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Abstract. The three-parameter Indian buffet process is generalized. The

possibly different role played by customers is taken into account by suitable

(random) weights. Various limit theorems are also proved for such generalized
Indian buffet process. Let Ln be the number of dishes experimented by the first

n customers, and let Kn = (1/n)
∑n

i=1 Ki where Ki is the number of dishes

tried by customer i. The asymptotic distributions of Ln and Kn, suitably

centered and scaled, are obtained. The convergence turns out to be stable

(and not only in distribution). As a particular case, the results apply to the
standard (i.e., non generalized) Indian buffet process.

1. Introduction

Let (X ,B) be a measurable space. Think of X as a collection of features po-
tentially shared by an object. Such an object is assumed to have a finite number
of features only and is identified with the features it possesses. To investigate the
object, thus, we focus on the finite subsets of X .

Each finite subset B ⊂ X can be associated to the measure µB =
∑
x∈B δx,

where µ∅ = 0 and δx denotes the point mass at x. If B is random, µB is random
as well. In fact, letting F = {µB : B finite}, there is a growing literature focusing
on those random measures M satisfying M ∈ F a.s. See [9] and most references
quoted below in this section.

A remarkable example is the Indian Buffet Process (IBP) introduced by Griffiths
and Ghahramani and developed by Thibaux and Jordan; see [17], [18], [32]. The
objects are the customers which sequentially enter an infinite buffet X and the
features are the dishes tasted by each customer. In this framework, each customer
is modeled by a (completely) random measure M such that M ∈ F a.s. The atoms
of M represent the dishes experimented by the customer.

Our starting point is a three-parameter extension of IBP, referred to as standard
IBP in the sequel, introduced in [9] and [31] to obtain power-law behavior. Fix
α > 0, β ∈ [0, 1) and c > −β. Here, α is the mass parameter, β the discount
parameter (or stability exponent) and c the concentration parameter. Also, let
Poi(λ) denote the Poisson distribution with mean λ ≥ 0, where Poi(0) = δ0. The
dynamics of the standard IBP is as follows. Customer 1 tries Poi(α) dishes. For
each n ≥ 1, let Sn be the collection of dishes experimented by the first n customers.
Then:
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− Customer n+1 selects a subset S∗n ⊂ Sn. Each x ∈ Sn is included or not into
S∗n independently of the other members of Sn. The inclusion probability is∑n

i=1Mi{x} − β
c+ n

where Mi{x} is the indicator of the event {customer i selects dish x}.
− In addition to S∗n, customer n + 1 also tries Poi(λn) new dishes, where
λn = α Γ(c+1)Γ(c+β+n)

Γ(c+β)Γ(c+1+n) .

For β = 0, such a model reduces to the original IBP of [17], [18], [32].
IBP is a flexible tool, able to capture the dynamics of various real problems. In

addition, IBP is a basic model in Bayesian nonparametrics; see [14] and [20]. In
factor analysis, for instance, IBP works as an infinite-capacity prior over the space
of latent factors; see [20]. In this way, the number of factors is not specified in
advance but is inferred from the data. Such a number is also allowed to grow as
new data points are observed. Among the other possible applications of IBP, we
mention causal inference [34], modeling of choices [16], similarity judgements [25]
and dyadic data [22].

Despite its prominent role, however, the asymptotics of IBP is largely neglected.
To the best of our knowledge, the only known fact is the a.s. behavior of Ln (defined
below) and some other related quantities for large n; see [9] and [31]. Nothing is
known as regards limiting distributions.

This paper aims to do two things.
First, to generalize the standard IBP. Indeed, the discount parameter β is allowed

to take values in (−∞, 1) rather than in [0, 1). More importantly, the possible
different relevance of customers is taken into account by random weights. Let
Rn > 0 be the weight attached to customer n. Then, for each x ∈ Sn, the inclusion
probability becomes ∑n

i=1RiMi{x} − β
c+

∑n
i=1Ri

.

Similarly, the new dishes tried by customer n + 1 are now Poi(Λn) rather than
Poi(λn), where Λn = α

Γ(c+1)Γ(c+β+
∑n
i=1 Ri)

Γ(c+β)Γ(c+1+
∑n
i=1 Ri)

. If β ∈ [0, 1) and Rn = 1 for all n, the
model reduces to the standard IBP.

Second, to investigate the asymptotics of the previous generalized IBP model.
We focus on

Ln = number of dishes experimented by the first n customers, and

Kn =
1
n

n∑
i=1

Ki where Ki = number of dishes tried by customer i.

Three results are obtained. Define an(β) = log n if β = 0 and an(β) = nβ if
β ∈ (0, 1). Then, under some conditions on the weights Rn (see Theorems 4, 5, 8)
it is shown that:

(i) If β ∈ [0, 1), then Ln
an(β)

a.s.−→ λ where λ > 0 is a certain constant;

(ii) If β ∈ [0, 1), then
√
an(β)

{
Ln
an(β) − λ

}
−→ N

(
0, λ

)
stably;
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(iii) If β < 1/2, then Kn
a.s.−→ Z and

√
n
{
Kn − Z

}
−→ N

(
0, σ2

)
stably,

√
n
{
Kn − E

(
Kn+1 | Fn

)}
−→ N

(
0, τ2

)
stably,

where Z, σ2, τ2 are suitable random variables and Fn is the sub-σ-field
induced by the available information at time n.

Stable convergence is a strong form of convergence in distribution. The basic defi-
nition is recalled in Subsection 2.3. Further, N (0, a) denotes the Gaussian law with
mean 0 and variance a ≥ 0, where N (0, 0) = δ0.

Among other things, the above results can be useful to make (asymptotic) infer-
ence on the model. As an example, suppose β ∈ [0, 1). In view of (i),

β̂n =
logLn
log n

is a strongly consistent estimator of β for each β ∈ [0, 1). In turn, (ii) provides the
limiting distribution of β̂n so that simple tests on β can be manufactured. Similarly,
if β < 1/2, asymptotic confidence bounds for the random limit Z of Kn can be
obtained by (iii); see Subsection 5.1.

Note also that, because of (iii), the convergence rate of Kn − E
(
Kn+1 | Fn

)
is

at least n−1/2. Therefore, Kn is a good predictor of Kn+1 for large n and β < 1/2;
see Subsection 5.1 again.

The results in (i)-(ii)-(iii) hold in particular if Rn = 1 for all n. Thus, (ii) and
(iii) provide the limiting distributions of Ln and Kn in the standard IBP model.
Furthermore, in this case, (iii) holds for all β < 1 and not only for β < 1/2.

We close this section with some remarks on β and the Rn.

The discount parameter β. Roughly speaking, if β < 0, the inclusion prob-
abilities are larger and the chances of tasting new dishes vanish very quickly; see
Lemma 2. Define in fact

L = sup
n
Ln = card{x ∈ X : x is tried by some customer}.

Because of (i), Ln increases logarithmically if β = 0 while exhibits a power-law
behavior if β ∈ (0, 1). Accordingly, L =∞ a.s. if β ∈ [0, 1). On the contrary,

E
(
eL
)
<∞ if β < 0;

see Lemma 3. In particular, β < 0 implies L <∞ a.s., and this fact can be helpful
to describe some real situations.

Formally, the model studied in this paper makes sense whenever Rn > max(β, 0)
for all n. Hence, one could also admit β ≥ 1. However, β = 1 leads to trivialities.
Instead, β > 1 could be potentially interesting, but it is hard to unify the latter
case and β < 1. Thus, β > 1 will be investigated in a forthcoming paper.

Unless Rn = 1 for all n, the results in (iii) are available for β < 1/2 only.
Certainly, (iii) can fail if β ∈ [1/2, 1). Perhaps, some form of (iii) holds even if
β ∈ [1/2, 1), up to replacing

√
n with some other norming constant and N

(
0, σ2

)
and N

(
0, τ2

)
with some other limit kernels. But we did not investigate this issue.

A last note is that β plays an analogous role to that of the discount parameter in
the two-parameter Poisson-Dirichlet process; see e.g. [3], [27] and [28]. Indeed, such
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parameter regulates the asymptotic behavior of the number of distinct observed
values, in the same way as β does for Ln.

The weights Rn. Standard IBP has been generalized in various ways, mainly
focusing on computational issues; see e.g. [13], [15], [23], [33]. In this paper, the
possible need of distinguishing objects according to some associated random factor
is dealt with. To this end, customer n is attached a random weight Rn. Indeed,
it may be that different customers have different importance, due to some random
cause, that does not affect their choices but is relevant to the choices of future
customers. Analogous models occur in different settings, for instance in connection
with Pólya urns and species sampling sequences; see [2], [3], [4], [5], [6], [26].

The model investigated in this paper, referred to as “weighted” IBP in the se-
quel, generally applies to evolutionary phenomena. In a biological framework, for
instance, a new born exhibits some features in common with the existing units
with a probability depending on the latter’s weights (reproductive power, ability of
adapting to new environmental conditions or to compete for finite resources, and
so on). The new born also presents some new features that, in turn, will be trans-
mitted to future generations with a probability depending on his/her weight. See
e.g. [8] and [29].

Similar examples arise in connection with the evolution of language; see e.g.
[12]. A neologism (i.e., a newly coined term, word, phrase or concept) is often
directly attributable to a specific people (or journal, period, event and so on) and
its diffusion depends on the importance of such a people. For instance, suppose
we are given a sample of journals of the same type (customers) during several
years. Each journal uses words (dishes), some of which have been previously used
while some others are new. A word appearing for the first time in a journal has
a probability of being reused which depends on the importance of the journal at
issue.

Other applications of the weighted IBP could be found in Bayesian nonpara-
metrics. Standard IBP is widely used as a prior on binary matrices with a fixed
finite number of rows and infinitely many columns (rows correspond to objects and
columns to features). The weighted IBP can be useful in all those settings where
customers arrive sequentially. As an example, some dynamic networks present a
competitive aspect, and not all nodes are equally successful in acquiring links. Sup-
pose the network evolves in time, a node (customer) is added at every time step,
and some links are created with some of the existing nodes. The different ability
of competing for links is modeled by a weight attached to each node; see e.g. [7].
Following [24] and [30], each node could be described by a set of binary features
(dishes) and the probability of a link is a function of the features of the involved
nodes. A nonparametric latent feature model could be assessed at every time step,
with the weighted IBP as a prior on the feature matrix.

A last remark concerns the probability distribution of the sequence (Mn), where
Mn is the random measure corresponding to customer n. Because of the weights,
unlike the standard IBP, (Mn) can fail to be exchangeable. Thus, the usual ma-
chinery of Bayesian nonparametrics can not be automatically implemented, due
to the lack of exchangeability, and this can create some technical drawbacks. On
the other hand, the exchangeability assumption is often untenable in applications.
In such cases, the weighted IBP is a realistic alternative to the standard IBP. We
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finally note that, when β = 0, (Mn) satisfies a weak form of exchangeability, known
as conditional identity in distribution; see Subsection 2.4 and Lemma 1.

2. Preliminaries

2.1. Basic notation. Throughout, X is a separable metric space and B the Borel
σ-field on X . We let

M = {µ : µ is a finite positive measure on B}
and we say that µ ∈M is diffuse in case µ{x} = 0 for all x ∈ X .

All random variables appearing in this paper, unless otherwise stated, are defined
on a fixed probability space (Ω,A, P ). If G ⊂ A is a sub-σ-field and X and Y are
random variables with values in the same measurable space, we write

X | G ∼ Y | G
to mean that P (X ∈ A | G) = P (Y ∈ A | G) a.s. for each measurable set A.

2.2. Random measures. A random measure (r.m.) is a map M : Ω → M such
that ω 7→M(ω)(B) is A-measurable for each B ∈ B. In the sequel, we write M(B)
to denote the real random variable ω 7→ M(ω)(B). Similarly, if f : X → R is a
bounded measurable function, M(f) stands for

M(ω)(f) =
∫
f(x)M(ω)(dx).

A completely r.m. is a r.m. M such that M(B1), . . . ,M(Bk) are independent
random variables whenever B1, . . . , Bk ∈ B are pairwise disjoint.

Let ν ∈ M. A Poisson r.m. with intensity ν is a completely r.m. M such that
M(B) ∼ Poi

(
ν(B)

)
for all B ∈ B. Note that M(B) = 0 a.s. in case ν(B) = 0.

Note also that the intensity ν has been requested to be a finite measure (and not a
σ-finite measure as it usually happens).

We refer to chapter VI of [10] for Poisson r.m.’s. We just note that a Poisson
r.m. with intensity ν is easily obtained. It suffices to let M = 0 if ν(X ) = 0, and
otherwise

M = I{N>0}

N∑
j=1

δXj ,

where (Xj) is an i.i.d. sequence of X -valued random variables with X1 ∼ ν/ν(X ),
N is independent of (Xj) and N ∼ Poi

(
ν(X )

)
.

As in Section 1, let F = {µB : B finite} where µ∅ = 0 and µB =
∑
x∈B δx. Since

X is separable metric and B the Borel σ-field, the set {M ∈ F} belongs to A for
every r.m. M . In this paper, we focus on those r.m.’s M satisfying M ∈ F a.s. If
M is a Poisson r.m. with intensity ν, then M ∈ F a.s. if and only if ν is diffuse.
Therefore, another class of r.m.’s is to be introduced.

Each ν ∈M can be uniquely written as ν = νc + νd, where νc is diffuse and

νd =
∑
j

γj δxj

for some γj ≥ 0 and xj ∈ X . (The case νd = 0 corresponds to γj = 0 for all j). Say
that M is a Bernoulli r.m. with hazard measure ν, where ν ∈M, if

• M = M1 +M2 with M1 and M2 independent r.m.’s;
• M1 is a Poisson r.m. with intensity νc;
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• M2 =
∑
j Vj δxj where the Vj are independent indicators satisfying

P (Vj = 1) = γj .
Some (obvious) consequences of the definition are the following.
− For each B ∈ B, E

{
M(B)} = ν(B) and

E
{
M(B)2} = ν(B) + ν(B)2 −

∑
x∈B

ν{x}2;

− M = M1 a.s. if ν = νc and M = M2 a.s. if ν = νd;
− M is a completely r.m.;
− M ∈ F a.s.

We will write

M ∼ BeP (ν)

to mean that M is a Bernoulli r.m. with hazard measure ν.

2.3. Stable convergence. Stable convergence is a strong form of convergence in
distribution. We just recall the basic definition and we refer to [11], [19] and
references therein for more information.

A r.m. K such that K(ω)(X ) = 1, for all ω ∈ Ω, is said to be a kernel or a
random probability measure. Let K be a kernel and (Xn) a sequence of X -valued
random variables. Say that Xn converges stably to K if

E
{
K(f) | H

}
= lim

n
E
{
f(Xn) | H

}
for all H ∈ A with P (H) > 0 and all bounded continuous f : X → R. (Recall that
A denotes the basic σ-field on Ω). For H = Ω, stable convergence trivially implies
convergence in distribution.

2.4. Conditionally identically distributed sequences. Let (Xn : n ≥ 1) be a
sequence of random variables (with values in any measurable space) adapted to a
filtration (Un : n ≥ 0). Say that (Xn) is conditionally identically distributed (c.i.d.)
with respect to (Un) in case

Xk | Un ∼ Xn+1 | Un for all k > n ≥ 0.

Roughly speaking this means that, at each time n ≥ 0, the future observations
(Xk : k > n) are identically distributed given the past Un. If U0 = {∅,Ω} and
Un = σ(X1, . . . , Xn), the filtration (Un) is not mentioned at all and (Xn) is just
called c.i.d. Note that Xk ∼ X1 for all k ≥ 1 whenever (Xn) is c.i.d.

The c.i.d. property is connected to exchangeability. Indeed, (Xn) is exchange-
able if and only if it is stationary and c.i.d., and the asymptotic behavior of c.i.d.
sequences is quite close to that of exchangeable ones. We refer to [4] for details.

3. The model

Let (Mn : n ≥ 1) be a sequence of r.m.’s and (Rn : n ≥ 1) a sequence of real
random variables. The probability distribution of ((Mn, Rn) : n ≥ 1) is identified
by the parameters m, α, β and c as follows.

• m is a diffuse probability measure on B;
• α, β, c are real numbers such that α > 0, β < 1 and c > −β;
• Rn independent of (M1, . . . ,Mn, R1, . . . , Rn−1) and Rn ≥ u > max(β, 0),

for some constant u and each n ≥ 1;
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• Mn+1 | Fn ∼ BeP (νn) for all n ≥ 0, where

F0 = {∅,Ω}, ν0 = αm, Fn = σ(M1, . . . ,Mn, R1, . . . , Rn),

νn =
∑
x∈Sn

∑n
i=1RiMi{x} − β∑n

i=1Ri + c
δx +

Γ(c+ 1)Γ(c+ β +
∑n
i=1Ri)

Γ(c+ β)Γ(c+ 1 +
∑n
i=1Ri)

αm

and Sn = {x ∈ X : Mi{x} = 1 for some i = 1, . . . , n}.

Our model is the sequence ((Mn, Rn) : n ≥ 1). It reduces to the standard IBP in
case β ∈ [0, 1) and Rn = 1 for all n. Note that M1 is a Poisson r.m. with intensity
αm. Note also that Mn ∈ F a.s. for all n ≥ 1, so that

Sn =
n⋃
i=1

Support(Mi) a.s.

Formally, for such a model to make sense, β can be taken to be any real number
satisfying Rn > max(β, 0) for all n. For the reasons explained in Section 1, however,
in this paper we focus on β < 1. We also assume Rn ≥ u, for all n and some constant
u > max(β, 0), as a mere technical assumption. In the sequel, we let

Λ0 = α and Λn = α
Γ(c+ 1)Γ(c+ β +

∑n
i=1Ri)

Γ(c+ β)Γ(c+ 1 +
∑n
i=1Ri)

.

In this notation, the diffuse part of νn can be written as Λnm.
As remarked in Section 1, Rn should be regarded as the weight of customer n.

Thus, the possibly different role played by each customer can be taken into account.
Apart from the possible negative values of β, the parameters m, α, β and c

have essentially the same meaning as in the standard IBP. The probability measure
m allows to draw, at each step n ≥ 1, an i.i.d. sample of new dishes. In fact,
m
(
X \ Sn

)
= 1 a.s. for m is diffuse and Sn finite a.s. The mass parameter α

controls the total number of tried dishes. The concentration parameter c tunes
the number of customers which try each dish. The discount parameter β has been
discussed in Section 1.

A r.m. can be seen as a random variable with values in (M,Σ), where Σ is the
σ-field on M generated by the maps µ 7→ µ(B) for all B ∈ B. In the standard
IBP case, (Mn) is an exchangeable sequence of random variables. Now, because of
the Rn, exchangeability is generally lost. In fact, the same phenomenon (loss of
exchangeability) occurs in various other extensions of IBP; see [13], [15], [23], [33].
However, under some conditions, (Mn) is c.i.d. with respect to the filtration

G0 = {∅,Ω}, Gn = Fn ∨ σ(Rn+1) = σ(M1, . . . ,Mn, R1, . . . , Rn, Rn+1).

We next prove this fact. The c.i.d. property has been recalled in Subsection 2.4.

Lemma 1. (Mn) is c.i.d. with respect to (Gn) if and only if

Λn+1 = Λn
(

1− Rn+1 − β
c+

∑n+1
i=1 Ri

)
a.s. for all n ≥ 0.(1)

In particular, (Mn) is c.i.d. with respect to (Gn) if β = 0 or if Rn = 1 for all n ≥ 1.
(In these cases, in fact, condition (1) is trivially true).

Proof. We just give a sketch of the proof. Suppose

Mn+2(B) | Gn ∼Mn+1(B) | Gn for each n ≥ 0 and B ∈ B.(2)
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Conditionally on Gn, the r.m.’s Mn+1 and Mn+2 are both completely r.m.’s. Hence,
condition (2) implies

Mn+2 | Gn ∼Mn+1 | Gn for each n ≥ 0.

In turn, given n ≥ 0 and A ∈ Σ, the previous condition yields

P
(
Mn+3 ∈ A | Gn

)
= E

{
P
(
Mn+3 ∈ A | Gn+1

)
| Gn

}
= E

{
P
(
Mn+2 ∈ A | Gn+1

)
| Gn

}
= P

(
Mn+2 ∈ A | Gn

)
= P

(
Mn+1 ∈ A | Gn

)
a.s.

Hence, Mn+3 | Gn ∼Mn+1 | Gn for each n ≥ 0. Iterating this argument, one obtains
Mk | Gn ∼ Mn+1 | Gn for all k > n ≥ 0. Therefore, condition (2) is equivalent to
(Mn) being c.i.d. with respect to (Gn). We next prove that (1) ⇔ (2).

Fix n ≥ 0 and B ∈ B. It can be assumed m(B) > 0. Since Rn+1 is independent
of (M1, . . . ,Mn,Mn+1, R1, . . . , Rn) then

P
(
Mn+1 ∈ A | Gn

)
= P

(
Mn+1 ∈ A | Fn

)
a.s. for all A ∈ Σ.

Thus, for each t ∈ R,

E
{
etMn+1(B) | Gn

}
= E

{
etMn+1(B) | Fn

}
= exp

(
m(B) (et − 1) Λn

) ∏
x∈Sn∩B

{
1 + (et − 1)

−β +
∑n
i=1RiMi{x}

c+
∑n
i=1Ri

}
a.s.

where the second equality is because Mn+1 | Fn ∼ BeP (νn). Similarly,

E
{
etMn+2(B) | Gn

}
= E

{
E
(
etMn+2(B) | Gn+1

)
| Gn

}
= exp

(
m(B) (et − 1) Λn+1

)
E
{ ∏
x∈Sn+1∩B

(
1 + (et − 1)

−β +
∑n+1
i=1 RiMi{x}

c+
∑n+1
i=1 Ri

)
| Gn

}
a.s.

Finally, after some computations, one obtains

E
{ ∏
x∈Sn+1∩B

(
1 + (et − 1)

−β +
∑n+1
i=1 RiMi{x}

c+
∑n+1
i=1 Ri

)
| Gn

}
=

= exp
(
m(B) (et − 1) Λn

Rn+1 − β
c+

∑n+1
i=1 Ri

) ∏
x∈Sn∩B

{
1 + (et − 1)

−β +
∑n
i=1RiMi{x}

c+
∑n
i=1Ri

}
a.s.

Thus, condition (1) amounts to E
{
etMn+2(B) | Gn

}
= E

{
etMn+1(B) | Gn

}
a.s. for

each t ∈ R, that is, conditions (1) and (2) are equivalent. �

4. Asymptotic behavior of Ln

Let Ni be the number of new dishes tried by customer i, i.e.,

Ni = card(Si \ Si−1) with S0 = ∅.

Note that Ni is Fi-measurable and Ni | Fi−1 ∼ Poi(Λi−1).
This section is devoted to

Ln = card(Sn) =
n∑
i=1

Ni,

the number of dishes experimented by the first n customers. Our main tool is the
following technical lemma.
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Lemma 2. There is a function h : (0,∞)→ R such that

sup
x≥c+u

|xh(x)| <∞ and Λn = α
Γ(c+ 1)
Γ(c+ β)

1 + h
(
c+

∑n
i=1Ri

)(
c+

∑n
i=1Ri

)1−β for all n ≥ 1.

In particular,

Λn ≤
D

n1−β and |Λn+1 − Λn
∣∣ ≤ D

n2−β for all n ≥ 1,(3)

where D is a suitable constant (non random and not depending on n).

Proof. Just note that Γ(x+β)
Γ(x+1) = xβ−1(1 + h(x)), with h as required, for all

x > max (0,−β); see e.g. formula (6.1.47) of [1]. To prove (3), let v = min (u, c+ u).
Since c+ u > c+ β > 0, then v > 0. Hence, (3) follows from

c+
n∑
i=1

Ri ≥ c+ nu = c+ u+ (n− 1)u ≥ n v.

�

Let L = supn Ln be the number of dishes tried by some customer. A first
consequence of Lemma 2 is that β < 0 implies L <∞ a.s.

Lemma 3. P
(
Ni >

1
1−β infinitely often

)
= 0. Moreover, E

(
eL
)
<∞ if β < 0.

Proof. Fix an integer k ≥ 1. Since Ni+1 | Fi ∼ Poi(Λi),

P (Ni+1 ≥ k) = E
{
P (Ni+1 ≥ k | Fi)

}
= E

{
e−Λi

∑
j≥k

Λji
j!

}
≤ E(Λki )

k!
.

By Lemma 2, E(Λki ) = O(i−(1−β)k). Let

k = 1 + max{j ∈ Z : j ≤ 1/(1− β)}.

Since k (1 − β) > 1, one obtains
∑
i P
(
Ni > 1/(1 − β)

)
=
∑
i P (Ni ≥ k) < ∞.

Next, suppose β < 0. By Lemma 2, Λn ≤ Dnβ−1 for some constant D. Letting
H = (e− 1)D and noting that E

(
eNn+1 | Fn

)
= eΛn (e−1) a.s., one obtains

E
(
eLn+1

)
= E

{
eLn E

(
eNn+1 | Fn

)}
= E

{
eLn eΛn (e−1)

}
≤ E

(
eLn
)
eH nβ−1

≤ E
(
eLn−1

)
eH (n−1)β−1

eH nβ−1
≤ . . . ≤ E

(
eL1
)
eH

∑n
j=1 j

β−1
.

Thus, β < 0 and E
(
eL1
)

= E
(
eN1
)
<∞ yield

E
(
eL
)

= sup
n
E
(
eLn
)
≤ E

(
eL1
)
eH

∑∞
j=1 j

β−1
<∞.

�

In view of Lemma 3, if β < 0 there is a random index N such that Ln = LN
a.s. for all n ≥ N . The situation is quite different if β ∈ [0, 1). In this case, the a.s.
behavior of Ln for large n can be determined by a simple martingale argument.

In the rest of this section, we let β ∈ [0, 1). Define

Rn =
1
n

n∑
i=1

Ri
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and suppose that

(4) Rn
a.s.−→ r for some constant r.

Since Ri ≥ u for all i, then r ≥ u > 0. Define also

λ(β) =
α c

r
if β = 0 and λ(β) =

αΓ(c+ 1)
Γ(c+ β)

1
β r1−β if β ∈ (0, 1),

an(β) = log n if β = 0 and an(β) = nβ if β ∈ (0, 1).

Theorem 4. If β ∈ [0, 1) and condition (4) holds, then

Ln
an(β)

a.s.−→ λ(β).

Proof. By Lemma 2, Λj = α Γ(c+1)
Γ(c+β)

(
c+

∑j
i=1Ri

)β−1 {1 + h
(
c+

∑j
i=1Ri

)}
where

the function h satisfies |h(x)| ≤ (k/x) for all x ≥ c+ u and some constant k. Write∑n−1
j=1 Λj
an(β)

= α
Γ(c+ 1)
Γ(c+ β)

∑n−1
j=1 j

β−1
(
c
j +Rj

)β−1

an(β)
+Dn,

where Dn = α
Γ(c+ 1)
Γ(c+ β)

∑n−1
j=1

(
c+

∑j
i=1Ri

)β−1
h
(
c+

∑j
i=1Ri

)
an(β)

.

In view of (4), one obtains Dn
a.s.−→ 0 and

∑n−1
j=1 Λj

an(β)

a.s.−→ λ(β). Next, define

T0 = 0 and Tn =
n∑
j=1

Nj − E(Nj | Fj−1)
aj(β)

=
n∑
j=1

Nj − Λj−1

aj(β)
.

Then, (Tn) is a martingale with respect to (Fn) and

E(T 2
n) =

n∑
j=1

E
{

(Nj − Λj−1)2
}

aj(β)2
=

n∑
j=1

E
{
E
(
(Nj − Λj−1)2 | Fj−1

)}
aj(β)2

=
n∑
j=1

E(Λj−1)
aj(β)2

.

Since E(Λj) = O(j−(1−β)), then supnE(T 2
n) =

∑∞
j=1

E(Λj−1)
aj(β)2 < ∞. Thus, Tn

converges a.s., and Kronecker lemma implies

lim
n

Ln
an(β)

= lim
n

∑n
j=1Nj

an(β)
= lim

n

∑n
j=1 Λj−1

an(β)
= lim

n

Λ0 +
∑n−1
j=1 Λj

an(β)
= λ(β) a.s.

�

In view of Theorem 4, as far as β ∈ [0, 1) and the weights Rn meet the SLLN, Ln
essentially behaves for large n as in the standard IBP model. The only difference
is that the limit constant λ(β) depends on r as well. (In the standard IBP one has
r = 1). Note also that, the Rn being independent, a sufficient condition for (4) is

sup
n
E(R2

n) <∞ and
∑n
i=1E(Ri)
n

−→ r.

We next turn to the limiting distribution of Ln. To get something, stronger
conditions on the Rn are to be requested.
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Theorem 5. If β ∈ [0, 1) and

Rn
a.s.−→ r and

∑n
j=1 j

β−1E|Rj − r|√
an(β)

−→ 0(5)

for some constant r, then√
an(β)

{ Ln
an(β)

− λ(β)
}
−→ N

(
0, λ(β)

)
stably.

Proof. We first prove that√
an(β)

{∑n
j=1 Λj−1

an(β)
− λ(β)

}
P−→ 0.(6)

By Lemma 2 and some calculations, condition (6) is equivalent to

Yn :=

∑n−1
j=1

{(
c+

∑j
i=1Ri

)β−1 − (r j)β−1
}√

an(β)
P−→ 0.

Let v = min (u, c+ u). Then, v > 0, r ≥ u ≥ v and c +
∑j
i=1Ri ≥ v j; see the

proof of Lemma 2. Hence, one can estimates as follows

E
∣∣∣(r j)β−1 −

(
c+

j∑
i=1

Ri
)β−1

∣∣∣ ≤ E
∣∣∣(c+

∑j
i=1Ri

)1−β − (r j)1−β
∣∣∣

(v j)2(1−β)

≤ 1
(v j)2(1−β)

1− β
(v j)β

E
∣∣∣c+

j∑
i=1

Ri − r j
∣∣∣ ≤ 1− β

v2−β

{ |c|
j2−β +

E|Rj − r|
j1−β

}
.

Thus, condition (5) implies E|Yn| → 0. This proves condition (6).
Next, define

Un =
√
an(β)

{ Ln
an(β)

−
∑n
j=1 Λj−1

an(β)

}
=

∑n
j=1(Nj − Λj−1)√

an(β)
.

In view of (6), it suffices to show that Un −→ N
(
0, λ(β)

)
stably. To this end, for

n ≥ 1 and j = 1, . . . , n, define

Un,j =
Nj − Λj−1√

an(β)
, Rn,0 = F0 and Rn,j = Fj .

Then, E
(
Un,j | Rn,j−1) = 0 a.s., Rn,j ⊂ Rn+1,j and Un =

∑
j Un,j . Thus, by the

martingale CLT, Un −→ N
(
0, λ(β)

)
stably provided

(i)
n∑
j=1

U2
n,j

P−→ λ(β), (ii) max
1≤j≤n

|Un,j |
P−→ 0, (iii) sup

n
E
{

max
1≤j≤n

U2
n,j

}
<∞;

see e.g. Theorem 3.2, page 58, of [19]. Let

Hj = (Nj − Λj−1)2 and Dn =

∑n
j=1

{
Hj − E(Hj | Fj−1)

}
an(β)

.

By Kronecker lemma and the same martingale argument used in the proof of The-
orem 4, Dn

a.s.−→ 0. Since Rj
a.s.−→ r and E(Hj | Fj−1) = Λj−1 a.s., then

n∑
j=1

U2
n,j =

∑n
j=1Hj

an(β)
= Dn +

∑n
j=1 Λj−1

an(β)
a.s.−→ λ(β).
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This proves condition (i). As to (ii), fix k ≥ 1 and note that

max
1≤j≤n

U2
n,j ≤

max1≤j≤kHj

an(β)
+ max
k<j≤n

Hj

aj(β)
≤ max1≤j≤kHj

an(β)
+ sup
j>k

Hj

aj(β)
for n > k.

Hence, lim supn max1≤j≤n U
2
n,j ≤ lim supn

Hn
an(β) and condition (ii) follows from

Hn

an(β)
=

∑n
j=1Hj

an(β)
−
∑n−1
j=1 Hj

an(β)
a.s.−→ 0.

Finally, condition (iii) is an immediate consequence of Lemma 2 and

E
{

max
1≤j≤n

U2
n,j

}
≤
∑n
j=1E(Hj)
an(β)

=

∑n
j=1E(Λj−1)
an(β)

.

�

Note that, letting Rn = 1 for all n, Theorem 5 provides the limiting distribution
of Ln in the standard IBP model.

For Theorem 5 to apply, condition (5) is to be checked. We now give conditions
for (5). In particular, (5) is automatically true whenever supnE(R2

n) < ∞ and
E(Rn) = r for all n.

Lemma 6. Condition (5) holds provided β ∈ [0, 1) and

sup
n
E(R2

n) <∞ and
√
nβ log n

{
E(Rn)− r

}
−→ 0.(7)

Proof. Let a = supnE(R2
n). Because of (7), E(Rn) → r. Thus, Rn

a.s.−→ r since
a <∞ and (Rn) is independent. Moreover,

E|Rj − r| ≤ E|Rj − E(Rj)|+ |E(Rj)− r| ≤
√

var(Rj) + |E(Rj)− r| ≤
√
a/j + |E(Rj)− r|.

Hence, the second part of condition (5) follows from the above inequality and
condition (7). �

A last remark is in order. Fix a set B ∈ B and define

Ln(B) = card(B ∩ Sn)

to be the number of dishes, belonging to B, tried by the first n customers. The same
arguments used for Ln = Ln(X ) apply to Ln(B) and allow to extend Theorems 4-5
as follows.

Theorem 7. Let β ∈ [0, 1) and B ∈ B. If condition (4) holds, then

Ln(B)
an(β)

a.s.−→ m(B)λ(β).

Moreover, under condition (5), one obtains√
an(β)

{Ln(B)
an(β)

−m(B)λ(β)
}
−→ N

(
0, m(B)λ(β)

)
stably.

Proof. Let Ni(B) denote the number of new dishes, belonging to B, tried by cus-
tomer i. Then, Ln(B) =

∑n
i=1Ni(B) and Ni+1(B) | Fi ∼ Poi(m(B) Λi). There-

fore, it suffices to repeat the proofs of Theorems 4-5 with Ni(B) in the place of Ni
and m(B) Λi in the place of Λi. �



AN INDIAN BUFFET MODEL 13

5. Asymptotic behavior of Kn

5.1. The result. Let Ki = Mi(X ) be the number of dishes experimented by cus-
tomer i and

Kn =
1
n

n∑
i=1

Ki

the mean number of dishes tried by each of the first n customers.
In IBP-type models, Kn is a meaningful quantity. One reason is the following.

If the parameters m, α, β and c are unknown, E
(
Kn+1 | Fn

)
can not be evaluated

in closed form. Then, Kn could be used as an empirical predictor for the next
random variable Kn+1. Such prediction is consistent whenever

Vn := Kn − E
(
Kn+1 | Fn

) P−→ 0.

But this is usually true. For instance, Vn
a.s.−→ 0 if the sequence (Kn) is c.i.d. with

respect to (Fn); see [4] and [5]. In general, the higher the convergence rate of Vn,
the better Kn as a predictor of Kn+1.

Under some conditions, Kn
a.s.−→ Z for some real random variable Z. Thus, two

random centerings for Kn should be considered. One (and more natural) is Z,
while the other is E

(
Kn+1 | Fn

)
, to evaluate the performances of Kn as a predictor

of Kn+1. Taking
√
n as a norming factor, this leads to investigate

√
n
{
Kn − Z

}
and

√
nVn.

The limiting distributions of these quantities are provided by the next result.

Theorem 8. Suppose β < 1/2 and

sup
n
Rn ≤ b, E(Rn) −→ r, E(R2

n) −→ q,

for some constants b, r, q. Then,

Kn
a.s.−→ Z and

1
n

n∑
i=1

K2
i
a.s.−→ Q,

where Z and Q are real random variables such that Z2 < Q a.s. Moreover,
√
n
{
Kn − Z

}
−→ N

(
0, σ2

)
stably and

√
n
{
Kn − E

(
Kn+1 | Fn

)}
−→ N

(
0, τ2

)
stably,

where σ2 =
2q − r2

r2
(Q− Z2), τ2 =

q − r2

r2
(Q− Z2).

If Rn = 1 for all n, the previous results hold for β < 1 (and not only for β < 1/2).

Theorem 8 is a consequence of Theorem 1 of [6]. The proof, even if conceptually
simple, is technically rather hard.

Theorem 8 fails, as it stands, for β ∈ [1/2, 1). Let µn denote the probability
distribution of the random variable

√
n
{
Kn−Z

}
. The sequence (µn) might be not

tight if β ∈ (1/2, 1). For instance, (µn) is not tight if β ∈ (1/2, 1) and Rn = r for
all n, where r is any constant such that r 6= 1. If β = 1/2, instead, (µn) is tight but
the possible limit laws are not mixtures of centered Gaussian distributions. Thus,
even if

√
n
{
Kn − Z

}
converges stably, the limit kernel is not N

(
0, σ2

)
.
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Since q ≥ r2 and Q > Z2 a.s., then σ2 > 0 a.s. Hence, N
(
0, σ2

)
is a non

degenerate kernel. Instead, N
(
0, τ2

)
may be degenerate. In fact, if q = r2 then

N
(
0, τ2

)
= N

(
0, 0) = δ0. Thus, for q = r2, Theorem 8 yields

√
nVn

P−→ 0.
The convergence rate of Vn is n−1/2 when q > r2. Such a rate is even higher if

q = r2, since
√
nVn

P−→ 0. Overall, Kn seems to be a good predictor of Kn+1 for
large n.

Among other things, Theorem 8 can be useful to get asymptotic confidence
bounds for Z. Define in fact

σ̂2
n =

{ (2/n)
∑n
i=1R

2
i

R
2

n

− 1
}{ 1

n

n∑
i=1

K2
i −K

2

n

}
.

Since σ̂2
n
a.s.−→ σ2 and σ2 > 0 a.s., one obtains

I{σ̂n>0}

√
n
{
Kn − Z

}
σ̂n

−→ N (0, 1) stably.

Thus, Kn ± ua√
n
σ̂n provides an asymptotic confidence interval for Z with (approx-

imate) level 1− a, where ua is such that N (0, 1)(ua, +∞) = a/2.
Theorem 8 works if β ∈ [0, 1) and Rn = 1 for all n, that is, it applies to the

standard IBP model. Also, in this case, the convergence rate of Vn is greater than
n−1/2 (since q = r2 = 1). Hence, Kn is a good (asymptotic) predictor of Kn+1.

5.2. The proof. We begin with a couple of results from [6]. Let (Xn) be a sequence
of real integrable random variables, adapted to a filtration (Un), and let

Xn =
1
n

n∑
i=1

Xi and Zn = E
(
Xn+1 | Un

)
.

Lemma 9. If
∑
n n
−2E(X2

n) < ∞ and Zn
a.s.−→ Z, for some real random variable

Z, then

Xn
a.s.−→ Z and n

∑
k≥n

Xk

k2

a.s.−→ Z.

Proof. This is exactly Lemma 2 of [6]. �

Theorem 10. Suppose (X2
n) is uniformly integrable and

(j) n3E
{(
E(Zn+1 | Un)− Zn

)2} −→ 0.

Then, Zn
a.s.−→ Z and Xn

a.s.−→ Z for some real random variable Z. Moreover,
√
n
{
Xn − Zn

}
−→ N

(
0, U

)
stably and

√
n
{
Xn − Z

}
−→ N

(
0, U + V

)
stably

for some real random variables U and V , provided

(jj) E
{

supk≥1

√
k |Zk−1 − Zk|

}
<∞,

(jjj) 1
n

∑n
k=1

{
Xk − Zk−1 + k(Zk−1 − Zk)

}2 P−→ U ,

(jv) n
∑
k≥n(Zk−1 − Zk)2 a.s.−→ V .
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Proof. First note that (Zn) is a quasi-martingale because of (j) and it is uniformly
integrable for (X2

n) is uniformly integrable. Hence, Zn
a.s.−→ Z. By Lemma 9, one

also obtains Xn
a.s.−→ Z. Next, assume conditions (jj)-(jjj)-(jv). By Theorem 1 of

[6] (and the subsequent remarks) it is enough to show that
√
nE
{

sup
k≥n
|Zk−1 − Zk|

}
−→ 0 and

1√
n
E
{

max
1≤k≤n

k |Zk−1 − Zk|
}
−→ 0.

Let Dk = |Zk−1 − Zk|. Because of (jv),

nD2
n = n

∑
k≥n

D2
k −

n

n+ 1
(n+ 1)

∑
k≥n+1

D2
k
a.s.−→ 0.

Thus supk≥n
√
kDk

a.s.−→ 0, and condition (jj) implies
√
nE
{

sup
k≥n

Dk

}
≤ E

{
sup
k≥n

√
kDk

}
−→ 0.

Further, for 1 ≤ h < n, one obtains

E
{

max
1≤k≤n

kDk

}
≤ E

{
max

1≤k≤h
kDk

}
+
√
nE
{

max
h<k≤n

√
kDk

}
≤ E

{
max

1≤k≤h
kDk

}
+
√
nE
{

sup
k>h

√
kDk

}
.

Hence, it suffices to note that

lim sup
n

1√
n
E
{

max
1≤k≤n

kDk

}
≤ E

{
sup
k>h

√
kDk

}
for all h, and lim

h
E
{

sup
k>h

√
kDk

}
= 0.

�

Note that condition (j) is automatically true in case (Xn) is c.i.d. with respect
to the filtration (Un). We are now able to prove Theorem 8.

Proof of Theorem 8. We apply Theorem 10 with Xn = Kn and Un = Fn. Let

Jn(x) =
∑n
i=1RiMi{x} − β∑n

i=1Ri + c
for x ∈ X .

Note that∑
x∈Sn

Jn(x) =

∑n
i=1Ri

∑
x∈SnMi{x} − β Ln∑n
i=1Ri + c

=
∑n
i=1RiKi − β Ln∑n

i=1Ri + c

and recall the notation

Gn = Fn ∨ σ(Rn+1) = σ(M1, . . . ,Mn, R1, . . . , Rn, Rn+1).

Uniform integrability of (K2
n). It suffices to show that supnE

{
etKn

}
< ∞

for some t > 0. In particular, (K2
n) is uniformly integrable for β < 0, since Lemma

3 yields

sup
n
E
{
eKn

}
≤ sup

n
E
{
eLn
}

= E
{
eL
}
<∞ if β < 0.

Suppose β ∈ [0, 1/2). Define g(t) = et − 1 and

Wn =
∑n
i=1RiKi∑n
i=1Ri + c

.
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Arguing as in Lemma 1 and since Λn ≤ Dnβ−1 for some constant D, one obtains

E
{
etKn+1 | Gn

}
= eg(t) Λn

∏
x∈Sn

{
1 + g(t) Jn(x)

}
≤ exp

{
g(t) Λn + g(t)

∑
x∈Sn

Jn(x)
}

≤ exp
{Dg(t)
n1−β + g(t)

∑n
i=1RiKi − β Ln∑n

i=1Ri + c

}
≤ exp

{Dg(t)
n1−β + g(t)Wn

}
a.s.

Hence, it is enough to show that supnE
{
etWn

}
<∞ for some t > 0. We first prove

E
{
etWn

}
< ∞ for all n ≥ 1 and t > 0, and subsequently supnE

{
etWn

}
< ∞ for

a suitable t > 0. Define Un = Rn+1∑n+1
i=1 Ri+c

. Since Un is Gn-measurable,

E
(
etWn+1

)
= E

{
exp

(
tWn (1− Un)

)
E
(
et UnKn+1 | Gn

)}
≤ E

{
exp

(Dg(t Un)
n1−β

)
exp

(
tWn +

(
g(t Un)− t Un

)
Wn

)}
.

On noting that Un ≤ b/(nu),

E
(
etWn+1

)
≤ exp

(Dg
(
tb
nu

)
n1−β

)
E
{
e{t+g(

tb
nu )}Wn

}
.

Iterating this procedure, one obtains

E
(
etWn+1

)
≤ an(t)E

(
ebn(t)W1

)
for suitable constants an(t) and bn(t).

Since K1 ∼ Poi(α) and W1 = R1
R1+c K1 ≤ b

u+c K1, then E
(
ebn(t)W1

)
< ∞. Hence,

E
{
etWn

}
<∞ for all n ≥ 1 and t > 0. Observe now that g(z) ≤ 2 z and g(z)−z ≤

z2 for z ∈ [0, 1/2]. Since Un ≤ b/(nu), then t Un ≤ 1/2 for n ≥ (2 b t)/u. Hence, if
t ∈ (0, 1] and n ≥ (2 b)/u, then

E
(
etWn+1

)
≤ exp

{2D (b/u) t
n2−β

}
E
{

exp
(
tWn + (t Un)2Wn

)}
(8)

≤ exp
{ D∗ t
n2−β

}
E
{

exp
(
tWn (1 +

D∗

n2
)
)}

where D∗ = max {2D (b/u), (b/u)2}. Take t and n0 such that

t ∈ (0, 1/2], n0 ≥
2 b
u
,

∏
j≥n0

(
1 +

D∗

j2

)
≤ 2.

Iterating inequality (8), one finally obtains

E
(
etWn+1

)
≤ exp

{∑
j≥n0

2D∗ t
j2−β

}
E
(
e2 tWn0

)
for each n ≥ n0.

Therefore supnE
{
etWn

}
<∞, so that (K2

n) is uniformly integrable.

We now turn to condition (j). Since Mn+1 | Fn ∼ BeP (νn),

Zn = E(Kn+1 | Fn) = νn(X ) = Λn +
∑
x∈Sn

Jn(x) = Λn +
∑n
i=1RiKi − β Ln∑n

i=1Ri + c
.

On noting that Ln = Ln−1 +Nn, a simple calculation yields

Zn − Zn−1 = Λn − Λn−1 +
Rn(Kn − Zn−1) +RnΛn−1 − βNn∑n

i=1Ri + c
.
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Condition (j). Since Rn+1 is independent of (M1, . . . ,Mn,Mn+1, R1, . . . , Rn),

E(Kn+1 | Gn) = E(Kn+1 | Fn) = Zn and E(Nn+1 | Gn) = E(Nn+1 | Fn) = Λn a.s.

It follows that

E
(
Zn+1 − Zn | Fn

)
= E

{
E
(
Zn+1 − Zn | Gn

)
| Fn

}
= E

{
Λn+1 − Λn +

(Rn+1 − β) Λn∑n+1
i=1 Ri + c

| Fn
}

a.s.

Hence,

E
{(
E(Zn+1 | Fn)− Zn

)2} = E
{
E
(
Zn+1 − Zn | Fn

)2}
≤ 2E

{
(Λn+1 − Λn)2

}
+

2 (b+ |β|)2

u2

E(Λ2
n)

n2
.

By Lemma 2, E
{

(Λn+1 − Λn)2
}

= O(n2β−4) and E(Λ2
n) = O(n2β−2). Hence,

condition (j) follows from β < 1/2 (or equivalently 4− 2β > 3).

Having proved condition (j) and (K2
n) uniformly integrable, Theorem 10 yields

Zn
a.s.−→ Z and Kn

a.s.−→ Z for some Z. We next prove (1/n)
∑n
i=1K

2
i

a.s.−→ Q for
some Q such that Q > Z2 a.s. Recall that

sup
n
E(K4

n) ≤ 4!
t4

sup
n
E
(
etKn

)
<∞ for a suitable t > 0.

Hence, by Lemma 9, (1/n)
∑n
i=1K

2
i
a.s.−→ Q provided E

(
K2
n+1 | Fn

) a.s.−→ Q.

Almost sure convergence of E
(
K2
n+1 | Fn

)
and Q > Z2 a.s. Let

Gn =
∑
x∈Sn Jn(x)2. Since Mn+1 | Fn ∼ BeP (νn), then

E
(
K2
n+1 | Fn

)
= νn(X ) + νn(X )2 −

∑
x∈X

νn{x}2 = Zn + Z2
n −Gn a.s.;

see Subsection 2.2. Thus, since Zn
a.s.−→ Z and (Gn) is uniformly integrable, it

suffices to prove that (Gn) is a sub-martingale with respect to (Gn).
Let us define the random variables {Tn,r : n, r ≥ 1}, with values in X ∪{∞}, as

follows. For n = 1, let T1,r =∞ for r > L1. If L1 > 0, define T1,1, . . . , T1,L1 to be
the dishes tried by customer 1. By induction, at step n ≥ 2, let

Tn,r = Tn−1,r for 1 ≤ r ≤ Ln−1 and Tn,r =∞ for r > Ln.

If Ln > Ln−1, define Tn,Ln−1+1, . . . , Tn,Ln to be the dishes tried for the first time
by customer n. Then, σ(Tn,r) ⊂ Gn for all r ≥ 1. Letting Jn(∞) = 0, one also
obtains

Gn =
∑
r

Jn
(
Tn,r

)2
.

For fixed r, since σ(Tn,r) ⊂ Gn, it follows that

E
{
Jn+1(Tn,r) | Gn

}
= E

{
I{r≤Ln} Jn+1(Tn,r) | Gn

}
= I{r≤Ln}

−β +
∑n
i=1RiMi{Tn,r}+Rn+1E

{
Mn+1{Tn,r} | Gn

}
c+

∑n+1
i=1 Ri

= I{r≤Ln}
Jn(Tn,r) {c+

∑n
i=1Ri}+Rn+1Jn(Tn,r)

c+
∑n+1
i=1 Ri

= Jn(Tn,r) a.s.
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Then,

E
{
Gn+1 | Gn

}
= E

{∑
r

Jn+1(Tn+1,r)2 | Gn
}
≥ E

{∑
r

Jn+1(Tn,r)2 | Gn
}

=
∑
r

E
{
Jn+1(Tn,r)2 | Gn

}
≥
∑
r

E
{
Jn+1(Tn,r) | Gn

}2 =
∑
r

Jn(Tn,r)2 = Gn a.s.

Therefore, (Gn) is a (Gn)-sub-martingale, as required.
From now on, Q denotes a real random variable satisfying

E
(
K2
n+1 | Fn

) a.s.−→ Q and
1
n

n∑
i=1

K2
i
a.s.−→ Q.

Let us prove Q > Z2 a.s. Let Yn = Jn(Tn,1). Since (Yn) is a [0, 1]-valued sub-
martingale with respect to (Gn), one obtains Yn

a.s.−→ Y for some random variable
Y . Thus,

Q− Z2 = lim
n

{
E(K2

n+1 | Fn)− Z2
n

}
= lim

n

{
Zn −Gn

}
= lim

n

{
Λn +

∑
r

Jn(Tn,r)
(
1− Jn(Tn,r)

)}
≥ lim

n
Yn (1− Yn) = Y (1− Y ) a.s.

Since Ln
a.s.−→ ∞ (because of Theorem 4) then Tn,1 6= ∞ eventually a.s. Hence,

arguing as in [2] and [21] (see also Subsection 4.3 of [6]) it can be shown that Y has
a diffuse distribution. Therefore, 0 < Y < 1 and Q− Z2 ≥ Y (1− Y ) > 0 a.s.

We next turn to conditions (jj)-(jjj)-(jv).

Condition (jj). Since E(Z4
n−1) = E

{
E(Kn | Fn−1)4

}
≤ E(K4

n), then

sup
n
E
{
K4
n + Z4

n−1 + Λ4
n−1 +N4

n

}
≤ 2 sup

n
E
{
K4
n + Λ4

n−1 +N4
n

}
<∞.

Therefore,

E
{(

sup
n≥1

√
n |Zn − Zn−1|

)4}
≤
∞∑
n=1

n2E
{

(Zn − Zn−1)4
}

≤ D1

∞∑
n=1

n2
{
E
{(

Λn − Λn−1

)4}+
E
{
K4
n + Z4

n−1 + Λ4
n−1 +N4

n

}
n4

}
≤ D2

∞∑
n=1

{ 1
n6−4β

+
1
n2

}
<∞

where D1 and D2 are suitable constants.

In order to prove (jjj)-(jv), we let

U =
q − r2

r2
(Q− Z2) and V =

q

r2
(Q− Z2).

Condition (jjj). Let Xn =
{
Kn − Zn−1 + n(Zn−1 − Zn)

}2. On noting that∑
n n

2E
{

(Zn − Zn−1)4
}
< ∞, as shown in (jj), one obtains

∑
n n
−2E(X2

n) < ∞.
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Thus, by Lemma 9, it suffices to prove E
(
Xn | Fn−1

) a.s.−→ U . To this end, we first
note that

E
{

(Kn − Zn−1)2 | Fn−1

}
= E

{
K2
n | Fn−1

}
− Z2

n−1
a.s.−→ Q− Z2.

We next prove

(*) n2E
{R2

n(Kn − Zn−1)2(∑n
i=1Ri + c

)2 | Fn−1

}
a.s.−→ V ; (**) nE

{Rn(Kn − Zn−1)2∑n
i=1Ri + c

| Fn−1

}
a.s.−→ Q− Z2.

In fact,

n2E
{R2

n(Kn − Zn−1)2

(
∑n
i=1Ri + c)2

| Fn−1

}
≤ n2E

{
R2
n(Kn − Zn−1)2 | Fn−1

}(∑n−1
i=1 Ri

)2
=
( n

n− 1
)2 E(R2

n)E
{

(Kn − Zn−1)2 | Fn−1

}(
Rn−1

)2 a.s.−→ q (Q− Z2)
r2

= V.

Since Rn ≤ b, one also obtains

n2E
{R2

n(Kn − Zn−1)2

(
∑n
i=1Ri + c)2

| Fn−1

}
≥ n2E

{
R2
n(Kn − Zn−1)2 | Fn−1

}(∑n−1
i=1 Ri + b+ c

)2 a.s.−→ V.

This proves condition (*). Similarly, (**) follows from

nE
{Rn(Kn − Zn−1)2∑n

i=1Ri + c
| Fn−1

}
≤ n

n− 1
E(Rn)E

{
(Kn − Zn−1)2 | Fn−1

}
Rn−1

a.s.−→ Q− Z2

and nE
{Rn(Kn − Zn−1)2∑n

i=1Ri + c
| Fn−1

}
≥ n

E(Rn)E
{

(Kn − Zn−1)2 | Fn−1

}∑n−1
i=1 Ri + b+ c

a.s.−→ Q− Z2.

Finally, by Lemma 2 and after some calculations, one obtains

n2E
{

(Zn−1 − Zn)2 | Fn−1

}
− n2E

{R2
n(Kn − Zn−1)2

(
∑n
i=1Ri + c)2

| Fn−1

}
a.s.−→ 0,

nE
{

(Kn − Zn−1) (Zn−1 − Zn) | Fn−1

}
+ nE

{Rn(Kn − Zn−1)2∑n
i=1Ri + c

| Fn−1

}
a.s.−→ 0.

Therefore, n2E
{

(Zn−1 − Zn)2 | Fn−1

} a.s.−→ V and

2nE
{

(Kn − Zn−1) (Zn−1 − Zn) | Fn−1

} a.s.−→ −2 (Q− Z2),

which in turn implies E
(
Xn | Fn−1

) a.s.−→ V − (Q− Z2) = U .

Condition (jv). Let Xn = n2(Zn−Zn−1)2. Since
∑
n n

2E
{

(Zn−Zn−1)4
}
<∞

and n2E
{

(Zn−1 − Zn)2 | Fn−1

} a.s.−→ V , as shown in (jj) and (jjj), Lemma 9 yields

n
∑
k≥n

(Zk−1 − Zk)2 = n
∑
k≥n

Xk

k2

a.s.−→ V.

In view of Theorem 10, this concludes the proof of the first part.

Finally, suppose Rn = 1 for all n. Then, by Lemma 1, (Mn) is c.i.d. with
respect to the filtration (Gn). Thus, (Mn) is c.i.d. with respect to (Fn) as well,
and condition (j) (with Un = Fn) is automatically true. To conclude the proof, it
suffices to note that β < 1/2 is only needed in condition (j). All other points of
this proof are valid for each β < 1.
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