Since G is countable, by
Prohorov’s theorem (cf. Theorem 1.3.9 of [8]) and a diagonalizing argument, there
is a subsequence (nk) such that

Xnk
converges in distribution, under P (· | G), for each G ∈ G with P (G) > 0.
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Next, fix A ∈ σ(X1, X2, . . .) with P (A) > 0. Given ε > 0 and a bounded continuous
function f : S → R, there is G ∈ G with P (G) > 0 and 2 sup|f |P (A∆G) < εP (A).
Thus,

lim sup
j,k

∣∣∣E(f(Xnj ) | A)− E(f(Xnk
) | A)

∣∣∣
≤ 2 sup|f |P (A∆G)

P (A)
+

P (G)
P (A)

lim sup
j,k

∣∣∣E(f(Xnj
) | G)− E(f(Xnk

) | G)
∣∣∣ < ε.

Therefore, E(f(Xnk
) | A) converges to a limit for each bounded continuous f .

By Alexandrov’s theorem, this implies that Xnk
converges in distribution under

P (· | A). Next, let H ∈ A with P (H) > 0, and let VH be a bounded version of
E(IH | X1, X2, . . .). Given a bounded continuous function f on S, E

(
f(Xnk

)IA

)
converges to a limit for each A ∈ σ(X1, X2, . . .). Since VH is the uniform limit of
some sequence of simple functions in σ(X1, X2, . . .), it follows that

E
(
f(Xnk

)IH

)
= E

(
f(Xnk

)VH

)
also converges to a limit. Once again, Alexandrov’s theorem implies that Xnk

converges in distribution under P (· | H). Thus, Xnk
converges stably.

Let us now consider the general case (µ separable and the Xn arbitrary func-
tions). Since Xn converges in distribution to a separable limit, there are maps
Zn : Ω → S, all measurable with finite range, such that P ∗(d(Xn, Zn) ≥ ε

)
→ 0 for

all ε > 0; see Proposition 1.10.12 of [8] and its proof. Fix a separable set S1 ∈ B
with µ(S1) = 1 and let S0 = S1 ∪ (∪nZn(Ω)). As in the proof of Theorem 3.1,
define C = [0, 1]∞ and

h(x) =
(
d(x, x1) ∧ 1, d(x, x2) ∧ 1, . . .), x ∈ S,

where {x1, x2, . . .} ⊂ S0 is dense in S0. Since Zn converges in distribution to µ and
h : S → C is continuous, h(Zn) converges in distribution to µ◦h−1. Also, µ◦h−1 is
tight (due to C being Polish) and the h(Zn) are measurable with separable range.
Thus, h(Znk

) converges stably for some subsequence (nk). Since d(Xn, Zn) → 0 in
outer probability, Xnk

converges stably if and only if Znk
converges stably. Hence,

it suffices proving that Znk
converges stably.

Let Yk = h(Znk
). For each H ∈ A with P (H) > 0, let γH denote the limit in

distribution of Yk under P (· | H). Then γΩ = µ ◦ h−1, since h(Zn) converges in
distribution to µ ◦ h−1 (under P ), so that

γ∗Ω(h(S0)) = (µ ◦ h−1)∗(h(S0)) ≥ µ(S0) = 1.

As γΩ = P (H)γH +P (Hc)γHc whenever 0 < P (H) < 1, one obtains γ∗H(h(S0)) = 1
for all H ∈ A with P (H) > 0. Fix one such H. Then, Yk : Ω → h(S0) ⊂ C and,
under P (· | H), Yk converges in distribution to γH as a random element of C.
Since γ∗H(h(S0)) = 1, Yk also converges in distribution as a random element of
h(S0). Since h is an homeomorphism as a map h : S0 → h(S0), it follows that
Znk

= h−1(Yk) converges in distribution under P (· | H). This concludes the
proof. �

5. A Skorohod representation

In Section 3, under the assumption that P is nonatomic, questions (a)-(b) have
been answered. Here, nonatomicity of P is dropped. Instead, as in Section 3,
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perfectness of P is retained in the separable case while it is superfluous in the tight
case. Let us begin with counterexamples.

Example 5.1. (Question (a) can have a negative answer even if S is
separable) Let P be nonatomic and perfect and let S ⊂ (0, 1) be such that
m∗(S) = 0 < 1 = m∗(S). If equipped with the relative topology, S is a sepa-
rable metric space and B = {B∩S : B ∈ U}. Define µ(B∩S) = m∗(B∩S), B ∈ U ,
and take discrete probabilities µn on B such that µn → µ weakly. For each n, since
P is nonatomic and µn is tight (it is even discrete), Theorem 3.1 yields Xn ∼ µn

for some S-valued random variable Xn on (Ω,A, P ). Suppose now that X ∼ µ for
some measurable X : Ω → S. Since P is perfect and X is also a measurable map
X : Ω → R, there is B ∈ U such that B ⊂ X(Ω) ⊂ S and µ(B) = P (X ∈ B) = 1.
It follows that µ is tight, which is a contradiction since µ(K) = 0 for each compact
K ⊂ S. Thus, no S-valued random variable X on (Ω,A, P ) meets X ∼ µ.

Example 5.2. (Question (b) can have a negative answer even if S is
Polish) Let Ω = (0, 1), A = U , P ((0, x)) = x for 0 < x < 1

6 , P{a} = 1
2 and

P{b} = 1
3 , where 1

6 < a < b < 1. Define S = R and

Xn(a) = 1, Xn(b) = 2, Xn(x) =
4
π

arctan(nx) for 0 < x <
1
6
, if n is even,

Xn(a) = 2, Xn(b) = 1, Xn(x) =
2
π

arctan(nx) for 0 < x <
1
6
, if n is odd.

Then, Xn converges in distribution to µ = δ1+δ2
2 . If

∼
Xn is a real random variable

on (Ω,A, P ) such that
∼
Xn ∼ Xn, then

∼
Xn(a) = 1 if n is even and

∼
Xn(a) = 2 if n

is odd. Thus,
∼
Xn does not converge a.s. (or even in probability).

As suggested by Example 5.2, even if µ and the Xn are nice, question (b) can
have a negative answer in case P has atoms. However, Example 5.2 also suggests
that a.s. convergence of suitable subsequences can be obtained. Next result shows
that this is actually true, independently of P having atoms or not.

Theorem 5.3. Let µ be a probability measure on B and (Xn) a sequence of S-
valued random variables on (Ω,A, P ). Suppose µ and the Xn are separable and Xn

converges in distribution to µ. Then:

(i) If µ and the Xn are tight, there are S-valued random variables
∼
Xn and X

on (Ω,A, P ) such that

(1)
∼
Xn ∼ Xn, X ∼ µ,

∼
Xnk

→ X a.s. for some subsequence (nk);

(ii) If P is perfect, there are H ⊂ Ω with P ∗(H) = 1 and S-valued random

variables
∼
Xn and X on (Ω, σ(A∪{H}), PH) such that condition (1) holds.

Proof. By Theorem 3.2, P can be assumed to have atoms. Let A1, A2, . . . be pair-
wise disjoint P -atoms such that either P (A0) = 0 or P (· | A0) is nonatomic, where
A0 = (∪j≥1Aj)c. We assume P (A0) > 0. (If P (A0) = 0, the proof given below can
be repeated by just neglecting A0). By Theorem 4.1, there is a subsequence (nk)
such that Xnk

converges in distribution under P (· | Aj) for all j ≥ 0. Fix j > 0
and let νkj(·) = P (Xnk

∈ · | Aj). Then, νkj is 0-1 valued and separable (since Aj

is a P -atom and Xnk
is separable). Hence, νkj = δx(k,j) for some point x(k, j) ∈ S.
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Since νkj converges weakly (as k → ∞), one also obtains x(k, j) → x(j) for some
point x(j) ∈ S. Next, let µ0 be the limit in distribution of Xnk

under P (· | A0).
Suppose µ and the Xn are tight. Then, P (· | A0) is nonatomic and µ0 is tight

(due to µ being tight). By Theorem 3.2, there are S-valued random variables Vnk

and V on (Ω,A, P (· | A0)) such that

Vnk
∼ Xnk

, V ∼ µ0, Vnk
→ V a.s., under P (· | A0).

Thus, to get (1), it suffices to let
∼
Xn = Xn if n 6= nk for all k, and

X = V and
∼
Xnk

= Vnk
on A0, X = x(j) and

∼
Xnk

= Xnk
on Aj for j > 0.

Finally, suppose P is perfect. Then, P (· | A0) is nonatomic and perfect and µ0

is separable (due to µ being separable). By Theorem 3.2, there are M ⊂ Ω with
P ∗(M | A0) = 1 and S-valued random variables Vnk

and V on (Ω, σ(A∪ {M}), Q)
such that

Vnk
∼ Xnk

, V ∼ µ0, Vnk
→ V a.s., under Q,

where Q is the only extension of P (· | A0) satisfying Q(M) = 1. Thus, it suffices

to let H = (A0 ∩M) ∪Ac
0 and to define

∼
Xn and X as above. �

As a corollary, Theorem 5.3 implies that question (a) admits a positive answer
whenever µ is tight. Next result is analogous to Theorem 3.1. Now, (Ω,A, P ) is
not assumed nonatomic, but it supports a sequence of (arbitrary) functions which
converges in distribution to µ.

Corollary 5.4. Let Xn : Ω → S be arbitrary maps. Suppose µ is separable and
Xn converges in distribution to µ. Then:

(i) If µ is tight, X ∼ µ for some S-valued random variable X on (Ω,A, P );
(ii) If P is perfect, X ∼ µ for some S-valued random variable X defined on

(Ω, σ(A ∪ {H}), PH) where H ⊂ Ω and P ∗(H) = 1.

Proof. Just note that, as in the proof of Theorem 4.1, there are maps Zn : Ω → S,
all measurable with finite range, such that d(Xn, Zn) → 0 in outer probability.
Thus, it suffices applying Theorem 5.3 with Zn in the place of Xn. �

A particular case of Corollary 5.4 (S Polish and Xn measurable) is contained in
Lemma 2 of [2].

Next, we give conditions for question (b) to have a positive answer.

Corollary 5.5. In the notation and under the assumptions of Theorem 5.3, suppose
also that µ{x} = 0 for all x ∈ S, or that P (Xn = x) = 0 for some n ≥ 1 and all

x ∈ S. Then, in both (i) and (ii), one has
∼
Xn → X a.s..

Proof. By Theorem 3.2, it suffices proving that P is nonatomic. By Lemma 3.3,
this is obvious if P (Xn = x) = 0 for some n and all x, and thus assume µ{x} = 0
for all x. If µ is tight, P is nonatomic by Lemma 3.3 and Corollary 5.4. If P is
perfect, Lemma 3.3 and Corollary 5.4 imply that PH is nonatomic, and this in turn
implies nonatomicity of P . �

Finally, we apply Corollaries 5.4 and 5.5 to empirical processes.
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Example 5.6. (Empirical processes) Let (ξn) be an i.i.d. sequence of random
variables, defined on (Ω,A, P ) and taking values in some measurable space (X ,F),
and let F be an uniformly bounded class of real measurable functions on X . Define
S = l∞(F ), the space of real bounded functions on F equipped with uniform
distance, and

Xn(f) =
√

n
( 1

n

n∑
i=1

f(ξi)− Ef(ξ1)
)
, f ∈ F.

The (non measurable) map Xn : Ω → l∞(F ) is called empirical process. To the
best of our knowledge, all existing conditions for Xn to converge in distribution
entail tightness of the limit law µ; see [4] and [8]; see also [1] and [9] for empirical
processes based on non independent sequences of random variables or on diffusion
processes. Under anyone of these conditions, by Corollary 5.4, Xn

d→ X for some
l∞(F )-valued random variable X on (Ω,A, P ). Indeed, relying on Theorem 4.1 and
Corollary 5.4 together, a little bit more is true: Under anyone of such conditions,
there are a subsequence (nk) and measurable maps XH : Ω → l∞(F ), where H ∈ A
and P (H) > 0, such that

Xnk

d→ XH ,under P (· | H), for all H ∈ A with P (H) > 0.

Example 5.7. (More on empirical processes) Sometimes, the Xn take values
in a subset D ⊂ l∞(F ) admitting a Polish topology. If the Xn are also measurable
and converge in distribution under such topology, something more can be said. To
be concrete, suppose X = [0, 1] and F = {I[0,t] : 0 ≤ t ≤ 1}. Let D be the set
of real cadlag functions on [0, 1], D the ball σ-field on D with respect to uniform
distance, and

Xn(t) := Xn(I[0,t]) =
√

n
( 1

n

n∑
i=1

I{ξi≤t} − P (ξ1 ≤ t)
)
, t ∈ [0, 1].

Then, Xn : Ω → D and X−1
n (D) ⊂ A. If D is equipped with Skorohod topology, the

Borel σ-field on D is D and Xn converges in distribution to a probability measure µ
on D. Since D is Polish under Skorohod topology and µ{x} = 0 for all x ∈ D (unless
ξ1 has a degenerate distribution, in which case everything is trivial), Corollary 5.5

applies with S = D. Accordingly, there are measurable maps
∼
Xn : Ω → D and

X : Ω → D such that
∼
Xn ∼ Xn and

∼
Xn → X a.s. with respect to Skorohod

topology. Further, convergence is actually uniform whenever P (ξ1 = t) = 0 for all
t, since in this case almost all paths of X are continuous. Finally, the assumption
X = [0, 1] can be generalized into X = R provided D is taken to be the space of
real cadlag functions on R with finite limits at ±∞; see [2], proof of Theorem 3.
To sum up: If the ξn are real i.i.d. random variables with a continuous distribution

function, there are D-valued maps
∼
Xn and X on (Ω,A, P ) such that

∼
X
−1

n (D) ⊂ A,
X−1(D) ⊂ A, and

P (
∼
Xn ∈ ·) = P (Xn ∈ ·) on D, sup

t

∣∣∣∼Xn(t)−X(t)
∣∣∣ → 0 a.s..
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