Corso di Real Geometry
Docente L. Pernazza
Anno accademico 2022/2023
The course is devoted to introducing the main themes and tools of real
algebraic and analytic geometry: Hilbert's 17th problem, Artin--Lang
theory, semialgebraic and semianalytic sets,
real algebra, relations between the algebraic and analytic frameworks.
A good knowledge of basic topology and algebra (mainly ring theory) is
is the only requirement.
Lezioni
Pavia, Dipartimento di Matematica
Aula: Sala Riunioni piano C (C12-C13)
Sarà (probabilmente) possibile seguire le lezioni anche via
Zoom.
Registrazioni
Calendario (aggiornato al
27/3/2023)
Orario: martedì e giovedì 11-13 (se con * 10:30-13)
Diario delle lezioni
Argomenti che verranno (probabilmente) trattati
Real geometry: real algebraic varieties, semialgebraic sets.
Real algebra: ordered fields, real ideals, real radical of an ideal,
real closure of a field.
Hilbert's 17th problem on sums of squares.
Real spectrum, fans, order spaces; real Nullstellensatz and
Positivstellensatz.
Basic and principal semialgebraic sets, separation of semialgebraic
sets and Br\"ocker's theorem.
Real analytic varieties, extension of orderings and Artin's
approximation theorem.
Nash functions, Pfaffian functions, o-minimal structures and other
real rings of functions.
Global real analytic geometry.
Libri consigliati
F. Acquistapace, F. Broglia, J.F. Fernando, Topics in Global Real
Analytic Geometry, Springer Monographs in Mathematics, Springer,
Cham, 2022
C. Andradas, L. Bröcker, J.M. Ruiz, Constructible Sets in Real
Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol.
33, Springer, Berlin Heidelberg, 1996
C. Andradas, J.M. Ruiz, Algebraic and analytic geometry of fans,
Memoirs of the AMS, 0553 (115), American Mathematical Society,
Providence 1995
J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, Ergebnisse
der Mathematik und ihrer Grenzgebiete (3), vol. 36, Springer-Verlag,
Berlin 1998
M.A. Marshall, Spaces of Orderings and Abstract Real Spectra, Lecture
Notes in Mathematics 1636, Springer, Berlin Heidelberg New York, 1996
A. Prestel, C.N. Delzell, Positive Polynomials: From Hilbert's 17th
Problem to Real Algebra, Springer Monographs in Mathematics, Springer,
Berlin Heidelberg, 2001