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Abstract

In the recent years, the notion of mixability has been developed with applications to

operations research, optimal transportation, and quantitative finance. An n-tuple of dis-

tributions is said to be jointly mixable if there exist n random variables following these

distributions and adding up to a constant, called center, with probability one. When the

n distributions are identical, we speak of complete mixability. If each distribution has

finite mean, the center is obviously the sum of the means. In this paper, we investigate

the set of centers of completely and jointly mixable distributions not having a finite mean.

In addition to several results, we show the (possibly counterintuitive) fact that, for each

n ≥ 2, there exist n standard Cauchy random variables adding up to a constant C if and

only if

|C| ≤ n log(n− 1)

π
.
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Keywords: Cauchy distribution; Complete mixability; Joint mixability; Multivariate
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1 Introduction

In the recent years, the field of complete and joint mixability has been rapidly devel-

oping starting from the paper Wang and Wang [23]. Mixability serves as a building block

for the solutions of many optimization problems under marginal-distributional constraints.

Applications are found in operations research (Haus [12], Bellini et al. [1], Boudt et al. [4]),

as well as in optimal transportation (Rüschendorf [20]) and quantitative finance (Embrechts

et al. [9], Bernard et al. [3]).

One of the open theoretical challenges in this field is to identify the set of all possible

centers of an n-tuple of distributions (µ1, . . . , µn). More precisely, let Γ(µ1, . . . , µn) be the

collection of probability measures on Rn having one-dimensional marginals µ1, . . . , µn. A

center of (µ1, . . . , µn) is any constant C such that, for some λ ∈ Γ
(
µ1, . . . , µn),

λ
({
x ∈ Rn : x1 + . . .+ xn = C

})
= 1. (1)
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If condition (1) holds for some C ∈ R and some λ ∈ Γ(µ1, . . . , µn), the n-tuple (µ1, . . . , µn) is

said to be jointly mixable (JM, Wang et al. [26]). Similarly, a probability measure µ on R is n-

completely mixable (n-CM, Wang and Wang [23]) if the n-tuple (µ, . . . , µ) is JM; in this case,

C/n is called an n-center of µ. Clearly, C/n coincides with the mean of µ provided the latter

exists and is finite. In this sense, the notion of n-center can be seen as a generalization of

the notion of mean. The term n-center is used to stress the dependence on n. However, the

“n-" notation will be dropped when clear from the context.

The historical motivation for investigating mixability was to minimize var
(∑n

i=1Xi

)
,

where X1, . . . , Xn are real random variables with given marginal distributions. In fact,

the idea of building random variables with constant sum, or at least whose sum has min-

imum variance, goes back to Gaffke and Rüschendorf [10], where complete mixability of

the uniform distribution was shown. Random sums with minimal variance were further

investigated in Rüschendorf and Uckelmann [21], where complete mixability of symmetric

unimodal distributions was established. Complete mixability and joint mixability of distri-

butions with monotone densities are characterized in Wang and Wang [23] and Wang and

Wang [24], respectively.

From the analytical viewpoint, mixability can be seen as an extension of the concept

of countermonotonicity to dimensions n ≥ 3. For n = 2, strongest possible negative depen-

dence can be naturally described by the notion of countermonotonicity. Two real random

variables X1 and X2 are said to be countermonotonic if X1 (resp. X2) is a.s. an increasing

(resp. decreasing) function of some common random factor Z. But, for n ≥ 3, there is no

clear manner to define a satisfactory notion of strongest possible negative dependence, i.e.

multidimensional countermonotonicity (see Puccetti and Wang [17]). Joint mixability just

provides one possible way to do that.

Multidimensional countermontonicity among random variables could for instance also

be described as a dependence that yields a sum that is minimum in the sense of convex

order (see Bernard et al. [2, 3]) or as a dependence that yields, after suitable increasing

transformations of the variables, a sum that is constant (Lee and Ahn [13]).

In quantitative finance, the study of mixability has played a fundamental role in the

optimization of quantile-based risk measures under marginal constraints. For example, the

maximum quantile for the sum of n ≥ 2 random variables with given marginal distributions

is attained by a joint distribution in the case it shows (in part) a jointly mixable behavior;

see Embrechts et al. [9] and Rüschendorf [20]. The paper Bernard et al. [3] strengthens

this result by showing it also holds when the joint distribution is such that a sum is obtained

that is (in part) minimum in the sense of convex order. The idea of minimizing variance

also underpins some meaningful procedures in operations research, such as the algorithms

in Graham [11], Coffman and Yannakakis [6], and Puccetti and Rüschendorf [15].

In this paper, we study the set of centers of completely and jointly mixable distribu-

tions. It directly follows from the definition that a distribution with finite mean has either no

center (i.e. it is not mixable) or a unique center (its mean). We find that a distribution with

infinite mean (see Section 1.1) cannot be mixable (see Corollary 3.7). Moreover, we show

that a distribution with no mean can have many centers. If it is discrete, the centers can

be finitely many (see Proposition 3.2); if it is diffuse, the centers could possibly be infinitely

many (see Example 2.5).
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One popular example of a probability measure with no mean is the Cauchy distribution,

namely, the law of the ratio of two independent standard normal random variables. The

family of Cauchy distributions is stable and closed under convolution. Furthermore, the

Cauchy has several applications, mainly in physical problems. For instance, it arises as the

distribution the x-intercept of a ray issuing from a uniformly distributed angle, or else as

the solution to the differential equation describing forced resonance.

Our main result (Theorem 4.2) is that, for every n ≥ 2, the set of n-centers of the

standard Cauchy distribution is the interval[
− log(n− 1)

π
,

log(n− 1)

π

]
.

Even if apparently innocuous, the proof (or at least our proof) of such a result is quite in-

volved. In general, the set of n-centers of a probability measure is compact (Proposition 3.1)

and is finite in case the probability measure is discrete (Proposition 3.2). Moreover, we de-

rive general bounds on the set of centers for jointly mixable distributions (Proposition 3.3).

In addition to the results mentioned above, various other useful facts are proved.

Amongst them, we mention Example 2.6, which provides the first (to our knowledge) ex-

plicit construction of two joint (complete) mixes having the same marginal distributions and

different centers.

We finally remark that, still today, the Cauchy distribution continues to exhibit some

rather unexpected properties; see Pillai and Meng [14] for another example.

1.1 Notation

Throughout this paper, n is a positive integer. For any A ⊂ Rn, we say “a probability

measure on A" to mean “a probability measure on the Borel σ-field of A". We write X ∼ ν

to mean that ν is the probability distribution of the random variable X and X ∼ Y to mean

that X and Y have the same law. Also, for any set Z, δz stands for the point mass at z ∈ Z.

We always denote by B the Borel σ-field of R and by µ (with or without indices) a prob-

ability measure on B. Recall that µ has a (possibly infinite) mean if
∫
x+µ(dx)∧

∫
x−µ(dx) <

∞, in which case
∫
x+µ(dx)−

∫
x−µ(dx) is the mean of µ. In particular, µ has a finite mean

if
∫
|x|µ(dx) <∞ while µ does not have the mean if

∫
x+µ(dx) =

∫
x−µ(dx) =∞.

For x ∈ Rn and i = 1, . . . , n, the i-th coordinate of x is denoted by xi. If λ is a probability

measure on Rn, the i-th one-dimensional marginal of λ is the probability measure on R given

by A 7→ λ
({
x ∈ Rn : xi ∈ A

})
.

Finally, all random variables are defined on a common probability space (Ω,F ,P).

2 (Non)-Uniqueness of the center

A joint mix for (µ1, . . . , µn) with center C is an n-tuple (X1, . . . , Xn) of real random

variables such that Xi ∼ µi, 1 ≤ i ≤ n, and
∑n
i=1Xi

a.s.
= C. Similarly, (X1, . . . , Xn) is a

n-complete mix for µ with center c if Xi ∼ µ,1 ≤ i ≤ n, and
∑n
i=1Xi

a.s.
= nc.

Not all probability measures on R are completely mixable. For instance, µ is necessar-

ily symmetric if it is 2-CM and centered at 0. Or else, µ is not n-CM for any n if the support
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of µ is bounded above (below) but not below (above). For a broad list of jointly and com-

pletely mixable distributions we refer to Puccetti and Wang [17] and the references therein.

Here, we start by noting that the existence of a joint mix always delivers the existence of

a complete mix (with average marginal distribution) and that a complete mix with a given

marginal can always be taken to be exchangeable.

Proposition 2.1. (i) If (µ1, . . . , µn) is JM with center C, then µ = (µ1+ · · ·+µn)/n is n-CM

with center C/n.

(ii) Each n-CM probability measure on R admits an exchangeable n-complete mix.

Proof. (i) Let X = (X1, . . . , Xn) be a joint mix for (µ1, . . . , µn) with center C. Define

Z = (Xπ1
, . . . , Xπn)

where π = (π1, . . . , πn) is a uniform random permutation of {1, . . . , n} independent of X. A

uniform random permutation of {1, . . . , n} is a random permutation π such that P(π = σ) =

1/n! for each permutation σ of {1, . . . , n}. Then,
∑n
i=1 Zi =

∑n
i=1Xπi =

∑n
i=1Xi

a.s.
= C. By

independence of X and π and recalling that Xi ∼ µi, one obtains

P(Zi ∈ A) =
∑
σ∈Pn

P(Xσi ∈ A, π = σ) =
1

n!

∑
σ∈Pn

P(Xσi ∈ A) =
1

n

n∑
i=1

P(Xi ∈ A) = µ(A),

for each i and A ∈ B, where Pn is the set of all permutations of {1, . . . , n}. Therefore, µ is

n-CM with center C/n and Z is a joint mix for µ.

(ii) Given an n-CM probability ν on R, take µ1 = · · · = µn = ν in (i). Then, Z is an

exchangeable joint mix for ν. �

The next example, even if obvious, is helpful in proving Theorem 4.2 below.

Example 2.2. Let ν and γ be probability measures on R. Suppose ν is k-CM and γ is (n−k)-

CM, where 1 ≤ k < n. Define µi = ν for 1 ≤ i ≤ k and µi = γ for k < i ≤ n. Then, (µ1, . . . , µn)

is clearly JM, so that
kν + (n− k)γ

n

is n-CM by Proposition 2.1. In particular, kδx+(n−k)δy
n is n-CM for any x, y ∈ R.

An intriguing question is whether the center of mixable distributions is unique. Obvi-

ously, if (µ1, . . . , µn) is JM and each µi has finite mean, then (µ1, . . . , µn) has a unique center

C, namely C =
∑n
i=1

∫
xµi(dx). Analogously, if µ is n-CM and has finite mean,

∫
xµ(dx) is

the only center of µ. Uniqueness of the center is also clear for n = 1, since µ is 1-CM if and

only if it is degenerate.

In view of Simons [22], if X and Y are real random variables such that E(X+Y ) exists

(finite or infinite) then E(X + Y ) depends only on the marginal distributions of X and Y , in

the sense that E(U +V ) = E(X +Y ) provided U ∼ X, V ∼ Y and E(U +V ) exists. It follows
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that the center is unique for n = 2: if (X1, X2) and (Y1, Y2) are joint mixes for (µ1, µ2) with

X1 +X2
a.s.
= C1 and Y1 + Y2

a.s.
= C2, then

X2 − C1
a.s.
= −X1 ∼ −Y1

a.s.
= Y2 − C2 ∼ X2 − C2,

which clearly implies C1 = C2. More generally, one obtains the following result.

Proposition 2.3. Suppose that (µ1, . . . , µn) is JM and at least n− 2 of µ1, . . . , µn have finite

mean. Then, the center of (µ1, . . . , µn) is unique.

Proof. Let n > 2 and let (X1, . . . , Xn) be a joint mix for (µ1, . . . , µn) with center C. Without

loss of generality, assume that µ1, . . . , µn−2 have finite mean. Then,
∑n−2
i=1 Xi is integrable

and Xn−1 + Xn
a.s.
= C −

∑n−2
i=1 Xi. Thus, E(Xn−1 + Xn) is finite, so that E(Xn−1 + Xn) only

depends on on µn−1 and µn (because of Simons [22]). Hence,

C =

n−2∑
i=1

E(Xi) + E(Xn−1 +Xn)

is the only center of (µ1, . . . , µn). �

Another uniqueness criterion can be obtained by increasing n−2 to n−1 but replacing

in the above proposition the existence of the mean with the slightly weaker condition

lim
x→∞

xµ({y ∈ R : |y| > x}) = 0. (2)

Proposition 2.4. Suppose that (µ1, . . . , µn) is JM and at least n − 1 of µ1, . . . , µn satisfy

condition (2). Then, the center of (µ1, . . . , µn) is unique.

Proof. Let (X1, . . . , Xn) be a joint mix for (µ1, . . . , µn) with center C. Without loss of gener-

ality, assume that µ1, . . . , µn−1 satisfy condition (2). Then, µn also satisfies condition (2). In

fact, for every x ≥ n |C|, one obtains

P(|Xn| > x) = P
(
|C −

n−1∑
i=1

Xi| > x
)
≤
n−1∑
i=1

P
(
|Xi| > x/n

)
.

Hence, xP(|Xn| > x)→ 0 as x→∞.

Now take iid copies of (X1, · · · , Xn), denoted by {(X1,k, · · · , Xn,k)}∞k=1. For m ∈ N, let

ci,m = E(Xi1{|Xi|≤m}), i = 1, . . . , n, and cm =
∑n
i=1 ci,m. By condition (2) and the weak law

of large numbers, we have 1
m

∑m
k=1Xi,k − ci,m

P−→ 0, as m → ∞, for fixed i = 1, . . . , n. It

follows that

C − cm =

n∑
i=1

( 1

m

m∑
k=1

Xi,k − ci,m
)

P−→ 0 as m→∞.

Therefore, C = limm cm is unique. �

Contrary to the cases n = 1 and n = 2, a JM n-tuple of distributions may have more

than one center if n ≥ 3.
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Recall that the standard Cauchy distribution is the probability measure on R with

density f(x) = 1
π

1
1+x2 with respect to the Lebesgue measure. Let Cauchy(σ) denote the

distribution of σX, where σ > 0 and X has the standard Cauchy distribution. In Chen and

Shepp [5], Chen and Shepp show the existence of two Cauchy(4) random variables U, V and

a constant C 6= 0 such that U + V + C is Cauchy(4
√

2). Thus, (−U,−V,U + V + C) and

(U, V,−U − V −C) are both joint mixes for the triplet
(
Cauchy(4), Cauchy(4), Cauchy(4

√
2)
)

with centers C and −C, respectively. From Proposition 2.1, one also obtains a 3-CM proba-

bility measure with an interval of centers.

Example 2.5 (A probability measure with an interval of centers). Let ν = Cauchy(4) and

γ = Cauchy(4
√

2). By Chen and Shepp [5], the triplet (ν, ν, γ) is JM with centers C and −C
for some C > 0. Take two independent joint mixes (X1, X2, X3) and (Y1, Y2, Y3) for (ν, ν, γ)

with centers C and −C, respectively. Fix α ∈ [0, 1] and define Zi = αXi+(1−α)Yi, 1 ≤ i ≤ 3.

Using characteristic functions, it is straightforward to see that Z1 ∼ Z2 ∼ ν and Z3 ∼ γ.

Hence, (Z1, Z2, Z3) is a joint mix for (ν, ν, γ) with center (2α − 1)C. Since α ∈ [0, 1] is

arbitrary, Proposition 2.1 implies that each point in the interval [−C/3, C/3] is a 3-center

of µ = (2ν + γ)/3. Note however that such µ does not belong to the Cauchy family of

distributions.

The general question of whether the center of a JM n-tuple of distributions is always

unique was stated as an open problem in Puccetti and Wang [17] and Wang [25]. During

the writing of the present paper, we became aware of the Chen-Shepp example in Chen and

Shepp [5] providing an early negative answer to the question.

However, the Chen-Shepp example, while implying non-uniqueness of the center, does

not provide an explicit construction for it depends on (the existence of) an orthogonal pro-

jection. Furthermore, the value of C is not explicitly given and it is not clear if and how it

can be computed. We next give an example of couplings having the same marginal distribu-

tions but different sums. To the best of our knowledge, this is the first explicit construction

of two joint (complete) mixes having the same marginal distributions and different centers.

Example 2.6 (Center of a JM triplet is not unique). Let Z be a random variable with a

geometric distribution with parameter 1/2, that is, P(Z = k) = 2−(k+1), k ≥ 0, and let B be

a Bernoulli random variable with parameter 1/2 independent of Z. Let

X1 = X2 = 2Z , X3 = −2Z+1,

and

Y1 = B2Z+1 + (1−B), Y2 = (1−B)2Z+1 +B, Y3 = −2Z+1.

Then, X1 + X2 + X3 = 0, Y1 + Y2 + Y3 = 1 and X3 = Y3. Furthermore, P(X1 = 1) = 1/2 =

P(Y1 = 1) and

P(Y1 = 2k) = P(B = 1)P(Z = k − 1) = 2−(k+1) = P(X1 = 2k)

for each k ≥ 1. Similarly, X2 ∼ Y2. Thus, if ν denotes the distribution of X1 = X2 and γ that

of X3, the triplet (ν, ν, γ) is JM with centers 0 and 1. From this example and Proposition 2.1,

6



it also follows that the probability measure µ = 2
3ν + 1

3γ is 3-CM with centers 0 and 1/3. In

Example 3.6 below we shall see that 0 and 1/3 are actually the only 3-centers of µ.

3 The set of centers of mixable distributions

Let Λn(µ) be the set of those λ ∈ Γ(µ, . . . , µ) such that

λ
({
x ∈ Rn : x1 + . . .+ xn = C

})
= 1

for some C ∈ R. With a slight abuse of terminology, we call C/n the n-center of λ. Clearly,

Λn(µ) 6= ∅ if and only if µ is n-CM and each λ ∈ Λn(µ) is the distribution of a n-complete mix

for µ. We also denote by φ the function

φ(λ) = center(λ), for λ ∈ Λn(µ).

Proposition 3.1. Let µ be n-CM. Then, Λn(µ) is a compact metric space and the function

φ : Λn(µ) → R is continuous. In particular, the set φ(Λn(µ)) of n-centers of µ is compact.

Thus, there exist a ≤ b such that a and b are n-centers of µ but no point in (−∞, a)∪ (b,+∞)

is an n-center of µ.

Proof. Let Pn be the set of all probability measures on Rn, equipped with the topology of

weak convergence, and let S(x) =
∑n
i=1 xi, for x ∈ Rn. Since Λn(µ) ⊂ Pn and Pn is a Polish

space, Λn(µ) is compact if and only if it is closed and tight. Fix λk ∈ Λn(µ) and λ ∈ Pn such

that λk → λ weakly as k → ∞. Then, λ ∈ Γ(µ, . . . , µ) since λk ∈ Γ(µ, . . . , µ) for all k and the

coordinate maps x 7→ xi are continuous for all i = 1, . . . , n. Similarly, since S is continuous,

λk ◦ S−1 → λ ◦ S−1 weakly. In addition, λk ∈ Λn(µ) implies λk ◦ S−1 = δnφ(λk) for all k. Since

{δx : x ∈ Rn} is a closed subset of Pn, it follows that λ ◦ S−1 = δx for some x ∈ Rn and

nφ(λk) → x as k → ∞. Hence, λ ∈ Λn(µ) and φ(λ) = x/n = limk φ(λk). This proves that

Λn(µ) is closed and φ is continuous. Finally, Λn(µ) is tight since all its elements have the

same one-dimensional marginals (all equal to µ). Thus, Λn(µ) is a compact metric space. �

If µ is n-CM with an unique center, then a = b in Proposition 3.1. In case a < b, a

natural question is: which points in the interval [a, b] are centers of µ ?

A probability measure supported by the integers, such as µ in Example 2.6, has at

most finitely many centers because of Proposition 3.1. This conclusion can be actually

generalized to any discrete distribution.

Proposition 3.2. If (µ1, . . . , µn) is JM and each µi is discrete, then (µ1, . . . , µn) has finitely

many centers.

Proof. Since µi is discrete, there is a finite set Ai such that 0 ∈ Ai and µi(Ai) > 1− 1/n. Let

(X1, . . . , Xn) be a joint mix for (µ1, . . . , µn) with center C and B =
⋂n
i=1{Xi ∈ Ai}. Then,

C1B
a.s.
= (X1 + · · ·+Xn)1B ∈ A1 + · · ·+An,

where A1 + · · · + An =
{∑n

i=1 xi : xi ∈ Ai, 1 ≤ i ≤ n
}

. Since P(B) > 0, it follows that C

belongs to the finite set A1 + · · ·+An. �
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The situation is quite different for diffuse distributions, which can have infinitely many

centers; see for instance Example 2.5. A more interesting case is exhibited by Theorem 4.2

below, where µ is the standard Cauchy and each point in [a, b] is an n-center of µ.

We next obtain two useful bounds for a and b in Proposition 3.1. Define the quantile

functional

qµ(t) = inf{x ∈ R : µ((−∞, x]) ≥ t}, t ∈ (0, 1).

For 0 < α < β < 1, define also the average quantile functional

R[α,β](µ) =
1

β − α

∫ β

α

qµ(t)dt.

Note that, for fixed α and β, the map µ 7→ R[α,β](µ) is continuous with respect to weak

convergence.

Proposition 3.3. Suppose that (µ1, . . . , µn) is JM with center C. Then, for any β1, . . . , βn ∈
(0, 1) such that β := β1 + · · ·+ βn < 1, one obtains

n∑
i=1

R[βi,1−β+βi](µi) ≤ C ≤
n∑
i=1

R[β−βi,1−βi](µi). (3)

Proof. The first inequality follows from the second by noting that−C is a center of (µ∗1, . . . , µ
∗
n),

where µ∗i (A) = µi(−A) for each A ∈ B. Hence, we only prove the second inequality.

By applying αi = βi, βi = 1 − β − ε in Theorem 1 of Embrechts et al. [7] (with their

notation RVaRa,b(X) = R[1−a−b,1−a](µ) for X ∼ µ, a, b > 0, a + b < 1), we obtain, for any

integrable random variables Y1 ∼ ν1, . . . , Yn ∼ νn, with
∑n
i=1 Yi = Y ∼ ν, that

R[ε,1−β](ν) = RVaRβ,1−β−ε(Y ) ≤
n∑
i=1

RVaRβi,1−β−ε(Yi) =

n∑
i=1

R[β−βi+ε,1−βi](νi),

for all ε ∈ (0, 1− β).

Take a joint mix (X1, . . . , Xn) for (µ1, . . . , µn) with center C and a sequence {(X1,k, . . . , Xn,k)}∞k=1

satisfying

Xi,k is integrable for all i, k and

(X1,k, . . . , Xn,k)
d−→ (X1, . . . , Xn) as k →∞

where
d−→ stands for convergence in distribution. Then,

∑n
i=1Xi,k

d−→
∑n
i=1Xi

a.s.
= C and

Xi,k
d−→ Xi for all i. By continuity of the average quantile functional with respect to weak

convergence, it follows that

C = R[ε,1−β](δC) ≤
n∑
i=1

R[β−βi+ε,1−βi](µi) for any ε ∈ (0, 1− β).
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Finally, by taking ε ↓ 0, one obtains

C ≤
n∑
i=1

R[β−βi,1−βi](µi),

which concludes the proof. �

Letting β1 = . . . = βn and µ1 = . . . = µn, Proposition 3.3 has the following useful

consequence.

Corollary 3.4. If µ is n-CM with center c, then a∗ ≤ c ≤ b∗, where

a∗ = sup
α∈(0, 1n )

R[α,1−(n−1)α](µ) and b∗ = inf
α∈(0, 1n )

R[(n−1)α,1−α](µ).

Example 3.5 (The mean inequality). A remarkable consequence of Corollary 3.4 is the

mean inequality (Proposition 2.1(7) of Wang and Wang [23]), arguably the most important

necessary condition for complete mixability, which is also sufficient for probability measures

with monotone densities. Let x = limε↓0 qµ(ε) and y = limε↓0 qµ(1 − ε) be the left and right

end-points of µ. Assume x and y are finite and denote by c the mean of µ. If µ is n-CM,

Corollary 3.4 yields c ≤ b∗. Hence, for α ∈ (0, 1/n), we have that c ≤ R[(n−1)α,1−α](µ), that is

c− (1− nα)R[(n−1)α,1−α](µ)

α
≤ n c. (4)

On the other hand,

lim
α↓0

1

α

(
c− (1− nα)R[(n−1)α,1−α](µ)

)
= lim

α↓0

1

α

(∫ 1

0

qµ(t)dt−
∫ 1−α

(n−1)α
qµ(t)dt

)

= lim
α↓0

1

α

(∫ 1

1−α
qµ(t)dt+

∫ (n−1)α

0

qµ(t)dt

)
= y + (n− 1)x.

Therefore, inequality (4) yields y + (n− 1)x ≤ nc, one side of the mean inequality in Wang

and Wang [23] (the other follows similarly).

Example 3.6 (Example 2.6 revisited). The probability measure µ defined in Example 2.6 is

3-CM with 3-centers 0 and 1/3. We now prove that 0 and 1/3 are actually the only 3-centers

of µ. For n = 3, one can compute that

a∗ ≥ lim
α↓0

R[α,1−2α](µ) = 0 and b∗ ≤ lim
α↓0

R[2α,1−α](µ) = 2/3.

By Corollary 3.4, it follows that a = 0 and b ≤ 2/3. Let (X1, X2, X3) be a complete mix for

µ. Since µ(Z) = 1, a = 0 and b ≤ 2/3, then X1 +X2 +X3 ∈ [0, 2] ∩ Z a.s. Thus, to see that 0

and 1/3 are the only 3-centers of µ, it suffices to show that P(X1 +X2 +X3 = 2) < 1. Since

X2 +X3 6= 1 a.s., then P(X1 +X2 +X3 = 2) ≤ P(X1 6= 1) < 1.

Another consequence of Proposition 3.3 is that a distribution with an infinite mean

9



cannot be n-CM for any n ∈ N. The following corollary can be shown by letting βi ↓ 0,

i = 1, . . . , n in (3), so that the left-hand side of (3) goes to infinity.

Corollary 3.7. If µ1, . . . , µn have means m1, . . . ,mn ∈ (−∞,∞], respectively, and mi = ∞
for at least one i = 1, . . . , n, then (µ1, . . . , µn) is not JM. In particular, a probability measure

on R with an infinite mean is not n-CM for any n ∈ N.

We conclude this section by characterizing the set of n-centers of a probability measure

based on a duality argument.

Let µ be a probability measure on R. Recall that S(x) =
∑n
i=1 xi for x ∈ Rn and write

{S = nc} to denote the set {x ∈ Rn : S(x) = nc}. By definition, a real number c is an n-center

of µ if and only if M(c) = 1, where

M(c) = sup
{
λ(S = nc) : λ ∈ Γ(µ, . . . , µ)

}
.

Based on Theorem 5 of Rüschendorf [19] and Remark 2 in Gaffke and Rüschendorf [10],

M(c) has the dual representation

M(c) = n inf

{∫
g dµ : g ∈ D(c)

}
, (5)

where D(c) denotes the class of bounded, Borel-measurable functions g : R → R such that∑n
i=1 g(xi) ≥ 1{S=nc}(x) for all x ∈ Rn. The value of (5) is not easy to compute in general.

However, restricting to a subset of D(c) (as done for instance in Embrechts and Puccetti

[8]) leads to an upper bound for M(c).

We consider the following class of piecewise-linear functions defined, for t < c, as

gt(x) =


0 if x < t,

x−t
n(c−t) if t ≤ x ≤ nc− (n− 1)t,

1 otherwise.

Since gt ∈ D(c) for all t < c, we obtain

M(c) ≤ D(c) := inf
t<c

{
n

∫
gt dµ

}
= inf
t<c

{∫ nc−(n−1)t
t

F (x) dx

c− t

}

where F (x) = µ((x,∞)). If D(c) < 1, then c is not an n-center of µ. Therefore, for c to be an

n-center of µ, it is necessary that∫ nc−(n−1)t
t

F (x) dx

c− t
≥ 1 for all t < c.

The above inequality is another necessary condition for the center of n-CM probability mea-

sures, in addition to that of Corollary 3.4. These two necessary conditions are not equivalent

in general.
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4 The Cauchy distribution

From now on, we let µ = Cauchy(1), the standard Cauchy distribution. It is shown

in Rüschendorf and Uckelmann [21] that µ is n-CM with center 0, for each n ≥ 2, as it is

symmetric and unimodal. In this section, we characterize the set of n-centers of µ. We start

by observing that such set is a closed interval contained in [− log(n−1)
π , log(n−1)π ].

Example 4.1. As in Proposition 3.1, let a and b be the minimum and the maximum of

the set of n-centers of µ. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two independent

complete mixes for µ such that

n∑
i=1

Xi
a.s.
= na and

n∑
i=1

Yi
a.s.
= nb.

Fix α ∈ [0, 1] and define Zi = αXi + (1 − α)Yi for 1 ≤ i ≤ n. Then, Zi ∼ µ for each i and∑n
i=1 Zi = n(αa + (1 − α)b) so that αa + (1 − α)b is a center of µ. Hence, φ(Λn(µ)) = [a, b],

namely, each point in [a, b] is a center of µ.

Next, on noting that qµ(t) = tan(π(t− 1/2)), one obtains

R[(n−1)α,1−α](µ) =
1

1− nα

∫ 1−α

(n−1)α
tan(π(t− 1/2))dt

=
1

1− nα
1

π
log

(
sin(π(n− 1)α)

sin(πα)

)
for α ∈ (0, 1/n).

By Corollary 3.4,

b ≤ b∗ ≤ lim
α↓0

R[(n−1)α,1−α](µ) =
log(n− 1)

π
.

Since a = −b (for µ is symmetric) one also obtains a ≥ − log(n−1)
π .

Example 4.1 says that φ(Λn(µ)) ⊂ [− log(n−1)
π , log(n−1)π ]. Our main result is that this

inclusion is an equality.

Theorem 4.2. For every n ≥ 2, the set of n-centers of the standard Cauchy distribution is

the interval [
− log(n− 1)

π
,

log(n− 1)

π

]
.

The rest of this section is devoted to the proof of Theorem 4.2.

For each c ∈ R, let Mn(c) denote the collection of n-CM probability measures with

center c. We first need two lemmas of possible independent interest. The first states that

Mn(c) is closed under arbitrary mixtures, generalizing Theorem 3.2 of Puccetti et al. [16].

Lemma 4.3. Let (T, E , Q) be any probability space and, for each t ∈ T , let νt ∈ Mn(c).

Suppose that t 7→ νt(B) is a E-measurable map, for each B ∈ B, and define

ν(B) =

∫
νt(B)Q(dt).

Then, ν ∈Mn(c).
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Proof. Let R be the field on Rn generated by the measurable rectangles B1 × . . . × Bn,

where Bi ∈ B for all i, and let γ : R → R be any map. By Theorem 6 of Ramachandran

[18], γ is a σ-additive probability on R provided it is a finitely additive probability and

A 7→ γ
{
x ∈ Rn : xi ∈ A

}
is a σ-additive probability on B for all i.

Let H = {x ∈ Rn : x1 + . . . + xn = nc}. For each t ∈ T , since νt ∈ Mn(c), there is

λt ∈ Γ(νt, . . . , νt) such that λt(H) = 1. Define

λ∗(B) =

∫
λt(B)Q∗(dt) for each B ∈ R,

where Q∗ is a finitely additive extension of Q to the power set of T . Then, λ∗ is a finitely

additive probability on R and

λ∗
{
x ∈ Rn : xi ∈ A

}
=

∫
λt
{
x ∈ Rn : xi ∈ A

}
Q∗(dt)

=

∫
νt(A)Q∗(dt) =

∫
νt(A)Q(dt) = ν(A)

for all A ∈ B and all i = 1, . . . , n, where the third equality holds because t 7→ νt(A) is E-

measurable. Hence, λ∗ is σ-additive on R. Let λ be the only σ-additive extension of λ∗ to

the Borel σ-field of Rn. Since λ ∈ Γ(ν, . . . , ν), to conclude the proof it suffices to see that

λ(H) = 1. In fact, since Hc is open, it is a countable union of open rectangles, that is,

Hc = ∪kGk with Gk ∈ R for all k. Since λt(Gk) ≤ λt(Hc) = 0 for all t ∈ T , one obtains

λ(Gk) = λ∗(Gk) =

∫
λt(Gk)Q∗(dt) = 0 for all k.

Therefore λ(H) = 1, for Hc is a countable union of λ-null sets. �

The second lemma, which slightly generalizes Theorem 2.4 of Wang and Wang [23],

provides conditions for a certain probability measure to be n-CM.

Lemma 4.4. Let α ∈ [0, 1], x < y, and ν a probability measure on [x, y] which admits a non-

increasing density (with respect to the Lebesgue measure). Then, αδx + (1− α)ν is n-CM if

and only if

α ≤ 1− y − x
n(q − x)

where q =

∫
z ν(dz) is the mean of ν. (6)

Proof. Let γ = α δx + (1−α) ν. As noted in Example 3.5, a necessary condition for complete

mixability is the mean inequality in Wang and Wang [23], and condition (6) is precisely the

mean inequality for γ. Thus, (6) holds if γ is n-CM. Conversely, suppose (6) holds. Let

γε = αU[x, x+ε] + (1 − α) ν, where ε ∈ (0, y − x) and UI stands for the uniform distribution

on the interval I. By (6), γε satisfies the mean inequality. By Corollary 2.9 of Wang and

Wang [23], since γε has non-increasing density and meets the mean inequality, γε is n-CM.

Further, as ε→ 0, the mean of γε converges to αx+ (1− α)q and γε → γ weakly. Thus,

γ ∈Mn

(
αx+ (1− α)q

)
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because of Theorem 3.1 of Puccetti et al. [16]. �

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Recall that µ ∈ Mn(0) (see Rüschendorf and Uckelmann [21]) for

all n ≥ 2. Since the case n = 2 is trivial, we assume n ≥ 3. Fix c ∈ (0, log(n−1)π ]. By Example

4.1, it suffices to show that µ ∈ Mn(c). In turn, by Lemma 4.3, it suffices to prove that µ

can be written as

µ =

∫
µtQ(dt) (7)

where µt ∈Mn(c) for all t > 0 and Q is a probability measure on (0,∞).

Let f(x) = 1
π

1
1+x2 , x ∈ R, be the standard Cauchy density and f−1 the function on

[0, 1/π] given by

f−1(0) =∞, f−1(x) =

√
1

π x
− 1, for x ∈ (0, 1/π].

Also, let h : (0,∞)→ R be a C1 function such that, for each t > 0:

(I)
∫ c+(n−1)t
c−t (x− c) {f(x)− h(t)}+dx = 0,

(II) 0 ≤ h(t) ≤ f(c+ t),

(III) h′(t) ≤ 0.

The existence of such h will be verified at the end of the proof. For the moment, we assume

that h exists.

For t > 0, let νt be the finite measure on B with density

ft(x) =
{
f(x)− h(t)

}
+
1[c−t,c+(n−1)t](x).

Since ft(x) ≤ f(x) and f(x) = limt→∞ ft(x) for all t > 0 and x ∈ R, one obtains

lim
t→∞

νt(B) = lim
t→∞

∫
B

ft(x) dx =

∫
B

f(x) dx = µ(B)

for each B ∈ B. Note also that limt→0 νt(B) = 0, for

lim sup
t→0

νt(B) ≤ lim sup
t→0

νt(R) ≤ lim sup
t→0

∫ c+(n−1)t

c−t
f(x) dx = 0.

Denote

K1(t) = f(c− t)− h(t), K2(t) = (n− 1)
{
f(c+ (n− 1)t)− h(t)

}
+
,

K3(t) = min{c+ (n− 1)t, f−1(h(t))}, K4(t) = −h′(t)
(
K3(t)− (c− t)

)
.

Since f(c + t) < f(c − t), t > 0, conditions (II)-(III) imply Ki(t) ≥ 0 for all i with K1(t) > 0
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and K3(t) ≥ c+ t. Hence, for each t > 0, one can define

µt =
K1(t)δc−t +K2(t)δc+(n−1)t +K4(t) U[c−t,K3(t)]

K1(t) +K2(t) +K4(t)

where U[x,y] denotes the uniform distribution on the interval [x, y]. Such µt are the proba-

bility measures that we use in (7).

Next, fix y ∈ R and define

Iy = (−∞, y), g(t) = νt(Iy), Qt = K1(t) +K2(t) +K4(t) for each t > 0.

Then, g is continuous and satisfies, by direct calculation,

g′(t) =
d

dt
νt(Iy) = Qt µt(Iy) for all t ∈ T,

where T ⊂ (0,∞) is a co-finite set (possibly depending on y). Since g′ is locally integrable

(with respect to the Lebesgue measure) it follows that

νt(Iy) = lim
ε→0
{g(t)− g(ε)} = lim

ε→0

∫ t

ε

g′(s) ds =

∫ t

0

Qs µs(Iy) ds (8)

for all t > 0. In particular,∫ ∞
0

Qs ds = lim
t→∞

∫ t

0

Qs

(
lim
y→∞

µs(Iy)
)
ds = lim

t→∞
lim
y→∞

∫ t

0

Qs µs(Iy) ds

= lim
t→∞

lim
y→∞

νt(Iy) = lim
t→∞

νt
(
R) = µ(R) = 1.

Let Q be the probability measure on (0,∞) such that Q((0, t]) =
∫ t
0
Qsds for all t > 0. Then,

condition (8) yields∫ ∞
0

µt(Iy)Q(dt) = lim
s→∞

∫ s

0

Qt µt(Iy) dt = lim
s→∞

νs(Iy) = µ(Iy) for all y ∈ R.

Therefore, ∫ ∞
0

µt(B)Q(dt) = µ(B) for each B ∈ B.

To prove µt ∈Mn(c), it is fundamental to note that µt has mean c. Define in fact

φ(t) =

∫ c+(n−1)t

c−t
(x− c)

{
f(x)− h(t)

}
+
dx =

∫ K3(t)

c−t
(x− c)

(
f(x)− h(t)

)
dx

=

∫ K3(t)

c−t
(x− c)f(x)dx− h(t)

∫ K3(t)

c−t
(x− c)dx.
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By condition (I), φ(t) = 0 for all t > 0. Computing φ′(t), one obtains

0 = φ′(t) = −tK1(t) + (n− 1) tK2(t)− h′(t)
∫ K3(t)

c−t
(x− c)dx

= Qt

∫
(x− c)µt(dx).

Therefore, µt has mean c for all t > 0.

Having noted this fact, fix t > 0 and define

µ
(1)
t =

n− 1

n
δc−t +

1

n
δc+(n−1)t.

Such µ
(1)
t has mean c and is n-CM by Example 2.2. Hence, µ(1)

t ∈ Mn(c). If K4(t) = 0,

then µt is a convex combination of δc−t and δc+(n−1)t. Since µt has mean c, it follows that

µt = µ
(1)
t ∈Mn(c).

Suppose now that K4(t) > 0. Since K3(t) ≥ c + t, the mean of U[c−t,K3(t)] is not less

than c. Since µt has mean c, it follows that

K1(t)δc−t +K2(t)δc+(n−1)t

K1(t) +K2(t)

has a mean smaller than or equal to c, namely, K1(t) ≥ (n − 1)K2(t). By this fact and

K4(t) > 0, one can define

µ
(2)
t =

K1(t)− (n− 1)K2(t)

K1(t)− (n− 1)K2(t) +K4(t)
δc−t +

K4(t)

K1(t)− (n− 1)K2(t) +K4(t)
U[c−t,K3(t)].

Since µt and µ(1)
t have mean c and

µt =
nK2(t)

Qt
µ
(1)
t +

K1(t)− (n− 1)K2(t) +K4(t)

Qt
µ
(2)
t ,

then µ
(2)
t has mean c as well. By Lemma 4.4, µ(2)

t is n-CM (condition (6) follows from µ
(2)
t

having mean c). Therefore, µ(2)
t ∈ Mn(c). Finally, since µ(i)

t ∈ Mn(c) for i = 1, 2 andMn(c)

is convex (by Lemma 4.3), one obtains µt ∈Mn(c).

To conclude the proof, it remains only to prove that a C1-function h satisfying condi-

tions (I)-(II)-(III) actually exists. Define

A(t, y) =

∫ c+(n−1)t

c−t
(x− c)

{
f(x)− y

}
+
dx for all t > 0 and y ∈ R.

Then, A is a C1-function on (0,∞)× R and

∂A

∂y
(t, y) =

∫ c+(n−1)t

c−t
−(x− c)1{f>y}(x) dx,

where {f > y} denotes the set {x ∈ R : f(x) > y}. Fix t > 0. If y < f(c + t), there is
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u ∈ (c+ t, c+ (n− 1)t] such that f(x) > y for every x ∈ [c− t, u]. Thus,

∂A

∂y
(t, y) ≤ −

∫ u

c−t
(x− c) dx = −

∫ u

c+t

(x− c) dx < 0.

Hence, the map y 7→ A(t, y) is continuous, strictly decreasing on (−∞, f(c+ t)], and

lim
y→−∞

A(t, y) =∞, A
(
t, f(c+ t)

)
=

∫ c+t

c−t
(x− c)

(
f(x)− f(c+ t)

)
dx

=

∫ t

−t
xf(c+ x) dx < 0.

It follows that, for each t > 0, there exists a unique number h(t) satisfying h(t) < f(c + t)

and A
(
t, h(t)

)
= 0. It remains to see that h ≥ 0, h is C1 and h′ ≤ 0.

We begin with h ≥ 0. Since A(t, y) > A(t, 0) whenever y < 0, it suffices to see that

A(t, 0) ≥ 0. Define

m(t) =
1

t

d

dt
A(t, 0) = (n− 1)2f

(
c+ (n− 1)t

)
− f(c− t) for t > 0.

Then,

m′(t) = (n− 1)3f ′
(
c+ (n− 1)t

)
+ f ′(c− t) = (n− 1)3f ′

(
c+ (n− 1)t

)
− f ′(t− c).

Observe now that, since
√

1/f is convex (see Remark 4.5),

d
√

1/f(x)

dx
= −1

2

f ′(x)

f3/2(x)

is an increasing function of x ∈ R. Therefore,

f ′(c+ (n− 1)t)(
f(c+ (n− 1)t)

)3/2 ≤ f ′(t− c)(
f(t− c)

)3/2
and, by rearranging terms,

f ′(t− c)
(n− 1)3f ′(c+ (n− 1)t)

≤
( f(t− c)

(n− 1)2f(c+ (n− 1)t)

)3/2
. (9)

If m(t) ≥ 0, then (n− 1)2f(c+ (n− 1)t) ≥ f(c− t) = f(t− c), so that the right-hand member

of (9) is bounded above by 1. Hence, m(t) ≥ 0 implies m′(t) ≤ 0. Thanks to this fact and

limt↓0m(t) > 0, one concludes that there is some t0 > 0 (possibly t0 =∞) such that m(t) ≥ 0

for t ≤ t0 and m(t) ≤ 0 for t ≥ t0. Since m(t) and d
dtA(t, 0) have the same sign and

lim
t↓0

A(t, 0) = 0, lim
t→∞

A(t, 0) = lim
t→∞

∫ c+(n−1)t

c−t
xf(x)dx− c =

log(n− 1)

π
− c ≥ 0,

one finally obtains A(t, 0) ≥ 0. Therefore, h(t) ≥ 0 for all t > 0.

To prove h is C1, recall that h(t) is the only real number such that h(t) < f(c + t) and

A(t, h(t)) = 0. Also, h(t) < f(c + t) implies ∂A
∂y (t, h(t)) < 0. Thus, h is C1 because of the
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implicit function theorem.

We finally prove h′ ≤ 0. Since ∂A
∂y (t, h(t)) < 0 and

h′(t) = −
∂A
∂t (t, h(t))
∂A
∂y (t, h(t))

,

it suffices to show that ∂A
∂t (t, h(t)) ≤ 0 for t > 0. Since

1

t

∂A

∂t
(t, h(t)) = (n− 1)2

{
f(c+ (n− 1)t)− h(t)

}
+
−
{
f(c− t)− h(t)

}
+
,

it can be assumed f(c+ (n− 1)t) > h(t). In this case,

1

t

∂A

∂t
(t, h(t)) = (n− 1)2 f(c+ (n− 1)t)− f(c− t)− n(n− 2)h(t) = m(t)− n(n− 2)h(t).

Recall now that m(t) ≥ 0 for t ≤ t0 and m(t) ≤ 0 for t ≥ t0 where t0 ∈ (0,∞]. Hence,
∂A
∂t (t, h(t)) ≤ 0 for t ≥ t0. If t ∈ (0, t0), since tm(t) = d

dtA(t, 0) and m is decreasing on (0, t0),

then

A(t, 0) =

∫ t

0

sm(s) ds ≥ m(t)

∫ t

0

s ds = t2m(t)/2.

On the other hand, it is easily seen that

∂A

∂y
(t, y) ≥ −

∫ c+(n−1)t

c−t
(x− c) dx = −n(n− 2)t2/2.

Therefore,

−A(t, 0) = A(t, h(t))−A(t, 0) =

∫ h(t)

0

∂A

∂y
(t, y) dy ≥ −h(t)n(n− 2)t2/2.

It follows that m(t) ≤ n(n− 2)h(t), and again ∂A
∂t (t, h(t)) ≤ 0. To summarize, h′(t) ≤ 0 for all

t > 0, namely, h satisfies conditions (I)-(II)-(III). This concludes the proof. �

Remark 4.5. The proof of Theorem 4.2 is valid for other probability measures in addition

to the Cauchy distribution. Fix in fact a probability measure ν on R which admits a density

g with respect to the Lebesgue measure. If g is strictly positive, differentiable, symmetric

and strictly unimodal (that is, g′ > 0 on (−∞, 0) and g′ < 0 on (0, ∞)), and if
√

1/g is a

convex function, then any real number q satisfying

|q| ≤ lim inf
t→∞

∫ (n−1)t

t

xg(x)dx, (10)

is an n-center of ν. This follows from replacing µ and c by ν and |q|, respectively, in the proof

of Theorem 4.2. Note that, if ν has finite mean, the right-hand side in (10) is zero and (10)

reduces to the well known fact that unimodal symmetric distributions have a center at

zero (even if
√

1/g fails to be convex); see Rüschendorf and Uckelmann [21]. Therefore,

taking an arbitrary differentiable, symmetric, strictly positive and strictly convex function
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φ, by defining a density g = β
φ2 for some normalizing constant β > 0 one always finds a

distribution ν fulfilling the requirements of the proof of Theorem 4.2. However, apart from

the Cauchy distribution, we do not know of any natural example of such ν. This is due to

the convexity of
√

1/g, which is a quite restrictive requirement. For instance, suppose that

g has the power form g(x) = β
1+|x|α for some constants α, β > 0. In this case, α = 2 leads to

the standard Cauchy distribution, α > 2 implies that the mean of ν is finite (so that 0 is the

unique center), and α < 2 implies that
√

1/g is not convex.
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