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1. There are basically three algebraic proofs of the projectivity of the moduli spaces of
stable curves: the original one by Knudsen [8][9], the proof by Mumford [12] and Gieseker
[5], which makes heavy use of the machinery of geometric invariant theory, and the more
recent one by Viehweg [15] and Kollàr [10], which relies instead on the semipositivity of the
direct images of powers of the relative dualizing sheaf and, at least in Kollàr’s version, does
not use geometric invariant theory at all. In this note, combining ideas from the above
papers and from [4], we shall outline a proof of projectivity which, we believe, is simpler
and more direct than any of the existing ones. However, while the proofs by Mumford,
Gieseker, Viehweg, and Kollàr are applicable, at least in principle, to a wide variety of
moduli problems, ours uses in an essential way the peculiarities of the problem at hand,
and it is hard to see how it could be extended to other situations.

Mumford’s idea is to use the machinery of geometric invariant theory to directly
construct the moduli space of stable curves as a projective quotient of the Chow or Hilbert
scheme of pluricanonically embedded stable curves by the action of the projective linear
group. To be able to do so, one needs to show that the k-canonical images of stable
curves are stable in the invariant-theoretic sense for high k. This is quite well understood,
although not really easy, for smooth curves; one notices that k-canonically embedded
stable curves are linearly stable, and then proves that, for smooth curves, linear stability
implies invariant-theoretic stability. In the singular case, by contrast, both Mumford and
Gieseker have to rely on indirect arguments which are quite long and involved. Our main
point is that one can avoid proving the invariant-theoretic stability of singular stable curves
provided one is willing to grant that moduli space exists as a complete algebraic space; that
this is the case, incidentally, is relatively easy to prove. As in [10], we prove projectivity
by applying to a suitable invertible sheaf one of the standard numerical ampleness criteria
(Seshadri’s criterion in our case). The necessary numerical estimates are obtained using
the techniques of [4]. More precisely, the invariant-theoretic stability of linearly stable
smooth curves is used to prove an inequality for families of stable curves which, suitably
interpreted, says that the hypothesis of Seshadri’s criterion is satisfied for curves in moduli
which are not contained in the boundary. The case of curves lying in the boundary is
then reduced to the previous one by standard elementary techniques; in order to properly
carry out this procedure, which can be viewed as a sort of induction on the genus, it is
convenient to deal simultaneously with the moduli spaces of stable n-pointed curves as
well. In a sense, then, our approach is to use invariant-theoretic stability as a means of
obtaining numerical inequalities, rather than as a step in the construction of quotients by
group actions.
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2. Let Mg,n be the moduli space of stable n-pointed curves of genus g. It is not too hard
to prove that it is a reduced algebraic space (see [3] or [13], for instance) and then the
stable reduction theorem shows it is complete and separated. We shall produce an ample
line bundle on Mg,n; in order to describe it we need to briefly recall a few facts about the
Picard groups of moduli spaces, referring to [12], [6], and [2] for more details. The rational
Picard group Pic(Mg,n)⊗Q contains three distinguished classes λ, δ, and ψ; this last class
is zero when n = 0. These classes do not correspond to ordinary line bundles, but only to
fractional ones. If we are given a family F of stable n-pointed curves of genus g, consisting
of a family f : X → S of noded curves together with sections σ1, . . . , σn, and γ : S →Mg,n

is the corresponding map to moduli, the classes λ, δ, and ψ pull back via γ to classes λF ,
δF , and ψF on S, which are easily described in geometric terms. The class λF is the class
of the line bundle det(f∗ωf ), where ωf is the relative dualizing sheaf ωX/S , while, at least
when the general fiber of f is smooth, δF is the class of OS(D), where D is the divisor
in S parametrizing singular fibers. As for ψF , it is defined as

∑
ψi,F , where ψi,F is the

class of σ∗i (ωf ). In particular, we see that λF , δF , and ψF correspond to ordinary, and not
fractional, line bundles. When no confusion is likely, we shall often write λf , δf , and ψf

instead of λF , δF , and ψF . It will be convenient to give slightly different descriptions of
λF and ψF . Set Ci = σi(S): we claim that λF is the class of det(f∗(ωf (

∑
Ci))) and that

ψi,F is the class of σ∗i (OX(−Ci)). If n = 0, there is nothing to prove. If n > 0, the residue
homomorphism ωf (Ci) → OCi

is onto and has ωf as kernel. This means that σ∗i (ωf (Ci))
is trivial, that is, that σ∗i (ωf ) and σ∗i (OX(−Ci)) are isomorphic. It also implies that there
is an exact sequence

0 → ωf → ωf (
∑
Ci)

Res−−→
∑
OCi

→ 0 ,

where Res is the residue homomorphism. Taking direct images and noticing that

R1f∗(ωf ) = OS , R1f∗(ωf (
∑
Ci)) = 0 ,

one gets another exact sequence

0 → f∗ωf → f∗(ωf (
∑
Ci)) → On

S → OS → 0 .

Thus
det(f∗(ωf (

∑
Ci))) = det(f∗ωf ) det(On

S) det(OS)−1 = det(f∗ωf ) ,

as desired.
It is not hard to show that there is a finite morphism

(2.1) ζ : Z →Mg,n ,

where Z is a scheme, with the additional property that there exists on Z a family of stable
n-pointed curves

ξ : X → Z , τ1, . . . , τn : Z → X

such that, for any z ∈ Z, the moduli point of (ξ−1(z), τ1(z), . . . , τn(z)) is ζ(z); for a proof,
we refer to [10]. To show that a line bundle L on Mg,n is ample, it will then suffice to show
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that ζ∗(L) is ample on Z, and to do this it will be enough to check that the hypotheses
of Seshadri’s criterion of ampleness (cf. [7]) are satisfied. In other words, what we’ll have
to check is that there is a positive constant α such that, for any reduced and irreducible
complete curve S ⊂ Z,

deg ζ∗(L)|S ≥ αm(S) ,

where m(S) stands for the maximum of the multiplicities of points of S.
We shall prove ampleness for the line bundle on Mg,n corresponding to the class

12λ− δ + ψ. As any subscheme S of Z yields, by pullback, a family of stable curves over
S, Seshadri’s criterion says that it suffices to prove the following result.

Theorem (2.2). Let g and n be non-negative integers; assume moreover that g > 1 if
n = 0 and that g > 0 if n = 1 or n = 2. Then there is a positive constant α such that,
for any non-isotrivial family F of stable n-pointed curves of genus g over a reduced and
irreducible complete curve S,

12 deg(λF )− deg(δF ) + deg(ψF ) ≥ αm(S) ,

where m(S) is the maximum multiplicity of points of S.

In this section we shall show that it suffices to prove Theorem (2.2) for families whose
general fiber is smooth. Let F be as in (2.2); say it consists of a family f : X → S of
noded curves of genus g, together with sections σ1, . . . , σn. Suppose the general fiber of f
is singular. Denote by N(f) the union of the one-dimensional components of the locus of
the nodes of the fibers of f . After a finite base change N(f) becomes a union of sections.
Since the number of singular points of a stable n-pointed curve of genus g is bounded, the
degree of the base change in question can also be bounded; as the effect of a base change of
degree d on the invariants deg λF , deg δF , and degψF is to multiply them by d, we are then
reduced to proving (2.2) under the hypothesis that N(f) is a union of sections. This means
that f : X → S can be obtained from a family f ′ : X ′ → S of noded curves whose general
fiber is smooth, but not necessarily connected, with disjoint sections σ1, . . . , σn, τ1, . . . , τ2l,
by identifiying τ2j−1(S) to τ2j(S), for j = 1, . . . , l. Let π : X ′ → X be the identification
map, X1, . . . , Xm the connected components of X ′, and, for each i, let fi : Xi → S be
the restriction of f ′ to Xi. Since f : X → S is a family of stable n-pointed curves, each
fi : Xi → S, together with the sections σv and τj that lie on Xi, whose number we denote
by ni, is a family of stable ni-pointed curves. Set Cv = σv(S), Dj = τj(S). Consider the
map R from π∗(ωf ′(

∑
Cv +

∑
Dj)) to ON(f) which, along each section π(D2j), associates

to a meromorphic relative differential along f ′ the sum of its residues along D2j−1 and
along D2j . This map fits into an exact sequence

0 → ωf (
∑
Cv) → π∗(ωf ′(

∑
Cv +

∑
Dj))

R−→ ON(f) → 0 .

Since in our situation

R1f∗(π∗(ωf ′(
∑
Cv +

∑
Dj))) = R1f ′∗(ωf ′(

∑
Cv +

∑
Dj)) = 0 ,
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this in turn yields an exact sequence

0 → f∗(ωf (
∑
Cv)) → f ′∗(ωf ′(

∑
Cv +

∑
Dj)) → f∗(ON(f)) → R1f∗(ωf (

∑
Cv)) → 0 .

Since f∗(ON(f)) = Ol
S , while R1f∗(ωf (

∑
Cv)) is zero for n > 0 and equals OS when n = 0,

we conclude that

(2.3) deg(λf ) =
m∑

i=1

deg(λfi
) .

On the other hand, one has

deg(δf ) =
m∑

i=1

deg(δfi
) +

2l∑
j=1

(Dj ·Dj)

(cf. [6]), while

m∑
i=1

deg(ψfi
) = −

n∑
v=1

(Cv · Cv)−
2l∑

j=1

(Dj ·Dj) = deg(ψf )−
2l∑

j=1

(Dj ·Dj) .

This implies that

deg(ψf )− deg(δf ) =
m∑

i=1

deg(ψfi
)−

m∑
i=1

deg(δfi
) ,

and hence, taking into account (2.3), that

12 deg(λf )− deg(δf ) + deg(ψf ) =
m∑

i=1

(12 deg(λfi
)− deg(δfi

) + deg(ψfi
)) .

Thus it suffices to prove Theorem (2.2) when the general fiber of f is smooth.

3. In this section we shall prove (2.2) for families whose general fiber is smooth, under the
additional hypothesis that n = 0. As we have announced, we shall use the techniques of [4].
The results of that paper deal with families of curves and line bundles, or, more precisely,
with families f : X → S of noded curves plus a line bundle L on X; at times we shall refer
to such a setup, perhaps somewhat improperly, as a family of polarized noded curves. We
shall say that a family of polarized noded curves is generically trivial if a general point
s ∈ S has a neighbourhood U such that f−1(U) → U is isomorphic to a product family
X0 × U → U and, moreover, the restriction of L to f−1(U) comes, by pullback, from a
line bundle on X0.

Consider a family f : X → S of connected noded curves of genus g over a reduced and
irreducible complete curve S, and let L be a line bundle on X of relative degree d; suppose
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the general fiber of f is smooth and that r = dimH0(f−1(s), L|f−1(s)) is independent of
s ∈ S. The main result of [4] says that

r (L · L) ≥ 2d deg f∗(L) ,

provided that
a) L is relatively ample;
b) for general s ∈ S the restriction L|f−1(s) is base-point-free, very ample, and embeds

f−1(s) as a (Hilbert) semi-stable subscheme of projective space.
Let’s review the proof. For large h the map

(3.1) ϕ : Symh(f∗L) → f∗(Lh)

is onto. Let N be the rank of f∗(Lh), and consider the map

∧Nϕ : ∧NSymh(f∗L) → det(f∗(Lh)) .

The proof is based on the following remark. If s is a point of S, choosing bases for
H0(f−1(s), L|f−1(s)) and for detH0(f−1(s), Lh

|f−1(s)) identifies(
∧Nϕ

)
s

: ∧NSymhH0(f−1(s), L|f−1(s)) → detH0(f−1(s), Lh
|f−1(s))

with a point v ∈ V , where V is the N -th exterior power of the h-th symmetric power of
the standard representation of SL(r). To say that f−1(s), embedded by the linear system∣∣L|f−1(s)

∣∣, is Hilbert semi-stable means that, for large h, v is semi-stable under the action
of SL(r). Given an SL(r)-invariant polynomial P ∈ SymlV ∗, we may evaluate P at v;
whether P vanishes at v or not clearly does not depend on the choice of bases, so that
we can speak of P vanishing, or not vanishing, at

(
∧Nϕ

)
s
. Now let s be a general point

of S. If h is sufficiently large, by semi-stability there is an SL(r)-invariant homogeneous
polynomial P that does not vanish at (∧Nϕ)s. Choosing local trivializations for f∗L and
det(f∗(Lh)), we get a local regular function η on S by evaluating P on ∧Nϕ. Since P
is SL(r)-invariant, changing trivialization of f∗L by a matrix A changes η by a factor
(detA)−lNh/r, where l is the degree of P . Thus if, as we may, we assume l to be of the
form rM , where M is an integer, this produces a non-zero section of

det(f∗(Lh))rM ⊗ det(f∗L)−hNM ,

so that this line bundle has non-negative degree. One then concludes by evaluating the
degree by means of the Grothendieck Riemann-Roch theorem and letting h go to infinity.

We can improve slightly on the conclusion if we modify the hypotheses by requiring
that the image of f−1(s) in projective space be stable, and not only semi-stable, that the
family we are dealing with be generically non-trivial, and by replacing condition a) above
with the requirement that R1f∗(Lh) = 0 for large h. Let s′ be any point of S; if s is a
general point of S and (3.1) is onto at s′, then (∧Nϕ)s′ does not belong to the GL(r)-
orbit of (∧Nϕ)s. Therefore we can choose P so that it vanishes at (∧Nϕ)s′ , and hence we
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get a non-zero section of det(f∗(Lh))rM ⊗ det(f∗L)−hNM that vanishes at s′; this same
conclusion is trivially true if (3.1) is not onto at s′. If s′ is a point of maximum multiplicity
on S this shows that

deg
(
det(f∗(Lh))rM ⊗ det(f∗L)−hNM

)
≥ m(S) .

Notice that, by the compactness of the Hilbert scheme parametrizing subschemes of Pr−1

with Hilbert polynomial p(t) = dt+1−g, the integers h andM can be chosen independently
of f : X → S and L. On the other hand, the Riemann-Roch theorem yields

N = hd+ 1− g ,

deg
(
f∗(Lh)

)
=
h2

2
(L · L)− h

2
(L · ωf ) + deg λf ,

so that we get

Lemma (3.2). Let g ≥ 2, d, and r be positive integers. Then there is a positive integer h0

such that for any integer h ≥ h0 there is a positive integer M with the following property.
Consider any generically non-trivial family of polarized noded connected genus g curves
(f : X → S,L) such that the relative degree of L is d. Assume moreover that:

i) S is a reduced and irreducible complete curve and the general fiber of f is smooth,
ii) R1f∗(Lh) = 0 for large h and dimH0(f−1(s), L|f−1(s)) = r for any s ∈ S,
iii) for general s ∈ S the restriction L|f−1(s) is base-point-free, very ample, and embeds

f−1(s) as a (Hilbert) stable subscheme of Pr−1.
Then

(3.3)

[r
2

(L · L)− d deg(f∗L)
]
h2 − r

2
(L · ωf )h

+ r deg(λf ) + (g − 1) deg(f∗L) ≥ 1
M
m(S) .

In practical applications, to check that iii) holds we shall rely on the fact that a smooth
curve of genus g embedded in projective space by a complete linear system of degree greater
than 2g is linearly stable by Clifford’s theorem, and hence, as is proved for instance in [5],
stable.

Let’s apply Lemma (3.2) to L = ωk
f , where f : X → S is as in the statement of

Theorem (2.2), n = 0, the general fiber of f is smooth, and k > 2. Conditions i), ii), and
iii) are satisfied, and we have

d = 2k(g − 1) , r = (2k − 1)(g − 1) .

On the other hand, it is proved in [12] that

(3.4) (ωf · ωf ) = 12 deg λf − deg δf ,

deg(f∗(ωk
f )) = deg λf +

k2 − k

2
(12 deg λf − deg δf ) .
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Thus expanding the left-hand side of (3.3) yields, for fixed k, a polynomial in h whose
coefficients are rational linear combinations of deg λf and deg δf and whose leading term
is

h2 k
2(g − 1)

2

[
12 deg λf − deg δf −

4
k

deg λf

]
.

Hence, for large enough h, we get an inequality of the form

β deg λf − deg δf ≥ αm(S) ,

where 0 < β < 12 and α is a positive constant. Since in our situation deg δf is non-negative,
this implies that

12 deg λf − deg δf ≥ αm(S) ,

as desired. Thus (2.2) is proved for families whose general fiber is smooth when n = 0.

4. In this section we shall complete the proof of (2.2). We begin with a lemma. Consider
a family f : X → S of noded curves over a reduced and irreducible complete curve S.
Suppose the general fiber of f is smooth, and that f has a section C which does not pass
through any of the singular points of the fibers of f . We shall say that an irreducible
component of a fiber is exceptional if it is smooth and rational and meets the rest of the
fiber only in one point. Let E1, . . . , Eh be exceptional components that intersect C, and
let p1, . . . , ph be the points where they meet the rest of their respective fibers. Near pi,
X is of the form xy = ηi, where ηi is a function on S. The functions ηi define a Cartier
divisor on S, whose degree we denote by µ. Let f ′ : X ′ → S be the family of noded curves
obtained from f : X → S by contracting E1, . . . , Eh, and let C ′ be the image of C in X ′:
it is a section of f ′ which does not pass through any of the singular points of the fibers of
f ′.

Lemma (4.1). (C ′ · C ′) = (C · C) + µ.

The two sides of the equality do not change if we replace f : X → S with X ×S T → T
and C with C×S T , where T is the normalization of S. In the proof, then, we may as well
assume that S is smooth. By induction, it is also enough to do the case h = 1; we shall
write E for E1 and p for p1. Near p, X is of the form xy = tk, where t is a local parameter
on T , so that µ = k. If k > 1, X is singular at p. Desingularizing it has the effect of
replacing p with a chain of k − 1 smooth rational curves F1, . . . , Fk−1 of selfintersection
−2,

so that we can pass from X to X ′ by k successive contractions of exceptional curves of the
first kind in smooth surfaces. Therefore it suffices to do the case k = 1. But then the total
transform of C ′ in X is C + E, hence

(C ′ · C ′) = (C · C) + 2 (C · E) + (E · E) = (C · C) + 1 = (C · C) + µ ,
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as desired.
One consequence of (4.1) is that (C · C) ≤ 0 when g ≥ 1. In fact, by successively

blowing down exceptional components we may pass from f : X → S to a family of semi-
stable curves; Lemma (4.1) guarantees that at each step the self-intersection of C does not
decrease. We are thus reduced to the case when the fibers of f are semi-stable. In this
case that (C · C) ≤ 0 is due to Arakelov (cf. [1] or [14]). It is perhaps worth noticing that
Arakelov’s result is an almost immediate consequence of what has been proved so far. For
instance, in case g > 0, one of the standard proofs is to apply the index theorem on the
surface X to the triple of divisors consisting of ωf , C, and a fiber of f , and to use the fact
that (ωf · ωf ) ≥ 0. That this is the case, in turn, follows from (3.4) and the special case
of (2.2) proved in the previous section.

We may now complete the proof of (2.2). As we have observed in section 2, we may
assume that the general fiber of f is smooth. We set Ci = σi(S). The proof will be
divided into several subcases, depending on g and n. Suppose g > 1. In the previous
section we have done the case n = 0: we assume then that n > 0. We claim that (4.1)
reduces us to the case n = 1. In fact there is one of the sections Ci, say C1, such that the
family f : X → S, together with the section C1, is not generically a product. But then
omitting Cn and contracting the exceptional components that meet Cn and only one of
the remaining Ci produces a non-isotrivial family F ′ of semi-stable (n−1)-pointed curves;
for each i, denote by C ′

i the image of Ci. Further contractions, which do not affect the
degrees of λ, δ, and ψ, yield a non-isotrivial family F ′′ of stable (n − 1)-pointed curves.
Now, by (4.1), the selfintersections of the C ′

i are of the form

(C ′
i · C ′

i) = (Ci · Ci) + µi .

Notice also that, by construction,

µn =
n−1∑
i=1

µi .

Thus

degψF ′′ = degψF ′ = −
n−1∑
i=1

(C ′
i · C ′

i) = −
n−1∑
i=1

(Ci · Ci)− µn = degψF − µn + (Cn · Cn) ,

while
deg λF ′′ = deg λF ′ = deg λF , deg δF ′′ = deg δF ′ = deg δF − µn ,

so that

12 deg λF − deg δF + degψF = 12 deg λF ′′ − deg δF ′′ + degψF ′′ − (Cn · Cn)
≥ 12 deg λF ′′ − deg δF ′′ + degψF ′′ .

By induction on n, this proves our contention. If f : X → S is not isotrivial we can go
one step further and omit C1 as well, reducing to the case n = 0, which we settled in
the previous section. The case when f : X → S is isotrivial can be dealt with in several

M.D.T. Cornalba, On the projectivity of the moduli spaces of curves, November 1992 - page 8



ways. One which is in the spirit of the rest of the paper is as follows. Write C for C1 and
consider the line bundle L = ωk

f (C), where k ≥ 3. Then f : X → S, together with L, is
a generically non-trivial family of polarized noded curves, and the hypotheses of (3.2) are
satisfied. In our situation (ωf · ωf ), deg λf , and deg δf all vanish; hence the left-hand side
of (3.3) is a polynomial in h whose coefficients are rational multiples of

degψf = 12deg λf − deg δf + degψf .

Furthermore its leading term is g degψf (h2/2) so that, for large h, (3.3) yields (2.2) in our
situation.

Now suppose g = 1. Using Lemma (4.1), the same argument as for g > 1 shows that it
suffices to do the case n = 2 when f : X → S is generically a product family, and the case
n = 1. Suppose first that n = 1 and write C for C1. For k ≥ 3 the line bundle L = O(kC)
satisfies the hypotheses of (3.2), with r = d = k. Looking at the exact sequences

0 → f∗(O((i− 1)C)) → f∗(O(iC)) → f∗(O(iC)|C) → 0

for i > 1 one sees easily that

deg(f∗L) = −k
2 + k − 2

2
degψf ,

so the left-hand side of (3.3) has coefficients which are linear combinations of deg λf and
of degψf and leading term k(k − 2) degψfh

2. Since in the situation we are considering

12 deg λf − deg δf = 0

(cf. [12]), this proves (2.2) for g = n = 1. When n = 2 and f : X → S is generically a
product family, the argument is similar. We notice first that deg λf = 0 and that, by (4.1),

deg δf = − (C1 · C1) = − (C2 · C2) =
1
2

degψf .

Next set L = O(kC1 + kC2), with k ≥ 2. Arguing as for n = 1 one sees that, for some
positive α,

12 deg λf − deg δf + degψf =
1
2

degψf ≥ αm(S) .

It remains to discuss the case g = 0. To begin with, notice that deg λF = 0. Let
T be the normalization of S. Then f ′ : X ′ = X ×S T → T , together with the sections
C ′

i = Ci ×S T , is a family of stable n-pointed curves of genus zero, which we denote by G.
Notice that

deg δG = deg δF , degψG = degψF .

Let p1, . . . , pN be the singular points of the fibers of f ′. Near pj , X ′ is of the form xy = tµj ,
where t is a local parameter on T . Moreover pj dissects the fiber on which it lies in two
components, one of which is νj-pointed and the other (n − νj)-pointed, where νj ≤ n/2.
We shall need the following result.
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Lemma (4.2). degψF = −
n∑

i=1

(C ′
i · C ′

i) =
N∑

j=1

µjνj(n− νj).

For a proof we refer to [4], Lemma (4.8). Since νj ≥ 2 for every j, and deg δF =
∑
µj , the

lemma says in particular that degψF ≥ 4 deg δF , and hence also that

(4.3) 12 deg λF − deg δF + degψF ≥ 3 deg δF .

We now contract components of the fibers of f ′ : X ′ → T until we get a family h : Y → T
which, together with the images of C ′

1, C
′
2, and C ′

3, is a family of stable 3-pointed curves of
genus 0, and hence a product family. For each i, we let Di be the image of C ′

i in Y . Since
F is assumed not to be isotrivial, at least one among the Di with i > 3, say D4, is not a
constant section of h, that is, comes from a non-constant map from T to P1. As this map
factors through S, its degree is at least equal to m(S). This means that the intersection
multiplicity of D4 and Di is at least equal to m(S) for i = 1, 2, 3, and, as a consequence,
that

deg δF ≥ 3m(S) .

Taking into account (4.3), this proves (2.2) in the case under consideration. The proof of
Theorem (2.2), and hence of the projectivity of Mg,n, is now complete.
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