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The pth loop contribution to the partition function for closed strings is studied by applying recent mathematical results on
the geometry of the moduli space .#, of smooth algebraic curves of genus p. By reasoning on determinants of operators and
line bundles over .# . we get a geometric explanation of the critical dimensions 26 and 10. The extension of path integrals for
strings to the compactifie_g moduli space .#, of stable curves is also discussed. While the Weil-Petersson measure has a
continuous extension on .# ,, the bosonic path integral has a bad behaviour on the boundary # , - # ,. Instead, the functional

approach to the spinning string of Ramond-Neveu-Schwarz seems to yield a finite pth loop contribution to the partition

function.

The path integral approach to the bosonic string
theory has been recently studied by several authors
[1-3]. The partition function Z = Z,, exp(ap)Z,, in-
volves the sum of integrals over the space M,, of met-
rics on compact Riemann surfaces of genus p. Now,
M,, carries the principal action of the group of dif-
feomorphisms and of Weyl! transformations. Since
these are classical invariance groups of the string ac-
tion, one tries as usual to factor out the integration
on them which formally contributes to Z,, with a di-
vergent multiplicative constant. When this can be
done, that is in the critical dimension, the functional
integration reduces to a finite dimensional ordinary
integral in terms of the so-called Teichmuller param-
eters, Actual computations beyond one loop seem
however to be quite hard to come because there is lit-
tle control of the explicit dependence of the integrand
on Teichmuller coordinates. Besides and more impor-
tantly, one needs a deep knowledge of the topology
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of the domain of integration ?7p/l"p, where 571, is the
Teichmuller space and [y is the mapping class group.
Indeed taking the quotient of §7p by I‘p is needed to
avoid infrared divergencies.

In this letter we give a short account of a geomet-
ric approach to both these problems, while full de-
tails will be published elsewhere. The starting point is
that the domain ‘)’llp = %/l‘p is the moduli space of
smooth algebraic curves of genus p; it is a quasi-pro-
jective variety about which much is known in algebra-
ic geometry. Recall that a quasi-projective manifold
is the complement of a Zariski closed set in a projec-
tive algebraic variety. A natural compactification M
of M, has been constructed by Deligne and
Mumfgrd [4] by considering a larger class of curves
besides the smooth ones; —‘ﬁl—p will be briefly de-
scribed below. The important fact for our concern is
that the functional measure induces the Weil—
Petersson volume element wyp on the moduli space
M . By a result of Wolpert [5], this measure extends
to ‘ﬁp, in such a way that 9% p has a finite Weil—
Petersson volume,

Our strategy is then to study the induced integral
over 9,,. In particular, we show that the invariance
of this integral under the group of orientation preserv-
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ing diffeomorphisms is equivalent to the vanishing of
the first Chern class of a suitable complex line bundle
G. If we work on the interior M, of M p the trivial-
ity of G can be only achieved in the critical dimension
D = 26. The extension of the same argument to the
spinning strings yields the critical dimension D = 10.
So we see a posteriori that absence of global anoma-
lies under the group of diffeomorphisms is sufficient
to make the theory free of trace anomalies as well.
When one considers the whole of 9 , one finds that
for the bosonic string G is never trivial. As a bypro-
duct we see that the integrand in Z P has a pole on de-
generate surfaces belonging to the boundary M

m p- The order of this pole is entirely controlled by
the complex analytic structures of both ’)7( and G.
On the contrary, a preliminary computdtlon suggests
that the “anomaly cancellation” for the spinning
string in D = 10 extends to whole moduli space Q?Z
This physically would imply the finiteness of Z at
any loop order p = 2.

To be more definite, we denote by C an algebraic
curve (i.e. a closed Riemann surface) of genus p = 2.
A point [C] in M, is simply a biholomorphic equiv-
alence class of curves. In real terms, [C] is an orbit of
the group of orientation preserving diffeomorphisms
in the space of hyperbolic metrics on a closed two-
dimensional surface of genus p. The natural compacti-
fication of ‘mp is given by considering equivalence
classes of stable curves [6]. The boundary A = N
‘77Zp can be described as follows. Let C be a stable
curve, and g a singular point of C (if any). It is known
that ¢ is a node and we say that it is a node of type i
(1<i<[p/2])if C - {q} is the union of two con-
nected components of generai and p —i. If C — {g}
is connected, we say that g is a node of type 0. The
boundary A is the union of irreducible components
A; (0 <i< [p/2]) parametrizing stable curves with at
least a node of type i.

As 9, is a nice domain of integration with a
“good” measure on it, the next question about the
definition of the pth loop contribution to the parti-
tion function concerns the integrability of the pro-
duct W of the determinants of certain operators. Gen-
erally speaking, these are real operators but, as no-
ticed by Alvarez [7], there is some merit to splitting
them into complex operators. The reason for this pro-
cedure is that W can then be interpreted as the
“square modulus” of a holomorphic section of an her-
mitean line bundle on N (9
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To see how this goes, let us first work on 97, , and
consider for instance the Laplace operator d*d acting
on complex valued functions on a curve C. Notice
that d*d = 20%9, where 3 is the holomorphic differ-
ential. As usual, one sets

det(3d*d) = det(d*d) =: exp[-¢'(0)] , 6))

where {' is the derivative of the {-function of the op-
erator 3*9. The same result can be obtained as fol-
lows. The operator @ maps complex valued functions
into one-forms of type (1, 0) on C. Now ker 3 = C is
the space of constant functions, while coker 3 = HO(C,
Q)= C? is the space of holomorphic forms of type (1,
0). Building on the ideas of ref. [8]. we define det 3|,
to be the element of the linear space L =
Wmmalmmmmw)MMwmw
en by det 9|, =: exp -3¢ (0)] ¥ ¢, where A denotes
exterior power and Y- is a unitary basis in L. Notice
that we are taking advantage of the fact that we shall
need a definition of det 9 up to a phase factor. If we
compute the norm »

|det 3] [?
= (exp[-3¢'(0)] Ylexp [—3¢'(0)] ¥ o)
= exp[—¢" ()W) = exp[—£'(0)] . @)

where ( | ) is the hermitean inner product on L, we
get exactly the same result as (1).

Since everything is equivariant under biholomor-
phisms, det @ descends to a section of the ‘“Hodge
line bundle” L = APHO(-, ) over the moduli space
M ,. One should actually work in terms of line bun-
dles “over the moduli stack”, but we will not men-
tion such subtleties here. Summing up,

det(9*9) = |det 32 , (3)

where det d €I'(L) and | |? is the hermitean fibre
metric induced on L by ( | ).

To see where ‘‘anomalies” come from in the defini-
tion (3), notice that one can locally choose the unitary
section Y~ in such a way that det 9 is a holomor-
phic section of L. Accordingly, if we trivialize L on a
covering {U, } of M, we have in general that

det 0, = gqp det aﬁ : (4)

where g, is a holomorphic transition function with
values in GI(1, C). Then
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|det 3,12 = |gqg* 1det 3% . )

Now |det aa|2 is a section of the real line bundle |L|2,
defined by the transition functions Igaﬁlz. Clearly,
|12 is topologically trivial over M, but its triviali-
zations cannot be induced by holomorphic trivializa-
tions of L, because L is non-trivial [9] and one can-
not choose g,; = 1. Incidentally, no positive power of
L is holomorphically trivial. From the physical point
of view, eq. (5) tells us that {,(0) = {5(0) — lnlgaﬁlz,
i.e. we have an anomaly.

This kind of argument does not depend on the par-
ticular nature of L. So we see that a necessary and
sufficient condition for absence of anomalies in the
square modulus of holomorphic sections of a line bun-
dle G on M, is that the first Chern class ¢{ (G ) van-
ishes. In fact the group of holomorphic isomorphism
classes of topologically trivial line bundles Pico( 7 p)
of the moduli space is known to be trivial [10,11].
This answers the question of Alvarez [7] as to why
one can control anomalies for real operators by means
of the family index theorem for certain associated
complex operators, By the way, notice that this result
heavily relies on holomorphic structures, so there is
little hope of extending it to higher dimensional cases.
We can be more precise on the kind of anomalies
whose absence is controlled by the topological condi-
tion ¢;(G) = 0. Recall that N, = gp/rp. Since the
Teichmuller space is contractible, any line bundle is
trivial on it. So we see that non-trivial line bundles
over M p can be considered as trivial line bundles
over ‘;7p carrying a non-trivial action of the mapping
class group I‘p. So, our anomalies are nothing but
global anomalies of the group of diffeomorphisms.

Besides the Laplace operator, in studying the parti-
tion function of the bosonic string one is interested in
the traceless part of the Lie derivative of the metric.
This is the operator

V+V=0:I(T'C)eT(T" C)~»T'(2K)® I'2K), (6)

where T' C (T" C) is the (anti)holomorphic tangent
bundle and 2K is the bundle of quadratic differentials
of type (2, 0). Locally Q is given by
Q(X?3/d, + X73/d5)

=h,50; X?dZ ® d7 + h,30,X?dz @ dz , (7)

Z2Z°2

where h,5 is a metric on C. To compute the determi-
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nant of Q we work as before by considering the com-
plex operator

V:I(T" C)>T(2K), (8)
given by
V(X?03/8;)=h,30,X7dz @ dz . ©)

Notice that ker V = 0, since there are no antiholomor-
phic vector fields on C for p = 2. On the other hand
coker V= {a,, dz ® dz|d;4,, = 0} is the space HO(C,
2K) = €37 -3 of holomorphic quadratic differentials
on C. Then, as above, det V goes down to a section of
the line bundle K = AMXHO(-, 2K) over the moduli
space. Incidentally, K is the canonical line bundle of
the moduli space N(,,. As we did for the Laplace op-
erator, the determinant of the Faddeev—Popov oper-
ator Q can be written as

det Q = |det V|2 . (10)

We are now in the position of explaining the can-
cellation of the anomaly of the bosonic string in the
critical dimension. The integrand of the pth loop con-
tribution to the partition function reads

W= [det(3d*d)] P72 det Q
= |det 8]-D|det V|2 , (11)

where D is the real dimension of the target space. Re-
call that the determinant of the Laplace operator
comes from the gaussian integration over string fields,
with zero modes removed. Now s = (det 8)~2/2 X
(det V) is a section of the line bundle L—P/2 & K
over 9, ,and it is such that W= 5|2 with respect to
the induced fibre metric. So, anomaly cancellation
requires that ¢, (L -D2 g k)= —%Dcl (L) +c1(K)
vanishes. As is customary we set

Sl = (12)

Recall [11] that X is a generator of the infinite cyclic
group Pic( ‘77Zp) of line bundles on the moduli stack
m P This means that any line bundle over ‘7’/(1, isa
multiple of L. The non trivial fact for our concern is
that K is actually isomorphic to L13. This is proved
for example in refs. [6,9] by means of Grothendieck’s
relative Riemann—Roch theorem, which is nothing
but the Atiyah—Singer index theorem applied to the
family of operators d and V parametrized by M ,,. So,

c1(K)=131, (13)



Volume 172, number 3,4

This fact is responsible for the critical dimension: in-
deed we have

c;(LP2 ® K)=(=D/2 + 13\, (14)

which vanishes if and only if D = 26.

So far we have been working over uncompactified
moduli space "Yflp, and now we come to the problem
of extending integration to M p»as required by phys-
ics. Our first result is that anomaly cancellation for
the bosonic string does not survive compactification.
Let A be the boundary M 5 Ny, which is of com-
plex codimension 1in ,, and & the first Chern class
of the line bundle [A] on the moduli stack associated
to A. Now det V and det @ are sections of suitable
line bundles K ¢ and L€, whose Chern classes are given

by [9]

ciL9)=X, c(K®)=13A-5. (15)

So the condition of anomaly cancellation on the com-
pactified moduli space requires the vanishing of

¢, (L°)"D2 @ K€)=(-D/2+ 3]\ -5 . (16)

Unfortunately this is not possible even in the critical
dimension D = 26 because of the contribution from
the boundary. Indeed, for D = 26 the line bundle
(L¢)~D/2 ® K ¢ has no global holomorphic sections,
s, on Wp. Since its first Chern class is —§, any sec-
tion holomorphic on M, has an extension to M
which is necessarily meromorphic with a pole of order
one on the boundary.

Summing up, our geometric argument shows that
one cannot consistently cancel anomalies on the
boundary A, that is on the locus of curves with cer-
tain basic loops pinched down to a node. The relation
between the presence of poles in the integrand of Z p
and the boundary components has been first consi-
dered in ref. [2], by studying the behaviour of the
Selberg trace formula for the relevant determinants in
Fenchel—Nielsen coordinates. A pole of the same or-
der has been also found in ref. [12]. These authors al-
so suggest a possible algebraic geometrical explanation
of the meromorphic structure described above, and
give a direct computation of the order of the pole by
relying on the complex analytic structure of Wp. In
any case, this pole is related to the higher order diver-
gence in the integrand of Z p»» Which physically signals
the presence of the tachyon in the theory.

Our final aim is to look for string models which are
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anomaly free on the compactified moduli space. A
standard way of treating local anomalies is to extend
the matter content of the model in order to achieve
complete anomaly cancellation. Here, the obvious can-
didate is a “supersymmetric string” a la Ramond—
Neveu—Schwarz, since the tachyon is absent because
of “supersymmetry”.

The path integral formulation [13] for the spinning
string requires the sum over all spin structures on the
world sheet [14]. Besides, it requires also integration
over the space of gravitini. This would lead to the so-
called supermoduli spaces. Here we restrict our atten-
tion to the integral over the moduli dp of spin struc-
tures on algebraic curves of genus p. It is well known
[15] that on a smooth curve there are 47 inequiva-
lent spin structures, so &, is an unbranched 47-
sheeted covering of M. Also, <, is the union of two
connected components cS; , called even and odd spin
structures, according to the parity of the dimension
of the kernel of the chiral Dirac operator. The inte-
grand now contains the determinants of two more op-
erators [7], namely the chiral Dirac operator ¢ and
the fermionic Faddeev—Popov operator ¥, and reads

W= |det 3|2 |det V|?|det |2 |det YI-2 . a17)

This is the square modulus of a section of the line bun-
dle

G=L"DP2g KegEDP2g F-1, (18)

where /- and F are the determinant line bundles of the
index bundles of the operators @ and ¥. One finds
that

clE)=-N2, c¢(F)=11N2. (19)

As above we check anomaly cancellation in the criti-

cal dimension on o, by computing

4] ((;) == —%Dcl (L) + CI(K) + %I)C'I(E) =Gy (F)
= [(30 — 3D)/4] X, (20)

which vanishes for D = 10. So, also in this case we re-
cover the critical dimension by a topological argument.
The extension of this approach to a compactifica-
tion o P of spin structures on stable curves requires a
full control of the behaviour of “spin structures™ on
curves with nodes as singularities, which is not avail-
able at present. However, a preliminary computation
seems to show that the relevant line bundle G on P
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has first Chern class
c1(G®)=(10 —D)(12Xx — 8)/16 . 21

This suggests, as expected, that for D = 10 one
achieves a complete anomaly cancellation on the
whole of & p atany loop. Clearly, this would signal
absence of the tachyon, which physically occurs in the
even G-parity sector of the spinning string. It is tempt-
ing to relate G-parity with the two components 7, of
even and odd spin structures [15]. A full proof ofp
these results for spinning strings will be the matter of
future investigations.

The meaning of eq. (21) is that the integrand of
the partition function for the spinning string is at least
continuous on the compact space cS . Notice also
that the Weil—Petersson volume element on 97(
pulled back by the covering map m: dp - Cmp to a
continuous measure on ¢ p* Physically this would im-
ply that the pth loop contribution Z p to the partition
function for the spinning string is finite for any p = 2.
As a word of caution, we stress that this has nothing
to do with the finiteness of the physical Green’s func-
tions which naively require the “insertion” of vertices
in path integral.

Still one faces the problem of proving the conver-
gence of the series Z = Ep explap)Z > which gives the
full partition function for the superstring. Some hints
may come from the study of the projective embed-
dings of the compactified moduli space for very high
genera p.
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