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Abstract. The aim of these notes is to give simple proofs of
the theorems of Abel and Riemann-Roch for compact Riemann
surfaces, and to explain some of their most elementary
geometric applications. The treatment of the subject is guite
classical; in particular, no cohomological machinery is used,
although some knowledge of it on the part of the reader would
certainly help.

1. Abelian differentials. Let T be a compact connected Riemann surface
(henceforth abbreviated R3). As is well known, topologically C is just a
sphere with handles attached:

:
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The number of handles is the genus of C: thus the above figure depicts a Ro
of genus 4.

An abelian differential on C is a global holomorphic (1,0)-form, i. e, a
(1,0)-form o such that dw=0; put otherwise, if we write, Tocally,
oo=alz)dz, ahas to be holomorphic. Let's illustrate this with a few examples.

(1.1) Example: the Riemann sphere. This is obtained from the disjoint
union of two copies of C, with coordinates z and w , via the identification
w=1/z, for every nonzero z. If « is an abelian differential, we can write it,
inthe z coordinate, as w=al(z)dz, where

a(z)=> ciz';
i>0
inthe w coordinate, then,

o= ciw d/w)=-> ciw ! Zdw,
>0 20

Thus o is not holomorphic at w=0 unless it vanishes identically. In other

words, in this case the vector space of abelian differentials has dimension
Zero.

(1.2) Example: elliptic Riemann surfaces. An elliptic RS is the guotient
C/A=C, where A is a lattice in C. If z is a linear coordinate in C, the
differential dz is translation-invariant, hence it descends to an abelian
differential on C, to be denoted by the same symbol. Notice that dz does not
vanish anywhere; thus, if o 1is another abelian differential, o/dz is a
holomorphic function on C, hence a constant. This shows that, for an elliptic
RS, the space of abelian differentials is one-dimensional; furthermore, a
nonzero abelian differential does not vanish anywhere,

Before moving on to the next example, we make a general remark. Let ¢,
W be abelian differentials on a RS C: we claim that ¢ and ¢ have the same
number of zeros (an n-fold zero is counted as n zeros). Consider in fact the
quotient ¢ /¢ it is a meromorphic function on C, and applying the residue
theorem to its logarithmic derivative shows that it has as many zeros as it
has poles, if we count zeros and poles according to their multiplicity. >ince
the poles of /¢ arise from zeros of ¢, and its zeros from zeros of ¢, this
proves our claim.

(1.3) Example: hyperelliptic Riemann surfaces. Consider the locus 7 in
C? defined by the eguation

X2 =F(y),



where F is a polynomial of even degree 2n with distinct roots. Thus

Foyy= T T (=200, Gi=0yifi=].
1<i<2n
Notice, first of all, that /7 is smooth. In fact, the partial of ><2—F(y) with
respect to x vanishes on Z only at the roots of F, where the partial with
respect to vy does not vanish. Thus, by the implicit function theorem, we may
take v as a local coordinate on Z away from the roots of F, and x as a local
coordinate at the roots of F. To fix ideas, we shall work with

Fly) =y®-1,

but our discussion will be valid in general. Partition the roots of F in pairs
and join the two elements of each pair with a segment (a path, in general).
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The y-plane

The function (y-Ti)(y -Ti+9) has two single-valued square roots in the
complement of the segment CiCj.+q1: call one of these fy, and set

f=711zfsg.

Now cut the y-plane along the segments 1 (2, (304, (5lg. The part of Z
Iving over the remaining portion of the y-plane is the disjoint union of two
copies of the slit y-plane, namely of the two sheets with equations

x=T1ly) , x=-fly).

As the complex plane can be compactified by adding one point at infinity,
yielding the Riemann sphere, so Z can be compactified to a RS C by adding
two points at infinity. More exactly, one can glue in two small disks
(wllwl<e} and {t]ltl<e} by identifying

O/ w), v="1/w,
“F1/t), y =1/t

W (X, y) where X

b —— (X, y) where X



To get C from our two copies of the (completed) slit y-plane we have to glue
them according to the following prescription: we attach one side of each slit
on the "lower"” sheet to the opposite side of the corresponding slit on the
"upper” sheet. This is illustrated in the picture below: after glueing one gets
an unbroken solid arrow and an unbroken dotted arrow.
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Topicture what C looks Tike topologically it is convenient to perform an

inversion with respect to the origin (y+—1/y) in the "upper" slit y-plane.

This has the effect of reversing orientation, in particular reversing the

‘upper” arrows in the picture above. The glueing process can then be
visualized, in successive steps, as follows:

/ N / 7000/
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The resulting R> therefore looks like this:




In other words, C has genus equal to 2. For general F, this same construction
yields a RS of genus g=n-1:

DO( )

Now we shall explicitly write down all abelian differentials on C. et
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Inour special case
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By Tooking at the first expression near the 6t roots of unity, where v does
not vanish and % is a local coordinate, and at the second expression away
from the 6N roots of unity, where x does not vanish and vy is a local
coordinate, we see that ¢ 1s holomorphic and never vanishing on Z. In the w
coordinate, instead, we have that

g 1
WA
o1 -w® o 1 -w®

so ¢ has a simple zero at w=0; the same happens for t=0. For general F,
similar considerations would show that « is holomorphic, does not vanish on
Z, and has zeros of multiplicity n-2 at the two points at infinity. We then

have at least g independent abelian differentials on C, namely



o ,oye v, o, vy

We claim that this is all, i e., that any abelian differential on C is a linear
combination of these. The argument runs as follows. Let h be the involution
on C sending (x,y) to (-x,y). Any abelian differential o« can be written as
the sum of its h-invariant and anti-invariant parts, namely of

B - o+ hiot) o = i)

2 ’ L

The invariant part, (3, descends to a holomorphic differential on the y-plane,
at lTeast away from the roots of F. If p 1s one of these roots, (& can be
written, near p, in the local coordinate x, as @ = a(x) . dx, where

alx)=> cix!.
20

oince (3 1s invariant under the involution xr—-x, all the coefficients with
even index must vanish, so that we can write, for some holomorphic function
b

6 = 2b(x?)-xdx = bly)-dy .

50 (3 descends to a holomorphic differential on all of the (completed) vy-
plane; since there are no nonzero holomorphic differentials on the Riemann
sphere, (3 must be zero. Now we know that every abelian differential o on C
is anti-invariant. The quotient /¢ is then an invariant meromorphic
function on C which 1s holomorphic on Z, because ¢ does not vanish there.
Therefore

o/ = P(y)

for some polynomial P. The degree of P cannot exceed g-T1T=n-2 since ¢ has
(n-2)-fold zeros at infinity.

In conclusion, we have seen that, at Teast for the examples considered so
far, the genus can be equivalently defined as:

i) the number of handles of C,
i1) the dimension of the space of abelian differentials on C,

i11) %(the number of zeros of an abelian differential on C)+1,

Wwe shall now see that this holds for every R>. Consider the sequence of
vector spaces and linear maps



(1.4)  0—=HYUC,K)—HNC,C)—=H'(C,00)-LHI(C,Ke)—H(C,C)— 0,
where the meaning of the symbols is as follows:

- HO(C,KC) (often abbreviated HO(KC) or HY(K)) stands for the vector space of
abelian differentials on C.

- H'(C,Ke) (abbreviated H'(Ke) or H'(K)) stands for = (1,1)-forms .
d-exact (1,1)-forms

d-closed i-forms

- HT(C,(D) (abbreviated H'(T)) stands for -
d-exact i-forms

- H'(C,0¢0) (abbreviated H'(Oc) or H'(9)) stands for = (0,1)-forms .
d-exact (O, 1)-forms

The maps are induced by the obvious ones on the form level; in particular dis
induced by exterior differentiation. Of course, via the Dolbeault and deRham
isomorphisms (more on these in section 2) (1.4) is just part of the long
cohomology exact sequence of

0—C—0c—5Ke—0,

where Oc is the sheaf of holomorphic functions on C and K¢ the canonical
sheaf, but this need not concern Us now.

we claim that (1.4) is exact. The only point that deserves some attention
is the fact that abelian differentials inject into H'(©). To see this, let o be
an abelian differential, and suppose «=dp. Then a3 =0, so B is holomorphic,
hence constant, and o=dp3=0. Exactness of (1.4) at other places is
straightforward. As an example, let's check exactness at H(T). Suppose o is
a d-closed 1-form, and write o =0p3+y, where (3 has type (1,0) and y has
type (0,1). To say that the class of o maps to zero in H'(9) means that we
can write y=0m. Then

o(F-3mM)=3B+00mM=03B+dy =do=0,
G-om=pR+ry-dm=o-dn.

The first identity says that 3-om 1s an abelian differential, the second that
it represents the same class in H'(C) as o,
Now consider the antilinear map

(1.5) HY(C Ke)—HI(C,00) ; or——class of o .

We wish to show that it is injective. Suppose in fact that «=203@. Then



293 = 00 =0 .

Now, 1f z=x+1y 1s a local coordinate on C and x, v are its real and
imaginary parts,

2’6 e e

so that 0dR=AR dzadz is essentially the Laplacian of (3. We know then that
3 1s hamonic. But now the maximum principle (cf. the Appendix) says that, if
a harmonic function has a local maximum, then it is constant in a
neighbourhood of 1t. 5ince C is compact and connected, 3 must be constant,
SO o 15 zero.

To show that (1.5) is in fact an isomorphism is not as simple. What has

to be shown is that, if o is a (0,1)-form, we can find (@ such that
oloe-03pR) =0,
In other words, we must be able to solve the differential equation
dIB =du .

That this is solvable follows from the following more precise result, which
can be regarded as the cornerstone of the theory of compact Riemann
surfaces.

(1.6) Theorem. Let C be a compact Riemann surface, and let ¢ be a C* 2-
form on it. Then the equation

QdU =y
can be solved if, and only if, v has zero mean, 1. e,

Jy=0.
C

To be able to apply (1.6) to our special problem, we need only notice that

[0t =[do=0,
C C

by Stokes' theorem. As for the proof of (1.6), we refer to the Appendix; here
we would just like to rephrase the theorem, so as to make it more plausible.
Pick a volume form & on C, that is, a form that locally looks like



; a-dzadz = a-dxady

1

where a is a positive function, and define the Laplacian of U to be:

=i.(d3u)/ % .

We also define an inner product on functions defined on C by setting

(uv)y=Juve.
c

With respect to this inner product, L 1s a selfadjoint, strongly elliptic,
partial differential operator. In fact

(Lu,vy =i[(@3aw/dI)vd =ifadu-v = i[ddu-v)+if dusav
C C C C

Jau&W— JmUa )= ifu-dav=-ifu-2av ="{u,Lv).
C C

General theory then says that Lu=v can be solved if, and only 1f, v 1S
orthogonal to the kernel of the adjoint of L, that is, to the Kernel of L. But
this kernel consists precisely of the harmonic functions, which are all
constant. Thus the condition for Lu=v to be solvable is that

[vd =0,
C

and dou = can be solved if and only if
0=[(y/®)d =y,
C C

Another consequence of (1.6) is that the homomorphism from HW(C,KC) to
2(6 C) in (1.4) is an isomorphism: in fact, if o isa (1,1)-form and «=d@,
then we may write
o =dR =030y =-23(dY),
so o represents zero in H1(C Kec). Moreover, Hq(C Kl can be explicitly

calculated. To see this, let « be a (1,1)-form: there is a constant k such that

Joo=k[d

By (1.6) this implies that we can find 3 such that



o-kd =03B =d3p .

Thus every element of H1(C,Kc) is a multiple of the class of ¢, and HW(C,K(;)
is one-dimensional.

In conclusion, if we write h*‘(,) to denote the complex dimension of
Hi(,), the exact sequence (1.4) and the corollaries of Theorem (1.6) tell us
that:

(1.7) %-N(C,(D): nO(C Ke) =h'(C,o0) .

(1.8) h(C Ke)=h4Cc,c)=1.

Of these equalities, the first is certainly the most remarkable, for it tells us
that two invariants of C that are defined in terms of the holomorphic
structure, such as hO(KC) and h1((9c), are in fact purely differential
invariants, because such is h2(C), Moreover, since we have explicitly
calculated, for at lTeast one R> for each genus, that hOK) equals the genus,
and since all R> of the same genus are differentiably the same, we find that

(1.9) %-h%@,ﬂ:)=h0(c,+<c>=h%c,@c>=g(m,

where g(C) stands for the genus of C.



1

2. Riemann-Roch and duality. Let C be a compact connected R5. wWe recall
that a holomorphic line bundle L on C can be described by giving a covering

of C by open sets Uy and holomorphic transition functions gegp such that
Japdpy = Yoy

for any choice of o, (3, and vy . More exactly, L can be bullt from the disjoint

Un1on

|| Ugx©
64

via the identifications

UeXC 3 (X, To) ~ (x,7p) € UgxC  if  Ty=Qaplp.

A holomorphic section (or simply a section) of L is a collection s={sq} of
holomorphic functions Uy — € such that

(2.1) S = JopSp on UgnUp .

One similarly defines meromorphic sections or C*° sections of L. Likewise,
an L-valued (0,1)-form is a collection ¢={yy} of C* (0,1)-forms on the
open sets Uy such that

Yoo = Joppp  on UgnUp.

Let s bea C* sectionof L. Differentiating (2.1) with respect to o gives

0S¢ = G 05,

since gep is holomorphic. Thus (s} is an L-valued form, which we will
denote by as.

(2.2) Warning. If L is a line bundle we shall often refer to the sheaf of its
holomorphic sections (cf. Gomez-Mont's notes in these proceedings) as a line
bundle and denote it by the same symbol L.

(2.3) Example. We denote by Oc, or more simply by O, the trivial line
bundle CxC (or, more precisely, its sheaf of sections, i. e, the sheaf of
holomophic functions on C). We denote by K¢, or more simply by K, the
canonical line bundle on C, 1. e, the Tine bundle whose transition functions,

relative to a covering {Uyl by coordinate open sets with coordinates z, are
the functions dze/dz@. A holomorphic section of K is nothing but an abelian



differential: in fact, if a={ay)} is a section of K, then g dzyg=ag-dzg on
UgnUp, so that {ag-dzg) s an abelian differential.

(2.4) Example: the line bundle associated to a divisor. Consider a
divisor D=> njipj, and let {Uy} be an open covering of C. For each o choose
a defining equation fy for D in Uy (e g, if Uy contains only one point of D,
say pi, and z 1s a coordinate centered at pj, then we may take fo=2z"1 while
if Uy does not contain any point of D, then we may take fu=1). Set

Jop = fcx/f(s )

and Tet ©@(D) be the corresponding line bundle; it is easy to check that

changing covering or defining functions yields equivalent transition functions

(cf. Gomez-Mont's notes in these proceedings), so that O(D) is well defined.
Let s=1{(sqy) be asection of O(D). Thus

Se/fe=5p/fg  onUgnUp,

so that sq/fq 15 the restriction to Uy of a globally defined meromorphic
function F; moreover the order of pole of F at p; does not exceed ny, while
at points of C not belonging to D, F 1s holomorphic. Conversely, given a
meromorphic function with these properties, {fyFJ) is a section of ©O(D). Put
otherwise, if we denote by HO(C,L) the vector space of sections of a line
bundle L, and by E(D) (M(D) in Gomez-Mont's notation) the vector space of
those meromorphic functions whose order of pole at each py does not exceed
ni, then

HY(C,0(D)) = E(D) .

Suppose L 1s given by transition functions gge, and has a nonzero
meromorphic section s={sq). The divisor of s is the divisor

D= npp,

peC
where np stands for the order of zero of s at p, poles counting as zeros of

negative order; notice that we are dealing with a finite sum. Now Sg 1S
clearly a local defining equation for D; since

Jup = Sa/Se

L is isomorphic to @(D). In particular, to show that a line bundle is of the
form O(D) it suffices to show that it has a nonzero meromorphic section.



Line bundles can be tensored: if L and M are given, with respect to the

same covering (we can always reduce to this situation by refining the
original coverings), by transition functions gep and fgp, then the tensor

product L®M 1s the line bundle with transition functions gupfepe. We shall
normally write LM instead of L®M. A section of L can be multiplied by a
section of M, the result being a well defined section of LM. The dual, or
inverse, of L, written L‘?, is the 1ine bundle with transition functions g;@
Clearly, the tensor product of L with L s trivial, Tensoring line bundles
corresponds to adding divisors; more precisely

OD+D) = 0D)®OD) 9D = 0(-D) |

Wwe shall often write L(D) to denote the tensor product L& OD).

Let L be a line bundle, and let s and t be two nonzero meromorphic
sections of L. Then the quotient s/t is a meromorphic function on C, and the
residue theorem shows that it has as many zeros as it has poles. Thus the
numbers of zeros of s and t are the same (poles count as zeros with
negative multiplicity). It then makes sense to define the degree of L as

deg(L) = number of zeros minus number of poles
of a meromorphic section of L.

In other words:

deg(O(D)) = deg(D) .
we shall see later that any line bundle on C is of the form @(D) for some

divisor D, so that the degree of L is defined for any line bundle L.

(2.5) The Dolbeault isomorphism. Let L be a line bundle on C. Consider
the sheaf seguence

(2.6) 0—L— AW -L AT ()—0

where 4A9(L) is the sheaf of C* sections of L, and A1) the sheaf of L-
valued (0,1)-forms. We claim that it is exact. The only problem is to show
that 9 is onto. This is a purely local question. What has to be shown is that,
if ¢ is a (0,1)-form defined in a neighbourhood of a point peC, then the
equation

p = 0%

can be solved in a neighbourhood of p. To do this, one first solves



(2.7) oy =33M .

Assuming that this is possible one then notices that d(y-0m)=0, so that we
can locally write

or, equivalently,

p=3(m+1).

That (2.7) is solvable in a neighbourhood of p can be seen in a number of
ways. For example, one may argue as follows. >ince we are lookKing for a local
solution, we may suppose we are on a torus T and not on C.Let ¥ beaC™
function that is equal to 1 in a neighbourhood of p and equal to zero outside
of a neighbourhood U of p. Let ¢ be equal to v on U and equal to zero
elsewhere, Then we may solve (2.7) by solving, on all of T,

oy =003m .

This is possible because of (1.6), whose proof, incidentally, is very easy on a
torus.

Now that (2.6) has been shown to be exact, one gets from it a Tong exact
cohomology seguence

0—HYUC, L)—=HYC, AU —=HYC, AT —H(C,L)—=H(C, AL —

we shall show that HWC,ACO(L)) vanishes, so that one has the Dolbeault
isomorphism

(2.8) HI(C, L) = = L-valued (0,1)-forms
g-exact L-valued (0,1)-forms

To see that H'(C, A%(L) =0, let (1) be an A%(L)-valued 1-cocycle relative to
an open covering {Uj}. Thus

Eijt 6k = §ik on UinUinUg.
jre] ]

Taking 1=7, one gets that £i;=0 on UjnUy; then, taking 1=K, one gets that
€ij=-£ji on UinUj. Now choose a C partition of unity {A;} subordinated to
(Ui}, Set

Ni= > Ankni,
h



where it is understood that hpfpi is extended to zero on Ui-(UinUp). Then

M3=Mi= 2 Anbhi= 2 ArEni = 2 M(Ein+Eny) = (O ApEij = £45.
h h h h

Thus {£1j) represents zero in HW(C, AP(L)). This completes the proof of (2.8).

In what follows, we shall not make any use of sheaf cohomology. The
only reason for discussing the Dolbeault isomorphism has been to indicate
that our arguments also have a cohomaological interpretation.

The Riemann-Roch problem is the problem of computing the dimension of
HO(C,L), where L is a line bundle on the RS C. A partial answer is provided
by the Riemann-Roch theorem.

(2.9) Riemann-Roch theorem. Let C be a R3 of genus g and L 32
holomorphic line bundle on it. The vector spaces HO(C,L) and H?(C,L) are
finite-dimensional and their dimensions are related by the Riemann-Roch
formula:

hO(C,L)-h"(C,L) = deg(L)+1-q.

To begin with, the theorem is clearly true if L=0.Let p be a point of C;
consider the sequence

(2.10)  0—HO%C,L-pH—HOC,L) -5 Ly —SH(C,L-p)—H(C,L)—0,

where Ly is the fiber of L at p, o 1s evaluation at p, and 3 1s obtained as
follows. If celp, there is a section s of L on a neighbourhood U of p such

that s(p)=c. Pick a C function y that is equal to 1 in a neighbourhood of p
and equal to zero outside of U (as we will have to use these functions often,
we shall agree to call such a y a "bump function in U around p"). Then (3(c) is
the class of a(ys) extended to zero outside U notice that a(ys) is
identically zero in a neighbourhood of p.

The sequence (2.10) is exact. This is quite easy to check. For example,
let's verify exactness at L. With the notations we have just established, if
B(c)=0, then a(yxs)=0y, where ¢ is an L-valued form that vanishes at p.
Thus ys-+v is aholomorphic section of L whose value at p is ¢, 1. e,

ol s-w)=cC.

It is equally easy to show that HW(C,L(—D)) maps onto Hq(C,L). Given an L-
valued (0,1)-form y, we can write, near p, ¢ =0m. Then, if % is a bump



function around p, v -o(ym) is an L(-p)-valued form whose class maps to the
class of .

oince the alternating sum of the dimensions in an exact sequence of
vector spaces vanishes, and the degree of L(-p) is one less than the degree of
L, (2.10) shows that

Riemann-Roch holds for L < it holds for L(-p).

Since we have remarked that the Riemann-Roch theorem is valid for L=0,
this proves the Riemann-Roch theorem for any O(D). If we grant that any line
bundle on C is of the form O(D), this finishes the proof of Riemann-Roch.

(2.11) Corollary. The degree of the canonical bundle of a RS of genus g is
29-2.

This follows by applying the Riemann-Roch formula to K.

To make full use of the Riemann-Roch formula 1t 1s necessary to give an
alternate description of HW(C,L). Consider an L-valued (0,1)-form ¢, and
denote by [¢] its class in H'(C,L); ¢ is a collection [py) of ordinary (0,1)-
forms on open sets Uy, tied by

Yo = JupYe,

where the ggp are transition functions for L. Now let y be a section of kL™
we can view it as a collection {y ) of holomorphic (1,0)-forms tied by

Yoo = Gop¥p.

Thus

YorPo = gpayas ON UOCOU@.

Define yay to be the (1,1)-form that on each Uy restricts to yoarywy. We
define a pairing {,) between HY(C,KL™") and H'(C,L) by setting

(19D = [ynyp.
C
The basic result about this pairing is

(2.12) Duality theorem. (, is a perfect pairing between HY%C, KL ") and
H(C,L).



To prove the theorem, notice first that it holds for L=0 and for L=K. For
what concerns O, it has been shown in section 1 that o — « gives an
antiisomaorphism between HO(C,K) and H1(C,(9), and one has

(o, il = [otaiae >0 if =0

C

As regards K, we know that H'(C,K) is generated by the class of a volume
form ¢, and we have

(1,leh=[e>0.
C

To prove the duality theorem in general, we shall show that, for any point p
in C:

Duality holds for L and KL™! < it holds for L{-p) and KL_W(D).

To do this, consider the exact sequence (2.10) and its analogue for KL_1(D):

0 — HOL(-p) — HOUL) -% L, -& H'WEp) — H'W — 0
0—H(KL T (p)) = HNKL ™) XKL T (p)p =2 HOUKL T (p)) = HOKL ) =0 |

Each vector space in the upper sequence, except the middle one, is paired
with the space just below 1t; the pairings are compatible with the connecting
homomorphisms. By the "five Temma”, to conclude 1t will suffice to define a
pairing between L, and KL_W(D)D that is compatible, up to sign, with the

pairings between HO(L) and H'(KL™ 1), H'(L(-p)) and H2(KL "(p)). Suppose ¢
belongs to Lp and e belongs to KL’1(D)D. Let z be alocal coordinate centered

at p. There are a section s of L and a section t of L™! on a neighbourhood of
p such that

c=s(p) ; e=t(p)-dz—z.

We then set

(e,cy=2nitlp)sip).

We shall now check compatibility. Let ¢ be as above, and let ¢ be a section
of KL_W(D). Near p, v may be written in the form t-(dz/z), with t a local
section of L', We wish to show that

(dy,c)=1<y,BcCy.



The left-hand side equals 2mni-s(p)-t{p). To compute the right-hand side,
recall that (3¢ is the class of a(ys), where y is a bump function around p.
Then, if " is asmall circle around p,

(p,6c)y=[pnad(xs)=-[dlxsy)=[st(dz/z)=2mi-s(p)tip).
c c r

A similar argument proves compatibility, up to sign, with o« and y . This
concludes the proof of the duality theorem.

The duality theorem makes 1t possible to rewrite the Riemann-Roch
formula in the following more useful form:

(2.13) hO(C, L) -h%(C,KL™") = deg(L)+1-¢ .

The Riemann-Roch and duality theorems have really been proved only for
line bundles of the form O(D); as we have already said, however, every line
bundle on a R> is of this type. We shall not give a complete proof of this here,
but we Iimit ourselves to the following simple remark. Let L be a line bundle
of degree d on the R> C, and suppose we know that

(2.14) h(C, L) <+o0 .

Then we claim that L is of the form @(D), for some divisor D. In fact,
consider the exact sequence

0—HYC,L)—=HC, LN —Lp)p—HC, L—=RHC, LEH—0,

where p is apoint of C.If hO(C,L(p))>O, we are done, because then L(p) has
a nonzero holomorphic section, hence L has a nonzero meromorphic section
s, and L=0(D), where D is the divisor of zeros of s (a pole being counted as
a zero of negative multiplicity). We may then suppose that hO(C,L(p))=O, S0
that

hc, L) =ntc -1,

Now we repeat the same argument, replacing L with L(p), and so on. Since
hWC,L) is finite, we conclude that there is an integer n such that
hO(C,L(n-p)) is not zero. Thus L has a nonzero meromorphic section, and
hence is of the form O(D).

It remains to prove (2.14): for this we refer to the Appendix.



3. Applications of Riemann-Roch. In this section we shall discuss a
number of elementary applications of the Riemann-Roch and duality theorems
for a line bundle L of degree d onaR> C of genus ¢g. A trivial remark is that

h(C,L) =0 if d<0,
h'(c,L)=0 if d>2g-2.

The first of these follows from the fact that the number of zeros of a
nonzero holomorphic section of L eguals the degree of L. The second can be
obtained by applying the first identity to KL™' since the degree of K eqguals
2g-2 and h'(C,L)=h%C,KL™ "), by duality.

The Riemann-Roch formula thus "solves” the Riemann-Roch problem when
d<0 or d>2g9-2. In particular, we have that

hO(C, L) =d+1-g if d>2g-2.

The "borderline” cases d=0 and d=2¢-2 are also easily dealt with. If
d=0 and L has a nonzero section, this cannot vanish anywhere, so L 1S
trivial. If d=2g-2 and h1(C,L) is not zero, then, by duality, KL™" must be
trivial. In conclusion

when d=0 , either L =0 and h%L)=1 or h%L) =0
r no%c,L)=g-1.

when d=2g-2 , either L =K and h9%L) =g

In the range O<d<2g-2 things are not so simple. All we can say, for the time
being, i1s that, in this range,

hO(C, L) > d+1-g.

Thus, in the diagram below, the possible values of (d,ho(L)) lie on the heavy
lines or in the shaded region.
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line hL) =d+1-g

0 g-1 20-2

We shall be able to be more precise about the upper boundary of the shaded
area later, when we discuss Clifford's theorem.

There is a close relationship between line bundles and maps into
projective spaces. ouppose C is a R> of genus g. A linear system on C is the
projectivization

V| =PV

of a vector subspace V of HO(L), for some line bundle L on C. The degree d
of |V]| is the degree of L, and the dimension of |V| is the projective
dimension, that is, one less than the dimension of V. If the dimension of |V|
is r, it is customary to say that |V| is a gy. If L is a line bundle and D a

divisor, |L| is an abbreviation for [HP(L)|, and |D| one for |0(D)|: a linear
system of this sort is said to be complete. One says that |V| has no base
points if, for any point p of C, there is an element s of V such that s(p)=0.

Suppose then that |V] is a gg with no base points: one may then define a

holomorphic map
CP‘V‘: C— PV,
where V7 is the dual of V, by setting

®),(p) = the hyperplane (s € V] sp)=0} .

| one chooses coordinates for IP(V7), 1. e, a basis sg, - -,sr for V, then ‘I’|\/|
s given by

pr——[solp): - 1sr(p)],
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where [so(p): - se(p)] is the point in IP" that is defined as follows: pick a
generator t for the fiber of L at p; write si(p)="7it. Then

[solp): - isplp)]l=1[fg: Tl

This is well defined since the right-hand side does not depend on the choice
of t.

(3.1) Example. Let p be a point on the RS C: then hY(O(p)) equals 1 or 2.
The latter occurs precisely when there is a meromorphic function f on C
whose only singularity is a simple pole at p. Then |0(p)| has no base points
and hence defines amap ¢ from C to the Riemann sphere IF”,- thus

$(q) =[1:f(q],

where it is understood that p maps to the point at infinity [0:1]. If aeC, the
section f-a of O(p) has only one zero: this means that ¢ is one-to-one.
Moreover, since the zero of f-a has to be simple, & is an immersion away
from p; it is an immersion at p as well since f has a simple pole. In other
words, C is isomorphic to the Riemann sphere. In particular, since the
Riemann-Roch formula says that, when C has genus zero, then W) =2,
we conclude that the only R> of genus zero is the Riemann sphere, up to
isomorphism.

(3.2) Remark. In section 4 we shall see that any R> of genus one is
isomorphic to C/A for some lattice A

(3.3) Example: the canonical mapping. A corollary of (3.1) is that, on any
RS of genus gx1, the canonical linear system |K| has no base points. In fact,
(3.1) shows that, for any p,

1=n%00) = h"(K-p),
so that, by Riemann-Roch,
hOKG-p)) =g-1.
The mapping
o= P C—— P97

is called the canonical map.
AS an example, let's describe what the canonical map looks like for the
RS C of example (1.3); we keep the same notations as in (1.3). We showed
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that the abelian differentials on C are the linear combinations of ¢, vy,
ygup AR yg_ﬂp. Thus the canonical map for C is

(X,y)'——>[1:y:y2: : ”:yg—w] .

In other words, the canonical map is obtained by composing the projection
(x,y)r—y onto the Riemann sphere with the (g-1)3t Veronese embedding

Pl ——p9-T
yl——>[1:y:y2: e :yg_ﬂ]

(whose image is the so-called rational normal curve of degree g-1J In
particular, the canonical map, in this case, is generically 2-1 and not 1-1.

From now on we assume that ¢g>1. suppose that the canonical map o« 1S
not injective, 1. e, that there are two distinct points, p and ¢, such that
olp)=oc(g). This means that, if a section of K vanishes at p, it automatically
vanishes at g, and conversely, so that

hOK(-p-g) =g-1,

or, by Riemann-Roch,

h(O(p+g)) = 2.

suppose instead that the canonical map is not an immersion at some
point peC. We choose a basis sg,--+,5¢g-1 for the abelian differentials in

such a way that s, --,5g-1 all vanish at p. Since we are assuming that the

canonical map is not an immersion at p, they must in fact vanish doubly at p;
we then have

hO(K(-2p)) = g1 , hOwazp) =2

In conclusion, if the canonical mapping 1s not an isomorphism of C onto its
image, there are two points (distinct or coincident) p and g on C such that

hOp+a)) = 2.

In other words, C possesses a g;, or, which is the same, there is 2

meromorphic function f on C with only two poles (or one double pole). The
map

Ao
Ploprg CT P

X [1:f(x)]
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is then generically 2-1, for the section f-a of O(p+qg) has two zeros (or one
double zero) for every aeC; as one says, C is a two-sheeted covering of P
A R> of positive genus that is a two-sheeted covering of P! is said to be
hyperelliptic. We can then say that, unless the R> in question 1s hyperelliptic,
the canonical map is an isomorphism onto its image; the image of the
canonical map i1s then called the canonical curve. The RS constructed in
example (1.3) are all hyperelliptic. We shall see in a moment that in fact all
hyperelliptic RS have been constructed in (1.3). The analysis of the canonical
map for these R5, which has been carried out above, then shows that for a
hyperelliptic RS C the canonical map is the composition of the double

covering

C— P’

and of the Veronese embedding
Pl ——po T

This seems to be a good spot to discuss an important formula, due to
Riemann and Hurwitz, relating the genus of a R> and of a covering.

(3.4) The Riemann-Hurwitz formula. Let C and ' be two RS of genera ¢
and vy, and suppose there is a non-constant holomorphic map

f.C—r .

We denote by d the degree of f, that is, the number of points in a general

fiber f '(x); one says that C is a d-sheeted (ramified) covering of . Let p

be a point of C, and set g=f(p); choose coordinates z and w centered at p

and q, respectively. Near p, the map f i1s given, in these coordinates, by
wo=2z"b(z),

where b(0)=0. Replacing the local coordinate z with the new local

coordinate z-¥b(z) , we may actually suppose that
(3.5) wo=2"

The number n-1 1s called the ramification index of p and denoted by rp. [T
rp>0 we say that p 1s aramification point and g a branch point. Clearly

there are only finitely many ramification points. The Riemann-Hurwitz
formula then says that
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(3.6) 29-2=d(2y-2)+> rp.
peC

To see this, let w be a nonzero meromorphic differential on . Then if, as
usual, we count poles as zeros of negative multiplicity, the number of zeros
of w 1s 2y -2. We may choose w so that its zeros and poles are not at
branch points of f. Now suppose peC is aramification point of f, and let f
be given, near p, by (3.5). At g=1(pJ,

w = alw) dw , al0) = 0,

so that

w) =azP " (rp+1)2"Pdz

that is, f*(w) has an rp-fold zero at p. Thus the number of zeros of f*(w) is
d(2y-2)+ > rp.
pel

Since this number also equals 2¢g-2, the Riemann-Hurwitz formula (3.6) is
proved.

Now suppose C is hyperelliptic of genus g. Then there is a two-sheeted
covering f:C— P, and the Riemann-Hurwitz formula says that

29-2=-4+r,

where r is the number of branch points of f. Hence f 1s branched at 2g+2
points Tq,T2, +, {2g+2, and we may choose coordinates v, m=(1/y)on P! so

that none of them equals co. Then C is isomorphic to the (completion of the)
RS with equation

=TT gt

1¢i¢2g+2

in fact, the function [[(y-17y) has a single-valued square root x on C and,
keeping the notation of example (1.3),

p——(x(pJ, v(p))

yields an isomorphism of C-f '(o0) onto Z which extends to an isomorphism
of C onto the completion of 7.

(3.7) Every RS is algebraic. Let L be a line bundle on the RS C; let g be
the genus of C and d the degree of L. In order for (I)\L\ to be defined it is
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necessary that |L| have no base points: this means that, for any peC, we
must have

A2 (L(-p) = h9 (L) -1 .

When d>2g this is a consequence of the Riemann-Roch formula. [t also
follows from our discussion of the canonical mapping that, In order for ‘I’M

to be an embedding, we must have

h(L(-p-q)) = hO(L) -2

for any two points p,geC. When d>2g this is again a consequence of the
Riemann-Roch formula. We then conclude that |L| always yields an embedding
of C insome projective space IP" when the degree of L is larger than 2g; in
particular, any R> can be realized as a complex submanifold of some P"

At this point, we could appeal to a basic theorem of Chow which says
that any compact complex subvariety of IP" is defined by homogeneous
algebraic equations, 1. e, is an algebraic subvariety of P" to conclude that
every R> is isomorphic to an algebraic curve, If, however, we wish to avoid
Chow's theorem, we can proceed as follows. Let C be a RS, which we view as
embedded in some IP" via a linear system |V|. In particular, C is not
contained in any hyperplane. Consider the subvariety X of P" which is the
union of all the projective lines joining couples of points of C (the line
joining a point to itself is the tangent to C at the point). The dimension of X
is at most three, so, if n>4, there is apoint x<IP" not contained in X, By the
definition of X, then, projection from x to pn-1 maps C isomorphically onto
its image. Notice also that the projection of C from x to PP s given by the
linear system |V'|, where V' is the subspace of V consisting of all seV such
that the corresponding hyperplane in P" passes through x. Repeating the
same procedure, if necessary, we may then suppose that n=3. Now consider
the two subvarieties Y and Z of IP? defined as follows: Y is the union of all
tangent lines to C, while Z 1s the union of all Tines passing through a fixed
point peC and some other point of C. Both Y and /Z are at most two-
dimensional, so there is a point xelP? not belonging to any of them. Let [" be
the image of C under the projection from x into P<. Since x does not belong
to YUZ, the map from C to IPZ is an immersion and is generically 1-1 onto
" In particular, every singular point of ' 1s the union of a finite number of
smooth branches. Now the map from C to ' IP? is obtained by setting

Xi=sy , 1=0,1,2,
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where Xo, X1, X2 are homogeneous coordinates and so,sq,sp are sections of
some line bundle L. By Riemann-Roch, for Targe k the dimension of HO(C, L)
is a linear function of k; in particular, the number of linearly independent
monomials of degree K in Sop,Sq,S2, which are sections of Lk, is O(k). On the
other hand, the number of independent monomials of degree k in Xqg, %1, X2 1S
kKik+1)
2
polynomial P(Xg,Xq,X2) of degree k such that P(sg,sq,s2) vanishes
identically on C; in other words, P(Xp, X1, X2) vanishes identically on ' Let

P=1T0q;

be the decomposition of P into irreducible factors. 5ince C is connected, one
of the factors, call it Q, must vanish identically on ', Denote by E the zero
locus of Q in IPZ. Since Q is irreducible, the complement of the singular
locus of E (a finite set of points) is connected. Hence E equals M. By blowing
up its singular points, I can be desingularized (cf. Bardelli's notes), and the
projection map C—1T lifts to a surjective map m:C—f, where " is the
desingularization of [". >ince m 1is generically 1-1, it has no branch points,

hence is an immersion, hence an isomorphism. As [ is an algebraic
supvariety of a suitable projective space, we are done,

This implies that, for large enough K, there must be a homogeneous

(3.7) A geometric version of the Riemann-Roch theorem. The
Riemann-Roch formula can be "read” in the geometry of the canonical map. For
simplicity, we shall do this only for non-hyperelliptic R>. Let C be one such,
and view 1t as being embedded in P9-1 via the canonical map. A linear
function on P97 corresponds to an abelian differential, so the divisor cut out
on C by a hyperplane is the divisor of an abelian differential, and conversely.
Now let D=pj+po+ .- +pg be an effective divisor on C, and let r=dim(|D|) be
the dimension of the corresponding complete Tinear system. There are exactly

hY(K(-D)) =r+g-d

linearly independent hyperplanes containing D, so the Tinear span of D,
written D, has dimension

(3.8) dim(D)y=d-r-1.

Ina way, this is a geometric version of the Riemann-Roch theorem. Of course,
when D contains multiple points, we have to be cautious about what we mean
by "span of D" The definition of span that makes (3.8) work is the following.
Wwrite D=> nipj, where the p; are distinct; then the span of D is defined to
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be the subspace of K spanned by the osculating subspaces to C of order (n;-
1) at the p;.

The Riemann-Roch theorem, in this geometric form, has an interesting
conseguence. Notice that, since there are exactly g independent abelian
differentials on C, the canonical curve is not contained in any hyperplane.
Thus, if p1,p2, -, Pg are general points of C, they span a linear subspace of
PI9~1 of dimension min(d-1,g-1). This means that, for a general effective
divisor D of degree d, one has

hO(O(D)) = 1 if d<g,
hO(O(D) =d+1-g if d>g.

Now let p be a general point of C, and D' a general effective divisor of

degree d<g. Clearly, h9(®9(D'-p))=0; hence, if D is a general divisor of
degree d, one has

hO(O(D)) = 0 if d<gqg,
hO(OD)) =d+1-g if d>g.

Notice that these are the minimum possible values allowed by Riemann-Roch.

We have noticed that the Riemann-Roch formula yields a lower bound for
h2(0(D)) in the range 0<deg(D)<2g-2, and have promised to give an upper
bound. This is provided by

(3.9) Clifford's theorem. Let C be a RS of genus ¢ and let L be a line
bundle of degree d on C, with 0<d<2g-2.Set r=n°L)-1. Then

d>2-r.
Moreover, if d=2.r, then one of the following occurs:
iy L=0,
i) L=K,
111) C is hyperelliptic.
Wwe shall prove only the first assertion. Notice, to begin with, that there is

nothing to prove if r<0 or h1(L)=O; in this second case, in fact, Riemann-
Roch gives

r=(d-1)-(g-1)<(d-1)-(d/2) <d/2.
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In the remaining cases we shall rely on the following general
(3.10) Remark. Let L be a line bundle on C. Then

(for any h-uple of points pq, - -,pp of C,
(L) h+1 = {there is a nonzero section seH%(L)
| such that s(pi)=0,1=1,--,h.

To see this, notice that s(py)=slp2)=- .=s(pp)=0 is a system of h linear
equations in s.If O > h+1, 1t has a nonzero solution. Now 1et's prove the
converse. Let k be the dimension of hO(L); since, by our assumption, k>0,
there is a point pq of C where not all sections of L vanish. Thus

hOL(-p1)) = h%L) -1 =Kk-1 .

If h>0, we can find a point p> such that h9(L(-p1-p=2))=h%L(-p1N-1, and so
on. After h steps we find points pq1,p2, -+, 0n such that

ho(l_(—pq “Po-=ppl)=k-h.

Our assumption then says that k-h»>0, that is, ALY oh+1,

Now we return to the proof of Clifford's theorem. Pick any r+j-1 points

P1, ,Pr, ., Pr+j-1 0N C, where j=h1(L)=hO(KL_W). By (3.10), we may find
nonzero sections s of L and t of KL ! such that s vanishes at D1, ,Pr,
while t vanishes at pr+q, -+,Pr+j-1, N€NCe st 1s a nonzero section of K that
vanishes at py, -, pr, +,Pr+j-1. By (3.10) and by Riemann-Roch, then,

g=h%K)2r+j=r+r+g-d,

that is, 2. r<d.

We conclude this section by noticing that the theorems of Riemann-Roch
and Clifford imply that, in the (d,hO(L))—p1ane (figure below), for fixed genus
g, the values of (d, hO(L)) that may actually occur Tie on the heavy lines or in
the shaded region only.
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g line 2(h%L)-1) = d

line hL) =d+1-g

0 g-1 20-2
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4. Abel's theorem. In the real (x,y) plane, consider the square

S={(x,y)|0<x<t, 0y <)

In the interior of 5, draw two concentric disks, and call the inner one D. Now
let ¥ be a C" function that is identically zero on D, and identically equal to
1 outside of the larger disk.

©
n

}{ <__\XE']
—_ Y X

Also, let T be the torus obtained by identifying opposite sides of 5, and let
¥ and m be the oriented closed paths in T which are the images of the sides
ly=0} and {x=0} of 3, oriented in the direction of increasing x's or y's.
Then

[ dCxadxy) = [dOrx-dixy)) = [ xx-diyxy) = [ x-dy = [ dxady = 1.

S S 35 S S
Now the differentials d(yx) and d(yvy) induce differentials o and @ on T,
and the above computation says that

(4.1) [on =1,
C

Notice also that « and (3 vanish on D. Moreover
(4.2) Joo=[pB=1; [au=[p=0.
¥ m m ¥

Now consider a R> C of genus g. Differentiably, it is simply a sphere
with g handles attached; number these from 1 to g. Each handle is
diffeomorphic to the torus T with the disk D punched out (see figure below).
Hence, for each 1, the differentials « and 3 induce differentials on the i-th
handle, which can be extended to zero on the rest of C: denote by oy and (25
the resulting differentials on C. Also, let vy and mj be the images of y and
M on the i-th handle (see figure).
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Then (4.1) says that

(4.3) JainBi=58ij Jainoj=fRiaBj=0,
C C
while (4.2) says that
(4.4) JO<J=J(3J=61J ; JO<J=J(3J=O.
Y M M Y
The loops Y1, - ,¥g,M1,  +,Mg constitute a basis for the integral

homology group H,(C,7Z). For each d-closed 1-form v on C, denote by [¢] the

corresponding class in H'(C,C). We define the integral cohomology group
H'(C,7) to be

HI(C,7) = ([gleHN(C,O)| [ eZ ¥V yeH (D))
i

Clearly, a class [y] belongs to H'(C,7) if and only if 1ts integral over each of
the basic loops vyi, Mmi 1S an integer. Our definition of H1(C,7[) is of course
justified by the fact that, under the deRham isomorphism, it corresponds
exactly to the usual integral cohomology; we won't need this, however,

Now formula (4.4) says that the basis [oq], - lecgl, [B1], - [Bg] of H1 ()
s a dual basis of Y1, --,¥g,MN1, ~,MNg. On the other hand, (43) says that,
relative to [oc], - loegl, [Bq], -+ [Bgl, the matrix of the intersection form
[, [y = [ gay
C
is
(0

.
-l o)

where |g stands for the gxg identity matrix. In particular, the intersection
form is unimodular on integral cohomology, so that the prescription
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(4.5) [ = [P0y = (PO, 9D
Y C

defines an isomorphism

PiH,(C, 7)) —H(C, D).

In our context, this is the content of Poincaré duality. Notice that

P(ni) =Tloi]l 5 POy =-[B4].

we now turn to Abel's theorem. We denote by Divo(C) the group of degree
zero divisors on C, by Pic(C) the group of Tine bundles on C, and by Pico(C)

the group of degree zero line bundles. The map Dr— O(D) 15 a group
homomorphism from Divo(C) to Pico(C). We also define the Jacobian variety
J(C) to be the quotient

J(C) = HO(C, K"/ j(H, (C, 7)),

where ~ denotes dual vector space and j associates to each yeH,(C,Z) the
integration functional

wr— [ W
g

Define a map

U:DivolC) —— J(C)

by setting
o
U pi-> a0 = Jq,] -
i i

The ambiguity involved in the choice of integration paths from gi to pi 1s

precisely compensated by the fact that we are modding out by integrals on
closed paths. If we choose a basis w1, -+, wqg for the abelian differentials,

the Jacobian and the map u can be more concretely described as follows

JO=C¥YAN , A=[(UJwi, - JwglyeH, C, D),
i i

pi i
(S pi-> qi) = ( qu.]wm-w qu,]wg) -
i | w‘ 1
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(4.6) Abel's theorem. There is an isomorphism £: Picg(C)— J(C) which
renders the following diagram commutative

Picol(C)
)
/ |
Divo(C) £ |
L
J(C)

The strategy of the proof is as follows. First of all, we remark that
there is an isomorphism

(4.7) Pico(C) =HY(C,0)/HY(C, 7).
This follows, of course, from the long cohomology exact sequence of

expl2mi )
0 7 © Ule 0,

that is, from

1 1 1 X5y deg o _
o —H(C,Z)—H(C,0)—=H'(C,O0")=Pic(C) — HAC, Z)=F—0

(cf. Gomez-Mont's notes in these proceedings). Since, however, we have been
using differential forms and essentially no cohomological machinery all
along, we shall give a direct description of the isomorphism (4.7) that does
not rely on the exponential sheaf sequence. To do this, Tet ¢ be a differential
form of type (0,1); we can find a covering {Uq) of C and functions uy such
that

Y = 0Uy on Ug .

In particular, ug-ug 1s holomorphic. We then set

Jop = exp(2milug —Ug)) |

It 1s clear that the ggp satisfy the cocycle condition, and hence are

transition functions for a line bundle L. It is also straightforward to check
that the isomorphism class of L does not depend on the choice of the
covering and of the uUg; in particular, if ¢=20u on all of C, that is, if v
represents zero in H1(C,(9), L is trivial. We thus have a well defined
homomorphism
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f-H(C,0)— Pic(C) :
what has to be shown is that

1) the image of f is contained in PicolC),
11)  f maps H1(C,(9) onto Pico(C),
ii1) the kernel of f is H'(C, 7).

we shall prove i) and then, assuming 1) and iii), Abel's theorem. Finally we
will go back to 1) and iii), and prove them.

Consider then a line bundle L of degree zero, 1. e, one of the form
L=0(> (pj-qy)): we wish to show that it is in the image of f. By linearity, it
will be enough to do this when

L=00p-q).

Moreover, always by linearity, we may suppose that p and g are "very close”.
For us, this will mean that there is a coordinate disk U with coordinate z

Z-1) has a single-

zZ

such that p,qgeU, z(g)=0, z(p)=1. The function log(

valued determination in the complement of the segment joining g to p. Now
let ¥y be a C* function on C which is identically equal to 1 in a
neighbourhood V of the segment gp and identically equal to zero outside of a

closed neighbourhood of the segment gp contained in U.

<
I

<
I
(o]

The form

(4.8) Lp=1—,5(x1og(z_1)),
211 z

extended to zero outside of U and across the segment qp, is then a C*
(0,1)-form on C. We claim that it maps to O(p-q). In fact, consider the
covering {V,w) of C, where W=C-qp. A local defining equation for p-g in
W is 1, while a local defining equation in V is (z-1)/z: thus
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is the transition function for O(p-g). On the other hand,

00 =y on v,

a( 1—,)( 1og(z_1
2T z

)) = on W,

therefore the class of ¢ 1In H1(C,(9) maps to a line bundle with transition
function
1

= exp(2mi( — 10(2_1)—0))=Z_1,
Fyw b 2m’X J z z

i.e, to Op-q).

Assuming that we have proved that Dico(C)=H1(C,(9)/HW(C,7[), WEe Now
define £ and prove Abel's theorem. Suppose the line bundle L comes from the
(0,1)-form ¢ . We then let £(L) be the functional

w—— - yarw .
C
If & comes from H(C,7), 1. e, if y+y is integral, then, by Poincaré duality,
[y+w] is equal to P(y), for some Yy inH,(C,Z), hence

(4.9) [waw = [(y+Plaw = [POOrw = [w .
c c c ¥

Thus £ is a well defined homomorphism from Pico(C) to J(C). To show that
£ isinjective suppose that (4.9) is satisfied for every abelian differential w .
Then, since y+y is real,

[(y+P)nw = [ @
C ¥

for every w. As the abelian differentials and their conjugates span H'(C, o),
this shows that [w+gl=P(y).
To finish the proof of Abel's theorem it now suffices to show that

£(0(D)) = ulD)

for any divisor of degree zero D. By linearity, we may suppose that D=p-q,
where p and g are "very close”, so that O(D) comes from the differential
form ¢ given by (4.8). Let « be a loop around gp, oriented clockwise. For any
abelian differential w,
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2mi [ waw = [ dyxlog(z=1)/2)w)
c c

1 1
= [logl(z-1)/2)w = Jo1og((z—1 )/ Z)upperw - Jo1og((z—1 )/ ) owerw
ol

where 109((z=1)/Z)ypper and 10g((z-1)/2) 1ower Stand for the upper and lower
determinations of log((z-1)/z) along qgp. As the difference between these
two determinations is 2mi, we get

1
—2mi[yaw = 2miw =2mif w.
C 0 a
This exactly says that £(0(p-qg))=ulp-q).

We have proved Abel's theorem assuming it has been shown that

Pico(C)=H'(C, o) /HI(C 7).

We have already given a recipe to construct a line bundle from a class in
H1(C,(9), and have proved that any degree zero line bundle can be so obtained.
Now suppose that the line bundle L comes from a (0,1)-form . We wish to
show that L has degree zero. We may, and will, suppose that v 1s the
conjugate of an abelian differential, and hence is closed. Fix a base point ¢
and set

ux) =g
q

This is a multi-valued function: its value at x depends only on the homotopy
class of the path used to join g to %, and any two of its determinations
differ by a constant, namely by the integral of ¢ over a suitable closed loop.
Since du=v, L has transition functions of the form

Jop = expl2mitug - Ug)) ,

where Uy and up are determinations of u. Therefore, L has constant

transition functions. Moreover, since OO<=J?p is holomorphic, an equivalent
set of transition functions is

(4.10) Nog = exp2TiUp+Up - Ug-Ug)) = eXp(2Ti [ (p+9))
¥

where vy 1s a suitable closed lToop. These transition functions are constants
of absolute value 1. Now let s={sy)} be a meromorphic section. Then dlog(sy)
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is a globally defined meromorphic differential, so the sum of 1ts residues is
zero, oince this sum is precisely the degree of L, we are done.
It is clear from (4.10) that L is trivial if ¢+y is integral. It remains to

show the converse. Suppose then that L has a nonzero holomorphic section
s={sq). Taking absolute values in sg=hgeSe, We conclude that [sq«|=|sgl, so

that, by the maximum principle for holomorphic functions, Sq must be

constant for every o. Thus, if y 1is any closed loop with endpoints at g, and
hee 15 given by (4.10), by analytic continuation along y we get that

sa(q)=sp(g). Since, however, sq=hyesp, Nee MuUst be equal to 1. This means
that

[(p+9)eZ
’

for every vy, 1. e, that [p+¢] is integral. The proof of Abel's theorem is thus
complete.

Two final remarks. If we denote by HW(C,IR) the subgroup of HW(C,(D)
consisting of the classes of real 1-forms, then H1(C,7[) is a lattice in
H1(C, IR), 1. e, adiscrete subgroup of maximal rank: this follows, for example,
from the intersection relations (4.3). On the other hand, the projection
mapping HWC,IR)HHWC,@) is an isomorphism of real vector spaces. In fact,
the two spaces have the same dimension and every element of H1(C, @) is the
class of the conjugate of an abelian differential w, so w+w is a d-closed
real 1-form whose class maps to the class of w in HW(C,(Q). Thus
Dico(C)=J(C)=H1(C,@)/HW(C,Z) is a complex torus of dimension g; actually,
it is a principally polarized abelian variety, but this is another story.

Now suppose g»> 0, and choose a base point geC, together with a basis
w1, -, wg for the abelian differentials. By Abel's theorem the map

v C——J(C),
v(p) = (Jqu,---,Jqug),

is injective. Since |K| has no base points, it is also an immersion. In
particular, when ¢=1, we conclude that C is isomorphic to J(C).
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Appendix. In this appendix we have collected a few results about the
Laplace operator on a R>; in particular we give a proof of the basic theorem
(1.6)

A.1. The maximum principle. Let ul(z) be a harmonic function in a
neighbourhood of 0« ©C; notice that the real and imaginary parts of u are
both harmonic. We have that

0= J65u= Jd(gu)= Jgu.

Iz] < ¢ Izl < & Izl <&

Using this and Stokes' theorem we find that

0= J 2au-loglzl” = J5u-1ogl(3|2— J5u-1og|o<l2+ Jéu,«\auoglzlz)

o |zl |7|= {3 7= o o<zl

= J5UA©(1OQ|Z|2)= Ju-&(]oglzl%— Ju-é(]oglzl% ,

aclzlep lzI= ¢ lzl=

since 1og|Z|2 is harmonic. On the other hand, if we write z=r-em,

zdz 49

a1og|z|2=

= on lzl=r,
2
|z
so we have proved that
21 ‘
Ju(r-ewg)dﬁ
0

is independent of r, and hence, by continuity, equal to 2mu(0).
Now suppose U is real-valued and has a maximum at 0. we claim that u
is constant in a neighbourhood of O. In fact, since the integrand in

21 . 21 .
J(U(O)—u(r-e]a))di’i = 21u(0) - ju(r-e‘%a -0
0 0]

is continuous and non-negative, it must be identically zero for every r.

Now suppose U is a harmonic function on the compact connected RS C.
oince C i1s compact, the real and imaginary parts of u both have a maximum.
As we have just shown, the locus where the maximum is attained 1s open.
Since it is also closed, and C is connected, U must be constant.
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A.2. A proof of Theorem (1.6). Let C be a RS. We choose, once and for all,
avolume form ¢ on C and a finite covering (Ui} of C with coordinate disks;
let zi be a coordinate on U;. By slightly shrinking the Uy, 1f necessary, we
may suppose that the coordinate changes and their derivatives of all orders
are bounded functions. In the sequel, when we speak of derivatives of a
function on C, we shall mean derivatives with respect to the z; coordinates.
We may also suppose, possibly by rescaling the zy, that for each peC there
is an i such that pelU; and the disk |zj-wil<2 is contained in U;. The
diagonal in CXxXC 1is covered by the open sets UjXxXU;; we denote the
composition of zj with projection to the second factor by w;y, and the
composition with projection to the first factor again by zi. Then (zi, wi) is a
system of Tocal coordinates in UijxXU;j. For each positive integer n let Ej p be
the region {lzi-wil<1/n}, and choose C* functions Ajp on CXC such that

- O<Ain,

Nonlp,a) =ninlg,p),

the support of Ajn is contained in UjxUy,

- Z})\m— Z})\m— ij;nm.
We then define
Anp,a) = > A pelzi=wilZ+ (1= > Ain),
1 1
hn(p, @) = Tog(hn(p, @) for p=q .
The function hp has the following properties:

hn(p,a) =hnplg,p),
(A21) hplp,g) <O,
(A.2.2)  hplp,a) is supported in [ JUixUi, hnp(p, @) (A2.3)  hn(p,q) = loglz;-

wilZ+a C* function in UixU;
We also set

knp,a) =9191hnlp,a);

here and in the following, the subscript "1" (resp. "2") means differentiation
with respect to the first set of variables (resp., the second set of variables).
Notice that, by (A.2.3), kn(p,q) extends ina C° way across the diagonal.
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We shall denote by Lo the space of square-integrable functions on C
with the inner product

(f,q)=/fgd .
C

The symbol [If]l will denote the norm of f with respect to this inner product.
Wwe define continuous operators

Hn:Lo——L>2

KniLo——L>2

oy

1
H f(p)=— [N flg)e
f(p) - J (T
qgeC
1

K f(p)=—— [k (p,a)f(q)d(q) .
AP 2mid(p) Jcﬁpq “ “
=

Notice that, since kn(p,q) is C*, Knf can be infinetely differentiated under
the integral sign, so that it is a C* function for any f in Lo. The same is
true for the adjoint of Ky, denoted K, which is given by

K:f(q) - J a@kﬁ(p,q)f(p) |
neC

The operator Hp, on the other hand, carries C° functions to C° functions.
To see this, let {y i} be any partition of unity. Then, if Hy(yju) is C° for each
i, then Hp(u) is C°°, by linearity. By choosing a sufficiently fine partition of
unity, then, we are reduced to proving our statement when the support of U is
‘small”. By this we mean that there is an 1 such that the support of u is
contained in Uj and, for any pe<supp(u), the disk lzj-wil<1 is contained in
Ui, This will make it possible to do all of our computations in UijxU;y, in the
Zi and wi variables. In fact, it implies that, if pe Ui, Hpul(p) (and also Kpulp))
vanishes. since we will be working on UjxU;, we drop the subscript 1 and
write z and w for zi and wi,; we shall also write h and k instead of hp and
Kp. As we observed, in UixU; one has

h(z,w) =g(z,w)+loglz-wl”)

where g is C*°. Then what really has to be shown is that
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[1og(lz - wI®)v(w) dwadw

C
isa C° function of z for any C* v with "small" support. First of all this
function is certainly continuous. Then an integration by parts yields

2 J]og(lz—wl%v(w)dv\mdﬁ = —J

0z

1
W - Z

v(w)dw,«d@

= - Ji1og(|z—wl2)v(w)dv\mdﬁ = J]og(lz—wlz)a—v(w)dw,«d@ .
W W

A similar formula holds for the derivative with respect to z. What the
formulas say is that, if [log(lz-wl9)v(w)dwadw is CS for any C* function
v owith "small” support, then it is also Cg”; the inescapable conclusion is
that it must be C°.
We let L be the differential operator defined by
Lu =a_ﬂ.
¢

we claim that, for any C° function u, one has

(A.2.4) LHAU = Kpu-u .

This is a simple residue computation. By linearity, it will suffice to prove
this when u has "small” support. Accordingly, we shall adopt all the
conventions used in showing that Hpu is C% when u is. As we observed, in
Uix Uy one has

h(z,w) =g(z,w)+log(lz-wl?)
2

d g -
k(z,w) = —dzndz |
0707

where g is C* Now, for any C* function v with "small” support in Uj, one
has

2 _
9 — Jh&,w)%mﬂdWAdw =
IZIZ
2 — z 2 —
= J %(ZﬂNNﬂW)dWAdW-F 0 __ JM@HZ—WI)WdeWAdW
IZ0Z 2327

On the other hand, we have seen that
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9

J]og(lz—wlz)v(w)dwx\d@ = J]og(lz—wlz)a—i(w)dwx\d@ ,
dz

oW

so that, if we denote by Dy the disk of radius r centered at z:

> _ _
0 _ J]og(lz—wlz)v(w)dwz\dw = - JT—a—i(W)dWAdW
237 W =2 Ow
jd(V(W) dw) = - 1im jv(w) AW~ _omiv(z)
FHO rHO W =2

U—D

In conclusion

2 az
Jh(z wIv(w) dwadw = J J

— (7, w)v(iw)dwadw - 2miv(z) .

azaz 0zoz

Taking viw)dwadw =ulw)®(w), this says that

JOHpU = dKpu-duU |

which is exactly what had to be proved.
We are now essentially ready to prove (1.6). The proof will use two
simple results of functional analysis. The first is

(A.2.5) Fact. A normed complex vector space is locally compact if and only
if it is finite-dimensional.

The second is the Ascoli-Arzela theorem in the following version.

(A.2.6) Fact. Let {f,) be a sequence of C° functions on C. Suppose that the
frn and their first derivatives are uniformly bounded. Then {fp} has a
uniformly convergent subseqguence.

It is a consequence of (A.2.6) that Ky is a compact operator, i. e, that it
carries bounded seguences in Ly to sequences with a convergent subsequence.
Suppose in fact that {fn} is a bounded sequence in Lo. Then the fact that kp
and its first derivatives are bounded, plus the Schwartz inequality, shows
that the (C°) functions Kpfn and their first derivatives are uniformly
bounded. Thus a subsequence of (Knfnl converges uniformly, and hence in Lo.
The adjoint of Kpn 15 also compact. This follows from general theory or,
alternatively, by an argument similar to the one used for Kp.
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A consequence of these considerations is that the kernels of Kp-1 and
Kn-1 are finite-dimensional and made up entirely of C* functions. Let's do
this for Kn. Firstly, if

Kpu-u=0,

then u is C% since Knu is. Secondly, if upeker(Ky-1) and {un} is bounded,
then the sequence un=Kpup has a convergent subsequence so, by (A.25), the
kernel of Kn-1 is finite dimensional.

The next remark is that

[ ker(K;i-1) = {constant functions} .
nelN

suppose in fact that K§u=u for every n (so that, in particular, u is C).
Then

0=Knp-Du=HnL"u=HplLu.

If U is not constant, then v=Lu is not zero, so that there is a point p where
vip)=0; say vip)> 0. Choose a neighbourhood V of p where the sign of v does
not change. Then, for large enough n, hplp,q)=0 if q&V, so, by (A2.1),

Hav(p) = [ hnlp, ) v(g) ¢(q) <O,
Y

a contradiction. The same kind of argument applies if v(p)<0O.
Since ker(K,-1) is finite-dimensional, for large n we have

ker(Ki-1)n-- nker(K,-1) = {constants} .

Therefore, if Jf<b=0, e, if (f,1)=0, we may write

f=fi+fq | fq [ ker(Ki-1), fi eker(Ki-1),
fi'=fo+fo | folker(K5-1), fo'eker(Ki-Dnker(Ks-1),
fn-1="Tn, fn | ker(Kn-1).

Thus > fy=1.Moreover, if f is C*, so is fj for every 1. Now suppose we can
solve

(A2.7) (Ki=Dwvi="1i i=1,-,n.

If f is C°, s0 is vj, since Kjvi is C for every i. Moreover
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LHjvi = Kyvi-vy =Ty,

so that

L(> Hivi)=> fij=1,

and the equation

Lu="f

is solved by the C% function u=> Hjvj.

It remains to solve (A.2.7), that is, to show that, if we set R=K;-1,
Rv=f can be solved whenever f | ker(R™). This is standard. We first claim
that, if o | ker(R™), then there is a positive constant N such that

ol < NITR el

IT not, there would be a sequence o with

loesll =1, oy ker(R), IR oyll—0

Since K{ is compact, passing to a subsequence we would have Ki*cxj — 3,
hence oj— @, lIBll=1, but also R"3=0, 3 | ker(R™), so =0, a contradiction.
Now consider the functional

R(Lo)——C

R oc—— (o, f) , ol ker(R).

Then

[Cor, DL < NIFINledd ] < NAIFITITR ™ el

so our functional is continuous, hence, by the Riesz representation theorem,

there is v e R*L2 such that

(o, f)=(R%e,v) , o lker(R™),

Since this is true by hypothesis when oceker(R™), we conclude that f=Rv.
We have shown that Lu=f is solvable when [f&=0. Thus 0du=y is
solvable when [w=[(p/®)d =0 Theorem (1.6) is thus completely proved.
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A.3 The finiteness of h'(L) Let L be a holomorphic Tine bundle on the RS
C; we wish to show that h'(C,L) is finite. We begin by remarking that
hO(C,L) is finite: in fact, if L has no nonzero sections, there is nothing to
prove, while, if it has one, L=0(D) for some D, and Riemann-Roch, in the
form we have proved, applies. Pick a hermitian metric on L, 1. e, a smoothly
varying hermitian metric on the fibers of L (that a hermitian metric always
exists can be seen by pasting together local hermitian metrics by means of a
partition of unity): given sections s and t, we shall write {(s,t) to indicate

the inner product of s and t with respect to this metric and |s| to indicate
the lTength of s. Suppose L is given by transition functions gep, and s={syl

is a section: then

51% = polsal® = palsel?,

where the My are positive C° functions. Clearly the My must satisfy

Me = 10apl? Mo ;

conversely, to give positive functions satisfying these relations is
equivalent to giving a metric on L. Suppose ¢ ={yy} is an L-valued (0,1)-
form. Set #¢ ={wy}, where

Vo= HaPeo .

Since Yy = MO@&:Igu(gl‘?}x@go{@,@@:g&é}i@@@) #9 isa C° section of KL™',
which is holomorphic if and only if 3¢ =0, where J is the differential
operator defined by

a(H(xLP(x)
S e ——
o HQ{(I)

One easily checks that s={sy]) is a section of L. If we define the inner
products of two sections s, t of L and two L-valued (0,1)-forms ¢ ={y )

and v ={yyl by

(s,t)=J(s, 00 (, ) = [pazy

where wa#y is the global (1,1)-form with local expressions Mg @ erv o, then
g is the adjoint of 3.
Now suppose that we can solve the differential equation

(A3.1) Jos =9y
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for any L-valued (0,1)-form ¢ . Then any class in H'(C,L) has a 9-closed
representative, and this is unigue, since J9s=0 implies that (0s,9s5)=0, S0
s must vanish. Moreover the map

g-closed L-valued (0,1)-forms — {holomorphic sections of KL= ,
Py

is an antiisomorphism between H1(C,L) and HO(C,KL”) that transforms the
inner product on HW(C,L) into the standard pairing between H1(C,L) and
HO(C,KL_U: this gives another proof of duality and shows that HW(C,L) is
finite, since HY(C,KL™") is,

That (A.3.1) is always solvable can be shown by much the same methods
that we used to prove (1.6), applied not to the standard Laplacian, but to the
operator 0. We omit the details.
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Bibliographical note. The point of view adopted in these notes is
somewhat intermediate between the classical one used in the books by Weyl,
olegel, springer, Farkas and Kra, and the more modern one of Gunning. The
study of compact Riemann surfaces as algebraic varieties is further
developed in the books by Griffiths and Harris and by Arbarello, Cornalba,
Griffiths and Harris.
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