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0. INTRODUCTORY REMARKS

The purpose of these seven lectures is to discuss some transcendental
aspects of algebraic geometry. Historically, a great deal of the subject
was initially developed by analytical and topological methods. This was
probably due to the origins of much of algebraic gecmetry as a branch of

complex function theory (Gauss, Abel, Jacobi, Riemann, Weierstrass,
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Poincaré, Picard, etc.). Another possible reason is that the intimate
relationship between algebraic geometry and topology is mere visible in the
complex case (Lefschetz, and more recently the Hirzebruch-Riemann-Roch
formula) . Finally, the beautiful local and global methods of differential
geometry are available in the complex case (Hodge, de Rham, Chern, Kedaira,
etol) .

puring the last 100 years, and especially in thg last 40 years, much
of the theory which was initially discovered by analytical methods has,
guite properly, been put in a purely algebraic setting (the foundations,
Torelli for curves, Riemann-Roch, etc.). Moreover, longstanding problems
have been proved by aigebraic methods (resolution of singularities).
Finally, due primarily to the input from arithmetic, new and striking
results over the complex numbers have been suggested and sometimes proved
by algebra (Deligne's theory of mixed Hodge structures, the Tate conjec-
tures, etc.). However, because of the fundamental nature of the complex
numbers, there remains a transcendental aspect of algebraic geometry which
is both essential to an understanding of the subject and gquite beautiful
for its own sake. In these lectures, we hope to focus on some facets of
this theory.

specifically, we shall concentrate on the following topics as illus-

trating transcendental algebraic gecmetry:

a) The Hirzebruch-Riemann-Roch formula for compact, complex manifolds;

b) Hodge theory for a single compact Kihler manifold, and the related

vanishing theorems for cohomelogy, theory of mixed Hodge structures, and

homotopy type of Kidhler manifolds;

g) wvariation of Hodge structure culminating in the recent work of

Schmid; and

d) the global theory of transcendental holomorphic mappings (Nevan-

linna theory) viewed as non-compact algebraic geometry.

The Hirzebruch-Riemann-Roch formula is of course well-known and has a
purely algebraic proof in much stronger form. However, it is a basic
result first proved by transcendental methods and has inspired a great deal
of mathematics over the last 20 years. Moreover, there has recently been

given an "elementary" proof by Toledo and Tong, one in which the local and

e
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global properties of the §—operator are brought nicely into focus, and so
this proof will be discussed in the second lecture. The complete argument
will be presented in the analysis seminar.

Hodge theory for a compact X#hler manifold is again a subject which
has been around for guite some time. However, we have deemed it worthwhile
to sketch the theory in some detail, emphasizing Chern's conceptual expla-
nation of the plethora of Kihler identities. as applications, we have
given Le Potier's recent extensicn of the Kedaira-Nakano vanishing theorem
to vector bundles, and a brief account of Deligne's theory of mixed Hodge
structures and the homotopy type of Xihler varieties. Finally, in the
belief that many, if not most, algebraic geometers are aware of the formal
aspect of Hodge theory but have not been through the grubby analysis, we
have (in the appendix to lecture one) given an account of the underlying
analysis of the Laplacian which hopefully may appeal to tastes of the
algebraists,

The main thrust of these lectures will be to discuss variation of
Hodge structure leading up to the recent work of Schmid. Here the methads
of complex analysis, Hermitian differential geometry, and Lie group theory
blend together to maximally illustrate the flavor of transcendental alge-
braic geometry. The complete proofs of most of the main results will be
covered between the lectures and the accompanying analysis seminar.

Ve shall alsc discuss some "non-compact" algebraic geometry. For
example, Picaird's theorem and its subsequent refinement, the beautiful

value distribution theory of R. Nevanlinna, appear naturally as transcen-

dental analcgues of the fundamental theorem of algebra., The extension of

this theory to transcendental holomorphic curves in B" is based on the

non-compact Pliicker formulae of H. and J. Weyl. Although it is not yet

established, one may adopt the philosophy that a global result concerning
complex algebraic varieties is not properly understood unless one has
analogous results for non-compact manifolds, and this is to some extent the
viewpoint we shall take. It is on non-compact varieties that the full
richness of the larger class of generally transcendental analytic functions
and holomerphic mappings can be perhaps best exploited. An example of this
is the consequence of a theorem of Grauert that all of the rational, even

dimensional homology on a smooth, affine algebraic variety is representable



6 MAURIZIO CORNALBA AND PHILLIF A. GRIFFITHS

by analytie subvarieties, although very little of it is so by algebraic
cycles. Conversely, the existing theory in the compact case.freguently

points the way to profcound analytical results in the non-compact case, as

illustrated by the Lz—methuds for studying the 3-operator con open manifolds
which has developed so fruitfully in the last decade, and whose basic
estimate is just the identity Kodaira initially used in his vanishing

theorem for a compact Kdhler manifold.

GENERAL BIBLIOGRAPHICAL REFERENCES

We shall give a few references to articles and books which were

turning points in the development of the subject. l

N. nbel, Démonstration d'une propriété générale d'une certaine classe
de fonctions transcendentes, J. reine angew. Math., vol. 4 (1829), 200-201.

B. Riemann, Theorie der Abelschen Funktionen, J. reine angew. Math.,
vol. 54 (1857}, 115-155.

E. Picard and G, Simart, Théorie des fonctions algébrigues de deux
variables independantes (tomes I et II), Gauthier-Villars, Paris, 1892-1906.

H. Weyl, Die Idee der Riemannschen Flidche, Teubner, Berlin (1913);
third edition Teubner, Stuttgart (1955). E:

S. Lefschetz, L'analysis situs et la géométrie algébrique, Gauthier-
Villars, Paris (1924).

W. V. D. Hodge, The theory and applications of harmonic integrals,
Cambridge Univ. Press, New York (second edition 1352).

5. 8. Chern, Characteristic classes of hermitian manifolds, Annals of
Math., vol. 47 {19246), 85-121.

K. Kodaira, On Kihler varieties of restricted type, Annals of Math.,
vol, 60 (1954), 43-76.

F. Hirzebruch, Topological methods in algebraic geometry, Springer-
Verlag, New York (196&).

1. GENERALITIES ON COMPLEX MANIFOLDS

A complex manifeld M is a manifold M provided with a distinguished

n
open covering {U, V¥, ...} and coordinate charts fU 3 WsEs i
: n = o i holomorphic where defined.
fV : V+ O, ... such that EUV = fU fv iz biho o]
Such manifolds are even-dimensional, oriented, and we shall assume them to

be connected. Some standard examples are:

Sl A . LA P St
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a) ¢c” with global coordinates =z = {zl,...,zn} :

b} P" with homogenecus coordinates 2 = {zo,...,zn] 5

c) the Grassmannian G(k, n) of k-planes through the origin in ¢" '

d} complex tori Ty c"/i where A is a lattice in ey

e} among the spheres, only s? = Pl and possibly 56 have complex
structures; however, the preoduct 32p+l ® 32q+1

of odd spheres has a

continuous family of complex structures (Calabi-Eckmann);
fo 1)\
£) let (@Q be the skew-form with matrix k_ 0 ;, and define

Th
Hn < G(n, 2n} to be all subspaces /A satisfying the Riemann bilinear

relations

Q(e, e') =0 (e, e' € 4)

-1 g(e, 8) > 0 (0 #egl)
then H_ ~ is a complex manifold biholomorphic to the Siegel-upper-half-

plane of all n xn matrices % = X + v=1 ¥ satisfying 2 = £y o Xl g

g} a one-dimensional complex manifold is a Riemann surface; and

h} the most important examples are the projective algebraic manifolds,

which are the complex submanifolds of T given as the zerces of homo-
geneous pelynomials. This class includes the Grassmannians, compact
Riemann surfaces, some but not all complex tori, any quotient D/T of a
bounded domain D in @ by a discrete group of Aut(D) acting without

fixed points and with compact quotient; except for p =g =0, the product

of odd spheres is not projective.

An important tool for linearizing the study of complex manifolds are
the holomorphic vector bundles, defined as in the real case but with holo-

morphic transition functions. We denote such bundles by E + M ; the

fibres Ep = v*l(pj (p € M) aré (non-cancnically) isomorphic to o

where r is the rank. Aside from the trivial bundle M x cf , some

examples are:

a) the holomorphic tangent bundle T(M) + M , whose local holomorphic

sections are the holomorphic vector fields Z Bi{z) ?%w on M ;
1 i

b) the normal bundle to a complex submanifold;

c¢) the line bundle (r = 1) |[D] + M determined by a diviser D on
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M ; here D has local defining equations fU =0 lfu e 0{u)) , and the
transition functicns of [D] are fUV = fU/fv e 0%(u n V) ;

d) the universal sub-bundle S and guotient bundle {Q over the

Grassmannian G(k, n) ; for a k-plane A ¢ Gk, n)
i = oPsn
5;. = 4\ , Q!\ oot

e) over a projective variety, there are generally "very few" holo-
morphic (= algebraic) vector bundles, since the Chern classges (defined
pelow) of such a bundle must have Hodge type (p, p) - On the other hand,

it is a theorem of Grauert that on an affine algebraic variety (= algebraic

subvariety of CN), every topological bundle has a unigue analytic

structure. A nice problem is to determine the "growth" of such bundles.

The standard constructions of linear algebra (@&, @, Ap, Hom, duality,
...) apply fibre-wise to vector bundles. We follow the usual notational
conventions: (0{E) is the sheaf of holomorphic sections of E » M ; B*

is the dual of E, 0P = 0(aPr(M)*) , ete. MNoteworthy are the universal
exact seguence

0 + 5 + Gk, n xc"

and natural identification

(1.1) T(G(k, n})) = Hom(S, Q) -
(PROOF: A variation A t|t] < &) of a k-plane &, 1is measured infini-
de
. ; . £t ¥
tesimally by choosing e, € At and then projecting =8 | b into
n
/Ny -)

We also denote by aPrd(M, E) the ¢® , E-valued (p, g) forms on

M . The operator
3 gl -
3:aP9%m, B) » APT O, B)

is well-defined since the transition functions of E are holomorphic.
In some sense, transcendental algebraic geometry is distinguished by
the use of metrics. A holomorphic vector bundle with Hermitian metrie in

the fibres will be called a Hermitian vector bundle. Given such, the

i Lk .
fundamental invariant is the curvature matrix 2 € A (M, Hom(E, E)) .
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The curvature is of twofold importance: First, it gives rise to Chern
forms and Chern classes, as in the real case. Secondly, peculiar to the
complex case are the notions of positivity and negativity, which tie in
with the analytic concept of pluri-subharmonicity.

Given a Hermitian vector bundle E + M , there exists a canonical

metric connection

p:a%m By » alm, m

uniquely characterized by the conditions

i

atg, m (p£, n) + (£, bn) (¢, n e 2, w)

(1.2)

p" o ]

where D = D' + D" is the type decomposition of D . A unitary frame
field El,...,Er is given by smooth sections Eu of E over an open set
U cM which give a unitary basis in each fibre Ep {p € U) . For such a
frame field, the conmection matrix & and curvature € are defined by

= 8. E
DE,, E LR

(1.3)
dg + 8 ~ 8 = @2

The conditions (l.2) characterizing D imply that

(1.4)
® is a matrix of (1, 1) forms.

As examples of Hermitian vector bundles, observe that the inclusions

s < ¢t

induce a Hermitian metric on the universal sub-bundle. Similarly, for the
universal sub-bundle S|Hn restricted to the Siegel-upper-half-plane, we

may set
(g, m) = /~Iol, m

to obtain a canonical Hermitian metriec of the sort encountered in variation

of Hodge structure.

From the curvature, one constructs the Chern forms cqta} by taking
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elementary symmetric functions:

\

+ €I} .

. (=T o
Cq(b)t = det o el

I r—1rt

g=0

Using (1.4}, the Chern forms are global real forms of type (g, g) , and

the Bianchi identity D@ = 0 implies that
de _(8) = 0.
g
Thus, the Chern forms define classes

2q
c:q € Hpp M}

the de Rham cohomology of M . A basic result is that these Chern classes
cq are independent of the metric, In fact, this is true for real mani-
folds. In the complex case Bott and Chern proved more; namely that the

Chern forms associated to two metrics ( , ) and ( , )' satisfy

— ' = e g
cq(® =40 ad®ng _;

where a% = /5T (3 — 3)

To define positivity, we use the curvature form

- V=1 ¢ -
(1.5) o) = % (on, n) = = ] 0 nfh
e
where n = Eu nugu is a vector. Each &(n) is a real (1, 1) form,
e : ) _ =
a{n) = —_ 5 a5 dz d.:j (aij aji) :

and the Hermitian bundle is positive in case @(n) > 0 for every non-zero

n , in the sense that {aijj > 0 . For line bundles, we note that
a{n) = ey(@-(n, n) .
Here is an illustration of the use of the curvature form.

({l.8) Suppose that M is compact and that E + M is a Hermitian
vector bundle whose curvature form has everywhere at least one

negative eigenvalue. Then HO(M, 0(E)) = 0 .

PROCF: Suppose that 0 # £ ¢ HUIM, 0(E)) , and let Py €M be a point

where the length |£tp]|2 has a maximum. Then, at p;
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(1.7) L siem? < o
On the other hand, using (1.2), 3L =0 , and D2 = @ ,. we obtain
ad(E, £) = a(g, D'E)
= (D'E, D'E) + (£, D"D'E)
= (D'E, D'E) + (£, BE) ; i.e.
(1.8) Grove, 0 = 5L o, o - 5T (o,
= -g(&) ,
which contradiets (1.7). Q.E.D.

The relationship between positivity and Chern forms is not yet suffi-
ciently understood. For example, aside from vector bundles of rank 22,
it is not known if the Chern forms of a positive bundle are positive. Ir
general, the relationship between positive (differential—geometric), zuple
(algebro-geometric), and numerically positive {topological and algebro-
geometric) vector bundles has not been explained.

Before discussing harmonic forms, we want to give a device for com-

puting curvatures. Suppose given an exact seguence
B % B! = B o+ EY o 4

of holomorphic vector bundles. A Hermitian metriec in E induces one in
E' and E" , and the differential geometry is analogous to that of sub-
manifolds in ®R™ , More precisely, the metric connection D in E + M

induces a map

g: E' = E"@8 T(M*

in the obvious way (¢ is of type (], 0) sinece D" = 3 and E' is a
holomorphic sub-bundle). We call o the 2E§-fundamental form of E' in
E . As an example, in the universal exact sequence over the Grassmannian,

g € Hom(T(M), Hom(S, Q)) gives the isomorphism (1.1). The curvature form

of E' is given by
(1.9) B0 (8) = O (E) — (a(£), olg)) (& € BY)

In particular,
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a, .

fo) o
(1.10) Ops £ O

The principle that curvatures decrease in sub-bundles is of fundamental

importance in Hermitian differential geometry.
A second major use of Hermitian metrics is the study of cohomology by
using harmonic forms. Given a holomorphic vector bundle E + M over a

compact complex manifold M , we consider the Dolbeault complex

oo o 2PrS iy gy 3, APy By 4 .
The holomorphic analogue of de Rham's theorem is the isomorphism
(1.11) a9, aP(e)) = HE'Y(M, E)

between the Cech cchomology of the sheaf QP(EJ = 0P 8 0(E) and the coho-
mology of the Dolbeault complex. If we introduce metrics in E and in the
tangent bundle, then the Dolbeault cohomology Hg’q{m, E) iz represented
by harmonic forms as follows: The spaces Ap'q{M, E) are pre-Hilbert

spaces using the 1% inner product
(o, W) = [ ¢ ~ #y
where
(1.12) 1 aP 9, B) o ATTPRT9(y, pw
is the pointwise dnality operator. Next, the adjoint operator
3% AP 9m, By - AP Iy, @

and Laplacian

]
w2l
@I
*
+
@
*
ax|

are defined as usual, as is the harmonic space

WP S, B8) = (¢ eaP' 9, B) : O¢ = 0}

I

{6 ¢eaPr9(mM, B) : Tp = 0= 5%¢) .
What is by now standard P.D.E. gives, among other things, the isomorphism

{1.13) ngfqzn, E) = #Pr9m, E)
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There are three immediate applications of this representation of

cchomology by harmonic forms:

a}) The cohomology is finite dimensional;

dim B3 (M, nP(E)) < = .

b) Wext, we consider two compact, complex manifolds M, N over which
we are given holomorphic vector bundles E, F . Denoting by E @ F + M = N
the bundle with fibres (E @ F)

=E @F (x €M, y gN) , if we

(x = y) ¥
choose the obvious product metrics throughout and make straightforward

considerations of the various Laplacians, then
W9« N, E@r) = ] H5Sm, B) 8 WPTTS Sy, §y
r,s

Thie leads to the Kinneth formula

(1,14) H*(M x N, n*

mox g 'E®F)) = EYM, 0F(E)) e BY(N, af(F)) .

¢) Since §* = T *3* where * is the operator (1.12), it follows

that « [l = [J% and

w1 HPrS(M, By o+ @RI gy
is an isometry. This implies that the pairing
(1.15) udm, aP(E)) e #M (M, a™P(rY)) -+ c

given by using (1.11) and

is a pairing of dual vector spaces (Kodaira-Serre duality).

The relationship between harmonic forms and positivity will be dis-

cussed in lecture 3 when we talk about vanishing theorems.

REFERENCES FOR CHAPTER ONE

As general references for complex manifolds and Hermitian differential

geometry, we suggest:
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5. §. Chern, Complex manifolds without potential theory, Van Nostrand,

New York (1967).
R. O. Wells, Differential analysis on complex manifolds, Prentice-Hall,

Englewood Cliffs (1973).
J. Morrow and K. Kodaira, Complex manifolds, Holt, Rinehart and

Winston, New York (1971).

The curvature form, 2nd fundamental form of a holomorphic sub-bundle,

etc. are discussed in

P. Griffiths, Hermitian differential geometry, Chern classes, and
positive vector bundles, in Global Analysis, Princeton University Press,

Princeton, N. J. (1969}.

APPENDIX TO LECTURE 1l: PROOF OF THE HODGE THEOREM*

Let M be a compact Hermitian manifold. We shall prove the Hodge

theorem for the Laplace-Beltrami operator [l = 33* + 3*3 acting on the

0w

polbeault complex A (M}

a) FOURIER SERIES. Let T =ZRnf{2n m;“ be a standard torus with

coordinate x = {xl,...,xn] . We consider the space F of formal Fourier
series
v-’-I(C >
o~ i N uge X
EEeZ

with complex coefficients. For any integer s , the Scbolev s-norm is
2 2.8 2
LRGN UM

and we denote by H the Hilbert space of all u ¢ F with finite s-norm.

Note that

and we set

H

H
=]

i

o 3o

* We shall assume only elementary Hilbert space theory up to the

spectral thecrem for compact operators.
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The mapping
2, 8
uz + (L + JE]I®) ui

is an isometry from H5 ko H-s ¢ S0 that we may identify H & with the

dual of H, by the pairing
(a, v) = J uwv
£
A basic tool is the

RELLICH LEMMA: For s > r , the inclusion i, < H, is a compact

operator.
PROOF: We must show that a bounded seguence [uk] in #_ has a conver-
: 5 2
gent subseguence in H. . Since ”uk”s 2 € <=, the sequences

+ g

k,E
are bounded. By diagonalization and passing to a subsquence of the o
we may assume that
2, r/2
1+ |jj&
{ fleli™ Y,
is Cauchy for each fixed £ . Given e > 0 , we may then choose R and m
such that
ic ;
———— e/2 for [IE]j = R
1+ flg|H=r :
I G+ 6%y, —uy 1% < e/2 for X, 22m.
ElZR B TRl .
Then, for k, 1 zm,
2 2, r; P
Moy = wglly = I+ Qe ing o —uy |
x ~ Selly IEliR el & T Ye.E
P of (2
+ I 1+ g5 |u —u | < E/2 + g/2 = ¢
lElR TR R

Denote by ¢¥(1) the functions of differentiability class s on the

torus. Each continuous function ¢ € CO(T} generates a formal Fourier

#:T'<E,x>

series EE ¢€e whose Fourier coefficients are given by

i 4 —/:TCE,x>
bp = IT b(x)e .

e A sn 7 T
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Set D, = . 2 and use the standard multi-index notations:
b} . X,
/=1 a]
o % “n
. = e B o o= { C
D = Dl Dn s} {.xl, .oy _'tn}
] = ap + +o0 + o
* = —cl...;an
E €y A

Then the formulae

ae»’jcg,a> iuev’-i < £y

D

(A.1) z o u TS &

JmTer )y = [ (8) (07w {o, v € C (T)

T T
are valid. If ¢ € CSIT] and [a] £ s , the Fourier coefficients of Du¢
are

o _ o
(D ¢)E = £y -

Parseval's identity

l¢]? = b2
J g [o,

T
shows that the Fourier series mapping CO{T} s Hy s injective, and that
cS(m) maps to H_ . A partial converse is given by our second basic tool,

5

the important

SOBOLEV LEMMA: cciim , in the sense that each

Ts+ (n/21+1
i i i i neti

u e Hs+[n/2]+l is the Fourier series of a unigue fu ion

u ¢ c®(r) , and moreover this Fourier series converges uniformly

to the functicn.

V=1 <g,x>

PROOF: In case s =0 , we let ], ue satisfy
EE (1 + ”EHz)[nx2]+1|u£!2 < ® . The partial sums S, = E”EHFR uze«:T(:E’x>
are continucus functions, and for R < R'
[Spix) —s8_,(x)]| < T |ugd
"R r' | = £l
fel>=
2]+1, 2,1/2
O [ o e e o Bt
= L
e (x+ "Eﬁz){n/2fll}lxz
\
P . =1 2Y 1
£ B T G« R PRIy 2 ) W

lel>r

e ——— T Tt
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. 1,
by tt inequali | _— S0 z % =
y the Schwarz ineq ity and ; o+ HE”ZJ{nX2]+l s C = Conseguent
* 1 H
ly, the SR{x} converge uniformly to a continuous function u(x) , whose

Fourier coefficients are in turn just the ug by virtue of the orthogonal-

ity relations

J‘e’l‘_l<£'x>e'l"-1{5"x) 1 £ = £!

T

———
i=]

£#

il

We shall do the case s =n = 1 to illustrate the general situation

V=T <eg,x>

for s > 0 . Thus, let u(x) = be a continucus function

T
Leem Yg®

4i'u;l'z < = . Using the previous case, the partial sums of

where EE 1g]

vix) = EE V=T tuge RSk converge uniformly to a continuous function.

Integrating term by term gives
x

[ viwae = ] u
0 E#0

EK:T<£,x>

= ulx) — by .

It follows that wu(x) is of class Cl and u'(x) = vix) .

In summary, we have proved:

The Fourier series mapping CO(T} + F leads to inclusions

P} = B
s

8
Hoblas21+41 < ©°(0)

In particular, we shall make the identification
c(m = H .

We remark that the Fourier series of a function ¢ ¢ CN(T} may be
differentiated term by term. Indeed, Da¢ is given by a Fourier series
whose Fourier coefficients are {DG¢)E = % by (A.1).

Another useful comment is that the proof of the Scobolev lemma gives

an estimate

(A.2) sup [4(x)| = cllef -
xer [n/2]+1
The norm | “0 is just the usual 12 nerm en CT(T) . Similarly,

the Scbolev s-norm is equivalent to the norm
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2
|

2 [ T T 200
A.3) H1ES = D% || Lo 1E*%|u
( | “S [{1]53 It 0 fal <a g
[

=

This follows from the inequalities

[£2% < a+gp?s < o 3 I

[alzs S el

| A3

25

Thus, H, is the Lz-comgletion of c”(T) with respect to the norm (A.3).

Combining these remarks with (A.2) gives
(a.4) sup [D%(x) | < Colloll g4 nsarer -
XET

We shall conclude this discussion of Fourier series with some remarks

concerning the distributions, defined as the linear functionals
A ™M o+ C

which are continuous in the sense that

(A.5) [At¢)] = ©  sup |[D*s(x)] .

al<k

XET

i V=1 <E,x>
Each distribution generates a formal Fourier series Er Aae E.x
where
Ap E NGV R EReEX,
13

It follows from (A.5) that A is continuous in the norm || llk + seo that

A € H_ by previous remarks. Indeed, the formal Fourier series of 1} in

H_, is just ZE hge “LSEAXS | on khe ckher hand, by (A.4) any X € H_

gives a distribution by setting
K = by

Thus, we may identify the distributions with H__ .

The derivatives of any distribution A are defined by
% = A% .

A distribution A is said te be in L2 in case X € Hy € H__ . Putting
our remarks together, we may give the following description of the Scbolev

spaces Hs for s 20 :

TSRS T o
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Hs consists of the distributibns ) such that all derivatives

p*\x  are in LZ for [a] 28 .

Referring to leecture 2, the delta-Function distribution

d(¢) = ¢(0)
has formal Fourier series [, EJ:I< B> Letting d4v = dx; o~ ... . odx
the egquation of currents
dk = 4&.av — av
. i _pd R s e
has the solution k = Sy {=1) kjdxl - ~ dxj -~ dxn where
ce) oy
kj = J. /=T —%——— e B and C.{£) is the number of non-zero £j in
b3 j 4

B (B g rmnr B

b) GLOBALIZATION TO MANIFOLDS; THE HODGE DECOMPOSITION. Any com-
pactly supported function on R may be regarded as a function on the
torus. Using a partition of unity, wé may thus globalize the above dis-
cussion to a compact Hermitian manifold. Let V be the metriec connection
on the complexified tangent bundle T, = T' @ T" , 7 induces a connection

(A
on all associated tensor bundles. Thus

7o et (9t . o® (9t g ¥4

. e pdme® * i Ry e * *
v.c(;\T"@Tc) + CU(ART @TC @TC),

ete. are defined. If ¢ ¢ c”(A9p"*) = An’q(M] , we set
L T(V(-+-(Vg)-++) . 1In any local coordinate system,
k-times
I Ip%I% < ¢ 1 (v, e < o I Ip%|?
[alss k<s [x]zs

since, for any tensor T ; in local coordinates

m
3T
o dz, 4+ dz, + y-
;] zg 121 53 4% v xoT

where ¥ is an algebraic operator. Thus, if we let Hg'qu} be the com-

pletion of Ao'q{M} in the norm

lel2 = 5 [ %, vRprav ,
k<s M
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3
= act-
then Hg’q{M) localizes to the Sobolev spaces " for C forms comp
ly supported in a fixed coordinate patch. In particular,
nedSm = 2%
) *
u Hu’q(M} = Du'q{MJ are the currents of type (0, gq) ;
: =
: X
Hg‘q(MJ = Lg'q{M} are the L2~forms; and
]
the inclusion
0
a3y > w290
is compact for s > r .
In addition to the local Fourier analysis, ocur basic tool in the study
¥
of harmonic theory is
il
o,
GARDING'S INEQUALITY: For ¢ ¢ A2'S(m) ,
2 < cpee, )
(A.6) el = ‘
where U(¢, ¢) 1is the Dirichlet norm
3¢, 3 5%y, 3* = (¢, (T +O)e) .
(8.7} D¢, ¢) = (¢, &) + (s, T¢) + (3%, 3%¢) e .
: i a
Assuming (A.6) we shall prove the basic results in Hodge theory, an ;
then derive (A.6) in the next section. The Girding inequality says that
0,g
the norm D(¢, ¢}l/2 is equivalent to ([¢f; on H"? . Moreover, for
v o€ Hf'q{m and n ¢ a% Iy
(a.8) Py, n) = (¥, (T +O)n) .
0 : ique 1 ¢ H{Jrq %
(A.9) LEMMA: Given ¢ € Lz'q ; there exists a unigqu 1
t
such that
O,g
(A.10) (¢, n) = Dy, n) (n e A7 2 ()) .

joi & n LO'![M)
The map T(¢} = ¢ dis a compact self-adjoint operator o b
i 0rq oy
whose range is contained in Hg'q(m) . As a mapping of L, (M)

i 0,g T is continuous.
inte H;'F(M) ,

Ho’q(M) for = > 0 , but this
s E

* Actually, we have only defined the 1
nay be extended to all s , ‘
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PROOF; The linear funectional

n o+ (¢,

extends to a bounded linear form on
| 4, n) | 5 H$”0HHH0 S

solution y ¢ n+9 )

(4, n) =

- The mapping T{¢) = 4

(n e a9y,

HE'Q{M) + by virtue of

is characterizeq by

D(Té, n) = (T4, (I + CTynm (m ea%Iuy, .
T is self-adjoint since
(. TV} = o2, Tv) = DiEy, T - (v, T4)
hrsmom.mmm P Y . From
ek < oee, o) = (4, 1) s Islly- s,

and inegualities of the form

208 < eo” +

it follows that 7

compact. Q.E.D.

We may now prove the regularity theorem.

Ve Lg'q{MJ + We say ¢ ig
(A.11) O ¢ =
in case

W, On) = (g, m

REGULARITY THEOREM: If ¢ 1is

¢ € B'YM) , then y ¢ 129

]
™
-

is bounded, and Rellich's theorem implies that T

Given

a
b € H

a weak sclution of the eguation
- — ——— " oL Ihe equation

(m e a% %y *

a weak solution of (A.11) where

s+2 °
PROQOF : We write
0 = p2
P o= 4 F*
-_—

* A stron soluticn is a solution in the usual sense.
2TIOng scluticn

’q{M} and

Hm”QD(n) . Thus the eguation (A.10) has a unigque

is
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and notice that in proving the regularity theorem we may assume that ¢, |

are both supported in a fixed coordinate patch. Regularity then follows

from
{A.12) PROPOSITION: Let P be a first order differential
operator on r*
Pu = Qu + Ru
ou
= L
(Qu); = [ aj, EE
(Ru); = ¥ bijuj
where a?j* bij are smooth functions. Suppose that the G8rding
inequality
(A.13) affPally + Blully 2z iy

holds for any compactly supported smooth u . If u, v € Hs and
Pu = v
in the weak sense (as distributions), then u ¢ Hs+l W

PROOF @ We will assume that s > 0 , although the proof works for any s .
Before actually proving (A.12) we recall some standard facts about molli-

i n
fiers. Let yx be a positive, compactly supported smooth function on R

such that
wl=x) = xi(x)
I xlxldx = 1 .
We define
o
E
(v« u)(x) = [viylulx —y)ldy = [ vix —yluly)dy

and notice that, no matter what the differentiability properties of u

are, y, *u is C and

3 3 3u
= (¥, 1) = Sy xu = y_* .
EE € ax, te € axy,

Moreover it is a standard and easily proved fact that, if u is compactly

SOME TRANSCENDENTAL ASPECTS OF ALGEBRAIC GEOMETRY 23

supported and belongs to L2 (resp. Hs}, then Xo * u converges to u

in  L,-norm (H,-norm} as e > 0 . To prove (A.12) it is sufficient to

uniformly bound the H_ , ,-norm of e * U, since then a sequence Xg * 1
n

£, * 0 converges weakly to an element of H ., which can only be u .

It is a consequence of (A.13) that we can bound the HS+1—norm of
Xg * 1 in terms of the Hs—norms of Q[xE * u) and Xg * U . The latter,
in turn, is bounded by a constant times the Hs-nnrm of u . We know how
to bound the Hs—norm of e * Qu , so we must bound the Hs—norm of the

difference
{(a.14) xﬁ * Qu — Qfxa * a) .

For simplicity we will do this when s = 0 , the arqument being the same

in general. The i-th component of (A.14) is

a h h 3 ] 2 h
— a,.u,] — . T u - L o—— a L] .
[axh Ke * {jgh l]JJJ j?h a;] EE Xe * jJ e * fj;h uj axh al])
The second term is bounded by a constant times the Ly-norm of u . The
other term is
1 ) h h
T '?h I -ax—h xiv/e) [aij{x —-y) - aij{xlluj (x — y)dy

and the Minkowski inequality implies that its Ly-norm is less than

e otk oz x@ Ixlvllugh @y = & fly
for suitable constants K, K' . Q.E.D.
As an application, we call any weak solution of the eguation
O¢ = r¢ (r e )
an eigenfunction for the Laplaci;n.
COROLLARY:  Any eigenfunction of [] is smooth.

FROOF : From (0§ = A¢ , it follows inductively on s that $ €N Hg'q{M}
8

which is just Ao’q(Mj by the Scbolev lemma. Q.E.D.

-

The eigenspace Ag'q{MJ = {4 € Lg'q{M] : O¢ = 2 is just the
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eigenspace with eigenvalue 1/(1 + 3} for T . Since T is compact and
self-adjoint these eigenspaces are all finite dimensional. In particular,
the harmonic space Hu'qu) corresponding to the eigenvalue )} = 0 is
finite dimensional. Moreover, the spectral theorem for such operators

gives the discrete decomposition

)9 = B Af'q{MJ
A m

m
where Ag’q is the eigenspace for 1/(1 + Am] for T . In particular,

05 Ay < Rl and Am +® as m -+ =« ., On the orthogonal complement

Ho'q(M)A' = EB A?'q{M) of the harmonic space, the estimate
m>l "m

ITnlly 2 A0l iy =0

is valid for all smooth forms. This is the essential estimate needed to

prove the
HODGE DECOMPOSITION: The eguation
Qv = ¢ (v € a%9m)

has a unigue solution y € Au'q{M) n Ho’q(MJ if and only if
¢ € Hﬂ’q{M))-. The map ¢ + ¢ is a compact self-adjoint operator
G (the Green's operator} which commutes with § and 3% . TFor

any ¢ € a0 9 ; one has the Hodge decomposition
(A.15) ¢ = Hip) + ety

where H(¢) is the projection of 4 in Hﬂ’q{M) and G has

> a,
been extended to all of Lg'q[M) by setting G = 0 on H *F(m)

PROOF: The necessity condition ¢ ¢ Ho’q(M} and the unigueness state-

ment are obvicus. An explicit formula for G is as follows. Write

€ Ag'q ¢ Xy #0 . Then

where ¢i
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It feollows from the regularity theorem that Y = G¢ is smooth and is a
solution of [0y = ¢ in the usual sense. Moreover the Hodge decomposition
(A.15) is valid, and the operator properties of G follow from those of

T . The commutation relatiens [G, 3] = 0 = [G, 3*] result from

d, 31 =0= [0, 3] . Q.E.D.

In particular, any ¢ ¢ Ao’qu] may be written in the chain homotopy

form
(A.16) b = H(¢) + B(GT*)¢ + (GT*) 3T

and this, together with what has been previously said, proves the results
on cohomology which were stated in lecture 1.

The proof of Hodge theory we have given depends only on the Garding
ineguality (A.6), which is the basic ellipticity estimate for O . 1t
works equally well for Riemaﬁnian manifolds and vector bundle cchomology
H%{H, E) . The basic defect is that the more subtle properties of the
Green's operator as a kernel on M % M with certain precise singularities
along the diagonal are not readily visible by the Hilbert space method. We

remark that the total operator

0, %

63 : A% Fmy o+ alertlpy

comes frem a very beautiful kernel k(x, ¥y} on M x M , which in particu-

lar solves the equation of currents

with s(x, y) being the smooth form ¥i{x, ¥) in lecture 2 corresponding
to taking the w? and $:q to be an orthonormal basis for the harmonic

forms.
c) THE GARDING INEQUALITY. Por any differential operator D of

order k on a compact manifold M , one trivially has estimates

IelZ = cgliel?,, -

lla

Very roughly speaking, ellipticity is the converse. For compactly support-

ed functions d¢(x) on R" + the Euclidean Laplacian § = - 221 aEJGxg
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satisfies

I (ag-dyav = f
- r" R iy |

by an cbvious integration by parts. Since

8( § oy ax’) = ] (aep ax®,
I I

the same is true for compactly supported p-forms. Thus, one has the equal-

ity

1612 = oo, 9

in the flat Euclidean case. The same is true for the Laplacian [ on ™ "

since [ = % A by the Kdhler property (Lecture 3).

In the general case, one proves (2.6) by writing out the formula for
[ (Weitzenbdck identity) and doing an integration by parts (Stokes' theo-
rem) . The principal part of [] has the same form as on ™ ; but there
are first order terms coming from the torsion and zero order terms coming

from the curvature. These may be estimated out by repeatedly using the

inegquality
2R £ eaz + % B2 W
Here is the argument in more detail. Write locally ds? = E$=l “iai
where Wyr rees W is an orthonormal coframe for the (1, 0) forms. On
any tensor T , V't = X?zl ?it & wy where Ui is covariant differenti-

ation along the (1, 0) wvector field dual to wy o~ A (0, g) form is

written as ¢ = EI ¢IQI where 51 = Ei A ees & W, , ete. The Weitzen-
1 9

bock identity (in crude form) is

(3.17) ©erp = - [ vy¥30; + (86)4
3

where &¢ is a first order operator. 1In the Kihler case, ©&¢ 1is the zero

order operator given by

(60)p = J Ry =
3

ij il---]---:Lq

P
where Rij = cl(KM} is the Ricci tensor of the metric. To prove (A.l17),

(8]
b |
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one first derives the formulae

= qzl k =
(G6)r . - = I -1%roér .3 .r  + (18)7 =
1 g+l k=1 S ey | 17 gel
(A.18)
(B*y .. .3 = -1 v o5 R o SRl TS
17" g-1 kit T g-1 b e
k

where 1, 1 are algebraic operators invelving the torsion. These equa-

tions follow in turn from the basic structure equations

dw, = E Bij ot g
J

.+ 8 = 0, t; has type (2, 0)

for the Hermitian connection in T'(M} , €& being the connection matrizx.*®
Now then the Weitzenbtck formula (A.17) results from (A.18) and

1 = 33* + 3*F together with (7;+ ¥:1 = %;. , an operator involving the

A 13
curvature and torsion.
A little reflection should convince the reader that whatever computa-
tion works for <™ will carry over to a general manifeld in the crude form

(a.17).

Assuming (A.17), we proceed as follows: The {m — 1, m) form

= 2y 3 A e e mow e A Gl R R D
¥ cy % (-1} V3¢I¢I wy wj W wy W

is intrinsically defined on M . Choosing the constant Cl properly,

2 -
a¥ = F |v=¢ |av+c, ] (V.V=4.3.)AV
. B 2 i R
I.3J d J.I 13
for some constant €, . Applying Stokes' theorem and keeping track of

constants (including signs) gives

2 .
J oI Ivzerlfav = (Do, 9) + (6,4, @)
M I,i 1

where ﬁl is first order. Similarly,

. 12
oL 195800 = (Ose 6) + (8,8, 0) .
M L]
* A proof of (A.18) in the Kihler case 1 = 0 runs as follows: Both
sides are intrinsically defined first order operators. Hence, using oscu-

lation of the metric to ¢™ to second order, it will suffice to verify

(a.18) in c™ r which is easy.
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Adding “¢“§ to these equations gives
o} < cwe, & + 2(838, 9)) .
Then, by the Schwarz ineguality,
210830, 0| = ellsgely + L of2 .
and taking 5”63¢H§ < C'£“¢“f to the left gives
lei2 < cots, 4
for a suitable large constant ¢ ., Q.E.D.

REMARE : In the Kdhler case, the precise Weitzenbéck identity plus

integration by parts as ahove gives the Kodaira identity
(Ce, ) = T2 + (re, ¢) .

In particular, if the canonical bundle is negative (as on P"ﬁ, then

Hg’q(M} =0 for g >0 . Applying a similar method to the groups

Hg'q{M, E) gives Xodaira's original proof of his vanishing theorem.
REFERENCES FOR THE APPENDIX TO LECTURE ONE

A proof of the Hodge theorem along the same general lines as that
above was given by J. J. Kohn in a course at Princeton University in
1961-62. A different argument, based on Fourier transforms and pseudo-
differential operators as oppesed to Pourier series, is in the book by

R. 0. Wells listed in the references to lecture one.
2. RIEMANN-ROCH AND FIXED POINT FORMULAE

a) FORMALISM. Let E + M be a holomorphic vector bundle over a

compact, complex manifold. Since the cohomology H* (M, 0(E)) =

: E=9 #3(M, 0(E}) is finite dimensional, the Euler characteristic
m
XM, B) = 7 (=17 aim v, 0(m))
g=0

s defined. The Hirzebruch~Riemann~Roch formula
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(2.1) x(M, E) = f T(Cl, crer Cpi oy, L., dr}
M

expresses the Euler characteristic as a universal polynomial (the Todd poly-
nomial) in the Chern classes ¢ of M and dh of E evaluated on M .
We shall outline Teoledo and Tong's proof of (2.1), giving as an application
the Atiyah-Bott fixed point formula. For notational simplicity, we shall
take E to be the trivial line bundle, and shall write ¥iM, 0) for the
Euler characteristic in this case.

The basic formal step is to use Kodaira-Serre duality and the Kiinneth
formula to express the Euler characteristic as the value of a cohomology
class on M x M on the diagonal & . This is the holomorphic analogue of
the usual formula for the topological Euler characteristic as the.self-
intersection number of the diagonal, and goes as follows: Let yg €
299 M) be F-closed forms giving a basis for Hg'q[M} , and w:q €
A™™ 90 forms ylelding a dual basis for Hg'mhq(M} - Using (x, v) to
denote points on M % M and A{p,q}{r,s}(M * M} +to denote forms on the
product which are of type {p, g} in x and (r, s) in y (bi-type for

short), we set
B y) = (=19 E vl « p*9y)
m
Yi{x, v) = J ¥ (x, y) .
g=0 9
Then clearly

XM, 0) = [ w(x, x) .
A

In general, any smocth form sq{x, y¥) € A(O,q]{m,m—q)(M % M) gives an

operator

s, :a%%m - alidqy
q
defined by

qu¢J(K} = £ sq{x, ¥l o~ by,

whick i a with kernel s_(x, . Suppose that
which we call a smoothing operator q{ y) jolsl

m i s . _ Tm
T = I rn = s_(x,
5 Eq=0 Sq 15 any smeothing operator with kernel s (x, ¥) iq=0 a X, v)

having the properties
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sq(x' v) € AIU.q}(m,m—q)m M)

Sq commutes with § ; and

Sq induces the identity on Hg’q(M} .

Then, from the Kinneth formula on M x M y six, y) is §wcchamologous to
¥(x, v) , and consequently

{(2.2) xiM, 0) = [ six, x) .
a

Telede and Tong give a universal procedure for finding such a smoothing
cperator.

To explain in other terms what {2.2) means, it is convenient to use
the language of currents. On a (possibly non-compact) complex manifold N Fi
the currents of type (p, q) , dencted Dp'q(N) , are the continucus linear

functicnals
T AL BN 3 e

on the compactly supported forms (n = dim N} . The usual formula for dis-

tributional derivatives

IT(e) = (-1)Pratln gy

defines 5 : DP'F(n) » pP'T* gy wien 32 = o .

Currents are introduced to have a formalism including both subvarie-
ties and smooth forms in one large complex. For example, a codimension-k
analytic subvariety % c N defines a current T, '€ Dq'q{N} by integration

over the regular points of 2

T, = [ 4.
Z
reg
It can be proved that §TZ = 0 ({intuitively, this is because the boundary
Z — % has real codimension two in 7 ). As another example, any form

n e Ap’q(NJ defines a current T” € ap'q{NJ by the formula

T 0 = [na~o.
" M

@n
A basic result (smoothing of cohomology) is that the inclusion

Stokes' theorem implies that 31 = Ty .
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Rp'q[N) B Dp'qfﬂ)

induces an isomorphism on cohomology. In particular, given a subvariety

2 =N as above, the eguation of currents
{2.3) 3k = T - P

can be solved for a smooth (k, k)-form ¢ . We may take k to be a
locally integrable (k, k¥ — l)-form which is smooth outside 2 and has
"residue type" singularities along 2 , i.e. singularities generalizing the

Cauchy formula

1 dZ}

3 L F
20/°1T 2

= T

in the complex plane.
Returning to M x M , the current 'I‘ﬁ defined by the diagonal has an

expansion into bi-type

m
T, = } T where
A p=0 P.d
¥ (p,q) (m-p, m-q)
T i = E (Tg\} v ’
pf q=a
The eguation 5Tﬂ = 0 implies that ﬁTp p =0 foreach p . In particu-
r
lar, §TD i = 0 , and as in (2.3) we may solve the equation of currents
r
(2.4) k(x, y) = Tg,n — Stxe ¥

where s(x, v) ¢ E§=0 Aiﬁ,q}{m,m—q}{m * M) is a smooth form and k(x, y)
is a residue form. s(x, y) is the kernel of a smoothing operator with the
properties listed above (2.2), and by that equation we may write the Euler

characteristic

(2.5) R 0F = T e

as the holomorphic self-intersection number of the diagonal (note that

T by type considerations).

0,8 Tm,a = To, 8 Ta
A final remark concerning (2.4) is that, if we have ky(x, y) defined

only in a neighborhood of the diagonal in M % M and satisfying
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there, then we may find a global k satisfying (2.4) and with Su{x, x) =

= s{x, x) . Indeed, let p be a bump function which is one near & and

set k = pko + Then (2.4) is satisfied with s = psy + 3p - ka
b) THE CECH PARAMETRIX. TLet M be a complex manifold with coordi-

: 5 PE = m N -1 "
nate covering U = lo,: éa £ b: + C ; $aB = ¢QO$B where definedl . We

may consider U as the raw data of the manifold. The cohomology groups

(M, 0) are given in terms of this raw data by the Cech method (for a

D,t(

3

suitable such covering). The Dolbeault cohomology H M} is also
iefined intrinsiecally by the S-operator, but the explicit formulae in the
isomorphism H*(M, 0) = H%'*{MJ depends on a choice of partition of unity
(or scmething similar). On the other side of the Hirzebruch-Riemann-Roch
formala, the Chern classes have been defined using a metric on M . How-
zver, there is a procedure due to Ativah and reviewed below for defining
che Chern classes in terms of the raw data. Thus, both sides of {2.1) are
lefined purely in terms of U , and it makes formal sense to lock for a
Topa s
tntroducing the extraneous data of a partition of unity and metrie. 1In

neans of evaluating the holomorphic intersection number without
sther words, we should try and solve the Cech analogue of (2.4) purely in
cerms of the raw data of M . Furthermore, since currents are an essential
sart of the problem, we should use a éech complex containing currents as
/ell as holomorphic material, Finally, by the remark at the end of (a) it
111l suffice to solve the Cech analogue of (2.4) in a neighborheod of the
liagonal.

Putting all of this together leads to the following formulation of the
roblem: On a complex manifeld W , we denote by pPr9 ang  APd the
‘espective sheaves of currents and smooth forms of type (p, g) . Given a

‘oordinate covering V = {Vu} of N , we denote by
C*{U, DU'*)

he Cech bi-complex where Cpr, ﬂa'q} are the p-cochains with coeffi-

ients in ﬂO'q . The total differential D = § + 3 satisfies Dz =0 ,

nd thus the Cech hypercohomology groups

B (v, 00%)

SOME TRANSCENDENTAL ASPECTS OF ALGEBRAIC GECMETRY 33

are defined. Assuming that the covering V is §—acyclic, the inclusion

0 + ﬂn'* induces an isomorphism on cohomology
0

* 0,

(2.6) H (v, 0) = ®mE (v, 0%

In fact, there are two spectral seguences E' and E" abutting to
u* (v, 0%%) and with
= * & 0,
= Hy(V, HZ (@ 7))
G _ * % 0,
E = H§(H5{U, v |
3 ici # 0% *) = 0 ana HI(W®*) =0 for g > 0 .
By the d-acyclicity of V , 5( ) = 3
Thus, the first spectral seguence degenerates and gives (2.6). Using a
3 0 0,*
partition of unity, HE(U, DD'*} =0 for g > 0 while Haiv, Dy
= DU’*{NJ . Consequently the second spectral seguence degenerates also and
gives
st = mt(v, 09%
The composition of this isomorphism and (2.6) gives the Dolbeault iscmor-
phism, whose explicit formulae depend on the partition of unity.
On M * M we consider the covering U x U = [Ua % Ugr dg % bgr sy
of a neighborhood of the diagonal. The current Tﬂ’ﬁ €
cOu x u, pfOr*Mm=2)y pisties
0,4 0,4 T

and the Cech analogue of (2.4) is the relation

(2.7) Dk = TD,& - 8

where s is to be smooth. When written out, what this amounts to are the

equations
k = ku + e+ km—l
Ekn = TU,A
By o= Sk 3=1, ..., m-1)
dkm_l = 8 ;

and
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k. € Cj(u x U, ptﬂrfl(m,m—j—l-*}}

s € c"w x u, pf0e0) mO),

It follows that

= = 2 _ s
a8 = + § km__2 = 0, és = 0

so that, by Hartog's theorem for m > 1 and by elementary reasons in case

s € H'Uu x u, of

M ox M c

A solution of (2.7} is called a Cech parametrix, and for any such we have

by (2.2)
(2.8) ¥, 0) = s[a] .
The main result of Toledo and Tong may be informally stated as follows:

{2.9) Given a complex manifold M and raw data {Uq, LI ¢aﬁ} B
there exists a Cech parametrix s = S{Ua’ L ¢a8} which is
functorial in the raw data. 1In particular, the formulae for the
Cech cocycle s ¢ HO(U, QE} are given by universal expressions

in terms of the Doyr ¢mﬁ and finitely many of their derivatives,

<) CECH CHERN CLASSES. Tc explain how (2.9) gives a Riemann-Roch

formula, we recall the following construction of Atiyah:

Given a complex manifold M » an open covering {Ua} ., and tran-

sition functions Top 't Ua n UB + GL(r, €) for a holomorphic

vector bundle E + M , the Atiyah curvature cocycle

0 ezt }, Oy (Hom(E, E))) is defined by
- _l.
Oaﬁ = Yup dgaﬂ s

Note that € is functorial in the raw data {Uu' gaﬁ] . For any in-
ariant polynomial P(X) (X ¢ gf(r, C)) with corresponding muitilinear

orm P(Xl,...,xq} the Atiyah Chern polyncmial is defined by

PO) e z%(tu ), ad)
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where g = deg P and where

P (9} ;= BE

s »oAdg @ «es, Adg
0 g 4]

& L i 8 }
i 4 0%1 %143 &q—2uq—l rJ‘q—.'!.aq

The Atiyah Chern polynomials are functorial in the raw data, and a fairly

straightforward argument using invariant theory shows that:

(2.10) Any method of functorially assigning to the raw data

y - . Wi m .
{Uu' gaﬁ} a cocycle ¢ = thUm}, qasl € 2 fthu}, iy, (Hom(E, E))

is necessarily an Atiyah Chern polynomial.
Combining (2.8), (2.9), and (2.10) gives a formula

x4, 0) = [ Te, ..., e,
M
for some universal polynomial T . We shall give the explicit formula for

w
T after discussing the first step in the construction of a Cech parametrix

and using this to deduce the Atiyah-Bott fixed point formula,

d) THE FIXED POINT FORMULA. We shall give the first step in the con-
struction of a universal Each parametrix, and shall use this to deduce the
Atiyah-Bott-Lefschetz-Woods Hole fixed point formula (this conference being

' on the tenth anniversary of Woods Hole) .

For this we use the Bochner-Martinelli kernel on ™ x oM defined by
a i
T =D (2;-5,)8,(2=0) » (D)
(2.11) Kolz, 1) = ¢ L - where
Iz — zj
b d{w) = dwl A waoa dwm and ¢i{w) = dwl A e dwi a ee A dwm x

Note that kO{Z. Z} has bi-type (0, *)(m, m — 1 — *) ,.and is formally

f-closed. Aas distributions,

Bko(z; L) = Tn,a

for a suitable normalizing constant Ch -
Using the coordinate charts ¢G ® ¢a : Uu x Ua ™o ™ to pull back
the Bochner-Martinelli kernels gives ky € e x u, D{O,*}{m,m—i—*h

satisfying
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= i 1 U, = U
It is usually not the case that ko‘u = kD,S in (U_3 ® bu} n{ 8 a)

However, from general principles, the equation

has a solution, as does the succeading equation

E & -k + k i
3k2, 0By Ki,e8 " F1,8y T 1,0y

and so forth. The thrust of (2.9) is that all of these equations may be

solved in a suitable universal manner.

£ : M+>M be a biholomorphic

Now to the fixed point formula! Let

automorphism having isclated transversal fixed points. There are induced
maps on cchomclogy

3 . g9, 0y - a%w, 0) ,

and the holomorphic Lefschetz number is defined by

m
L(£, 0) = ! (-1)9 Trace £°09 |
a=0

What we wish to find is a formula for L(f, ¢) in terms of the eigenvalues

of the induced linear map

f*,p 1 Tp(M] + TP(M}

at the fixed points of f , and the result is:

1
(2.12) L, 0) = ] FTECE T,

£(p)=p P

For the proof, we denote by Gg = {{p, £(p)} the graph of f in

M x M . BAs in the formal part of the Riemann-Roch, cne may prove the

intersection relation

(2.13) L(E, 0) = TU,ﬂ'Gf .

i i 3 h fixed point p
Choose a coordinate covering {Uu; of M such that eac =l

1 tition of unit
is in exactly one open set U, and let {pa, be a par y

i = . Let
subordinate to this covering and such that Po = 1 near any p

i i i i form
k be the Bochner-Martinelli kernel in U(I % Uu and consider the

0,a
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cakﬂ,a

-
il
@

on M x M . The egquation of currents

(2.14)

o
P

Tutrﬁ iRy

where s, is the integrable form zu 3p. = kO o ¢ is valid. This form s
r

o 0

iz not smooth on M x M , but it is smooth on the graph of f , and con-

Sequently
TO,A'Gf = ; Sg
o
Letting Bs{p) be a ball of radius ¢ around P, Stckes' theorem togeth-
er with (2.13) give

(2.15) L{f, 0) = I lim [ k
fipl=p e-0 38_ (p)

Te evaluate the integrals, we choose local holomorphic coordinates
z = {zl, e zm) in a neighborhood Ua around p such that f{z) =
= Az + (++) where A is a non-singular matrix and (--) denotes higherx
order terms. These latter will disappear in the limit, and so we shall
assume for simplicity that £(z) = Az . Letting ({2, z) denote coordi-

nates in U_ x U_ , the form
o o

m »
,El 1) (z; — g8 (2 = 8) ~ #(z — g)
e

a =Cm

iz - CHZm

gives the standard d-closed volume form on the normal spheres to the dia-

gonal having constant value one on any such sphere. On the graph

L= £(z) ,
k, = g
0 - det(T - &)
so that 1lim k. = L
€40 8 (p) O det(I —a) °

We shall conclude by explaining how (2.12) leads to the expression for
the Todd polynomials in the Riemann-Roch formula. For this, we first need

to discuss Bott's residue theorem. In simplest form, this result states

that, if M has a nowhere vanishing holomerphic vector field v and if

P(Cl. +++y €p)  is any polynomial of degree m in the Chern classes, then
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(2.16) JPley, weep ) =0

To prove (2.16), we shall choose a special connection for the tangent
bundle such that the Chern peolynomial P(cl{B}, g cm(OJ) is identically
zero. For this we take a coordinate covering {Ua} of M with coordinates

b 4 m. L TS 1 &
By = {zu, e za) in U0 such that v s/azm . Let D be the fla

Buclidean connection in u, and D = Eu panu . 'The curvature & of D

satisfies the contraction relation
<@, v> = 0;

7 1 y
i.e., in U the curvature does not involve dza . To see this, we need
g, 5

only observe that in Ua nu the connection matrix OB for DB written

B

in terms of the coordinates z, satisfies < BB' v > =20 . Nowit iz clear

that Pley(@), ..., ¢ (8)) =0 for this curvature.
Bott's general formula deals with a holomerphic vector field v
having isolated non-degenerate zerces. WNear such a zero p , we choose
holomorphic coordinates {Zl' e zm) such that
v = T a2 §%T + (higher order terms) .
1.1 =
Dencte by Al’ e by the eigenvalues of the matrix (aijj and by dq :
th

the g elementary symmetric function of the ki's . Bott's formula is

the relation

¢ ; E P[ul, FE cm}
17 P(Cy, +vsy @) = S e

To prove (2.17), we choose a connection D, on M which is flat near
each zero of v , and a connection D, on M- {zerves of v} satisfying
< 32, v > = 0 as before. MNow then the proof that the de Rham Chern

classes are independent of the choice of connection gives a relation
Plcltﬁl). ey cm{Bl}} —-P(CI(OQJ, e cm(92]} = dn ?

i

on M — {zerces of v} for an explicit n (note that 5
i |

P{cliez}, sonsy cmlez}) =0 ). Stokes' theorem then gives

) 1lim n

P(Gy (81}, +auy o, (07))
i agtey m'1 w(B)=0 20 2B (p)
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which when computed out yields (2.17).
Finally, the explicit form of the Todd genus arises as follows:
Suppese that v 1is a holomorphic vector field with iselated zeroes and set

£ = exp(tv)

& From the homotopy formula Lie, = v = 3+ 3v = on the

Dolbeault complex, it follows that fz'q ig the identity on Hq{H, 0y .

Thus, for all t ,

m
. 1
XM, 0) = L(E, 0) = T :
* v(p)=0 i=1 , _ Etxi
Taking t = -1 gives
m A
X, 0) = = 1T e
vip)=0 17 Amog=1 A

Combining this with (2.1) and (2.17) yields

xiM, 0}y = £ T(Cyr wuns e

where the Tedd polynomial T is obtained by writing formally

Loy 4 »en t e = Tjgll (L + yi) and then setting

m
T(Cyr vaey ) = {]T;
i

where s o is the component of degree m .
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3. KAHLER MANIFOLDS; HODGE THEORY

Among complex manifolds some are singled out by the fact that their
holomorphic tangent bundle can be endowed with a special kind of hermitian
metric, a Kihler metric. The presence of such a metric has important
global implications and we shall discuss some of them.

There are several possible definitions of what a Kdhler metric is. To

a hermitian metric
h o= 7} hij dzidzj

on a complex manifold M there is naturally attached a distinguished

connection D, on the holomeorphic tangent bundle ThtM} s the metric
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connection, D = Dy, ® ﬁh is a connection on the complexification T, @ Th

of the real tangent bundle of M .

i) The hermitian metric h is said to be Kihler if D is the

riemannian connection on M . In other terms, set
T{X, Y) = DXY — DYX - [X, ¥]
for any couple X, Y of vector fields on M . 1 is easily seen to be a

tensor, the so-called torsion tensor of the metric h . Saying that h is

Kdhler means that 1 vanishes identically,

ii} To give a second, equivalent definition of what a Kihler metric

is, let

_ /I =
wo= = Ehijdziadzj

be the exterior form associated to h . A necessary and sufficient con-

dition for h to be Kdhler is that w be d-closed.

iii) A third definition is the following: a hermitian metric h is
said to be Kidhler if it can be written locally as
% dz dz, + [2]
where [2] stands for terms which vanish of order at least two at z = 0 ,

relative to suitable holomorphic coordinate systems.

Each of the above definitions has some advantage over the others.
Definition ii), for example, makes it clear that the property of having a
Kdhler metric is inherited by subvarieties and that a Kihler metric gives a
distinguished cohomology class in HZ(M, R} . Definition iii) is most use-
ful in computation as it allows us to prove the basic Kidhler identities by
verifying them for the flat metric on c™ .

As for the proof of the equivalence of i), ii), iii), ii) follows
from i) by noticing that for the metric connectiocn Dh

gy = (g E%I i 5%; )

holds and that i) means that:
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_ 5
Pa 32 = P, ¥z
. Bz,
i = |
The converse is done in the same way. iii) clearly implies ii), and one

obtains iii}) from i} by choosing the coordinate systems to be geodesic
coordinate systems up to second order terms.

We now want to discuss the basic Kihler identities satisfied by the

operators acting on the algebra
A* (M) = E Apfq(M)

We define

5 nPthM) + Ap+l:q+1{M}

to be multiplication by w , and A +o be the adjoint of L relative to

the given metric. Also we denote by "p q the projection onto aPr9(m)
r

and set 7 Ep+q=k “p,q . It is a conseguence of the theory of unitary

X =
invariants that on a "general" Kihler manifold the operators L, A, Ep q
r

generate the algebra of all invariant algebraic operators on a* (M) .

Probably the neatest and most compact way of presenting the identities

satisfied by L, A and ny q is the following: Write
r
H = ] (m—Xmw
X k

where m is the complex dimension of M . Aan easy computation then gives

the commutation relations:

H, &1 = 2
(3.1) (i, L] = =21
A, L1 = H.

This means that the assignments:

[g ;J + A
1 o)
(s s h
‘0 O
(1 o) » =

give a representation

o : s, -+ End(a*(m))
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which can also be viewed as a continuously varying family of finite dimen-
sional representations. The standard representation theory for si, then
implies that:

mik

(3.2) L™ : A M) -+ A (M)
is an isomorphism and that
(3.3) ko = T uiek=2hy () (direct sum}

where PAL{M) (the primitive part of Aa ) stands for the kernel of
Lm-£+l | AL(MJ - It is also clear that p 1is compatible with decomposition
into (p, g)-type, hence Pﬂi(MJ decompeoses into a direct sum:
aton = 7 eaPrqm .
prg=1i
What we have done so far does not reguire that the metric be Kédhler. The
crucial fact, however, is that, when the metric is Kdhler, (3.2) and (3.3),
together with the decomposition into type, pass over to cochomology.
Proving this involves exploring the commutation relation between g

and exterior differentiation. The basic such relation, from which ali

others can be deduced, is:
{3.4) [a, a1 = @%*
where (a%)* is the adjoint of

a® = clac = AT -

and ¢ = ] /1 P79 is the Weil operator. (3.4) is actually eguivalent

Brq
to the metric being Kidhler. The two (easy) consequences of (3,4) that will

be impertant for us are:
(3.5) 4, p1 = 0
where 4 = dd* + d*d is the Laplace operator, and

(3.6) A = 20

where [J = 33*% + 3*3 is the complex Laplacian. (3.6) in turn implies that

(3.7 4, =, 1 = 0



44 MAURIZIO CORNALBA AND PHILLIP A. GRIFFITHS

since | is of pure (0, 0) type.

As for the proof of (3.4), it suffices to do the case of the flat
metric on €™ , which is straightforward.

The main consequence of (3.5) is that, on a compact Kdhler manifold,
p passes over to cohomology, and therefore, by standard representation

theory,

k

(3.8) L a0, m) - B™R M, wm)

is an isomorphism (Hard Lefschetz Theorem) and one has the Lefschetz decom-

position
(3.9) B0, m) o= B phpk-2hy gy
h

) g -
where P"(M, R) (primitive cohomology) is the kernel of L™ £+1{HRtM, R) .

On the other hand, (3.7) implies that Hk(M, C) has a direct sum de-

composition (Hodge decomposition)

(3.10) WM, 00 = ] uP9an
ptg=k

~such that

HP'qIM) & Hq'pr} .

Here Hp’q{M} stands for the subspace of Hk{M, C) generated by d-closed
(p, g)-forms. Moreover the Hodge decomposition is obviously compatible with
the Lefschetz decomposition. It should also be noticed that the eguality
(3.6) gives an isomorphism {which does not depend on the metric) between
#2'9 M) ana w%(m, oP)
As a final ingredient, if we define a bilinear form
%ler m = WK a g

on Pk{M) , then the Hodge-Riemann bilinear relations hold:

1} L}
1) Qk{prq’ pd P y = 0 unless p =p', g =g
(3.11)

I Q(cE, B) > 0 Eepfan , £ 40

In case the cohomology class of w is ratiocnal — which, by a theorem

of Kodaira, is eqguivalent to saying that an integral multiple of the class

AL . - YO

4
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of w is induced by the generator of H2( Pn. %) via an embedding into
P — the representation p , and hence the Lefschetz decomposition, are
defined over Q .

To conclude, we may remark that, while the Lefschetz decomposition is
of a topological nature, the Hodge decomposition depends on the complex
structure of M , and in fact is a wvery significant invariant for this.

As ancther application of the Kdhler identities we will prove the

following result, due to Kodaira, Nakano and Le Potier,

(3.12) Let E + M be a rank r positive vector bundle on a

compact complex manifold M of dimension m . Then
B, oPE)) = o

if ptgzm+ .

PROOF : The proof is done by reducing to the rank 1 case. We shall deal
with this first. It follows from the hypotheses that M 1is Kihler, and we
shall choose (the hermitian form associated to) V=1 & as a metric on M ,
where @ 1is the curvature form of E . We shall show that, for any

E-valued harmonic (p, g)-form ¢ , the Nakano inegualities

(hLg, ) = 0
(3.13)
(LA, ¢) = O
hold. Combining them gives
0 = ([A, Ll¢, ) = (m—p —aqlls, ¢)

which implies that ¢ 1is zero if p + g > m , as desired. Now to the

proof of (3.13)! A slight generalization of (3.4) gives the commutaticn

relation:
(A, "] = —~ /~Ip'*
where D =1D' + D", D" =3 , is the metric connection of E . Therefore:

(ALd, ¢) = /=T (r@¢, @) =
V=1 (ASD'd, ¢) =

V=1 (3AD'¢, $) + (D'*D'p, 8) =
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= (D'¢, D¢} = 0O
since ¢ , being harmonic, is §-closed and 3*-closed. This is the first of

the Nakano inequalities and the proof of the other one is similar.
When the rank of E is larger than one, we may argue as follows. Let
* .
P(E") be the complex manifold whose points are the hyperplanes lying in the

s * N 4
fibres of E . P(E") has dimension m+ r — 1 and is obviously a bundle

p(E*) I

> M

with projective (r — 1)-spaces as fibres. Let H be the standard tauto-

logical line bundle over P (E*) . Direct computation shows that:

H is positive

s : 0 if i>o0
Rim el = { ;
Lodm® 4if i=o0 .
In particular w,0(H) = 0(E) and the E,-term of the Leray spectral

sequence abutting to H*( B(E*) , oP(H)) is

i . . g 0 if 1 >0
B3 = wlm, riroPay) - [

i, aPe)) if i=o0 .
Therefore the above spectral sequence degenerates at the E,-term and
ade, aP@) = ml(P@Eh), Pm) = 0 if prgim4r

by applying to H the line bundle case of the theorem.

A classical application of the Kodaira-Nakano vanishing theorem is an
analytic proof of the Lefschetz theorem on hyperplane sections with
R~-ccefficients. Let D be a smooth, ample divisor on M I{this is the
same as saying that the line bundle [D] is positive). [D]iD can be
identified with the normal bundle to D 4in M . It follows that there are

exact seguences
+ gPrp1* i) ]
o ayLl™ > oy - fgjp * 0
0 p-ligg* P ” P
> (el - QM!D 8y e,

D

Applying the vanishing theorem and Serre duality to HY(M, QE{D}*} and
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5% (p, aglnj') gives that the restriction map

HP:Q(M} + HP-CI(D}

is an isomorphism if p + g < m — 2 and is injective if p+g=m~—-1.
It follows from (3.10) that this is just the Lefschetz theorem on hyper-
plane sections. Conversely, Mumford and Ramanujan have proved that the
topological Lefschetz theorem implies the Kodaira-Nakano vanishing theorem.

It is perhaps worth noticing that the integral formulae underlying the
vanishing theorems are exactly the same as those used to establish the basic
estimates used in the study of the 3-operator on non-compact manifolds by
Lz—methods. This is an illustration of our contention that the compact
case has been properly understood only after there are results for general
possibly non-compact complex manifolds which specialize tc the existing
cnes in the compact case.

Another inplication of the fundamental Kahler identity (3.4) and the

subsequent equality (3.6) among the various Laplacians is the

PRINCIPLE OF TWO TYPES: Given a (p, @) form ¢ which is also

exact, ¢ = dn , then we may write either

¢ = dnt n' has type (p -1, q) , or

(3.14)
¢ = dn" , n" has type (p, 9 — 1) .

An application of this is that:
(3.15) all Massey products on a compact Kéhler manifold are zero.

Recall that, given closed differential forms a, B, v of degrees p,

g, and r ,

a ~ B = dp

B~y = do
the Massey triple product is the closed p + g+ r — 1 form
a~o+ (=1 y s p

Its cohomology class [a, B, y] is well-defined in

(3.16) wPIT L Py L a9 L 4 5T wPPS R
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To see th =
at [a, B, v] = ¢ + we decompose g, By ¥ under the Hodge deco
0 | ; mpo-
sition and consider the case where they all three have pure Hodge t
e type,

Using (3.14), we may write

™

TY = do' er B Ay = ggw

where ! & " i
Py B and ¢', g have different Hodge types. But then [a, g 1
¥ ¥
has the two representatives a o~ g’ o4 {~l){"'JY ~ o' and
o wogneg Epleesly g i
(~1) ¥ il of different Hodge types, and so must be zero

since
the quotient Space (3.16) has a direct sum Hodge decomposition

Wﬁat is suggested by the abeove argument, together with the vanishing of the
higher Massey products whiech is proved similarly, is that. among all spaces
with a given cohomology ring, the Kihler manifolds (if there are 5;;; have
the "simplest" homo topy type. 1In particular, for simpl;j:;;;;;:;d M _;;:
rational homotopy groups and rational Whitehead products should be deter-
mined from the cohomology alone, Likewise, the rational nilpotent comple~-
tion of "i(M} should be determined by Hl(M, Q)  together with the cup
product H (M, Q) @ ul(m, g) - y2 M, Q) . This can all be easily proved
using (3.15) together with Sullivan's recent de Rham homotopy theory

The philosophy here, as well as in Deligne's degeneration of spectral
Sequence arguments used in pProving the existence of mixed Hodge Structures
°n general varieties (to be discussed in the next talk), is that any sort
3f naturally defined higher cohomology operation on 4 compact Kdhler mani-

“old must, because of the Principle of two types, be zero
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fibrés vectoriels holomorphes et applications, Thése présentée 4 1'Univer-

sité de Poitiers, (1974).
The equivalence of the vanishing theorem and Lefschetz theorem on
hyperplane sections is given in

Remarks on the Kodaira vanishing thecrem, Jour.

C. P. Ramanujam,

Indian Math. Scc. Vel. 36 (1972), 41-50.

The result on the homotopy type of K#hler manifolds will appear in

P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, On the homotopy

type of compact Kidhler manifolds, to appear.

4. GENERALIZATIONS OF HODGE STRUCTURES

a) The first topic we shall discuss today is Hodge structure and

mixed Hodge structure. The definition of a Hodge structure is obtained by
extracting the essential features of the Hodge decomposition on the primi-
Formally, a Hodge

consists of a real vector space HI{' a lattice Hy,

tive part of the cohomology of a projective variety.

structure of weight M
and a decreasing filtration (the Hodge Filtration) on the complexification -

H of H

C IR

0 cF" & vve = FG = H,
such that, for any p ,
(4.1 B, = PPapmPH
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An equivalent way of defining a Hodge structure is saying that HC should

have a direct sum decomposition

HC P E‘ uP-q
(4.2) p+g=m
gPrq  _ ygdrP

From the filtration one ocbtains (4.2} by setting

L S R

and conversely, given (4.2) one can recover the Hodge filtration by setting

FP - I Hi,mai
i>p

The Weil operator of the Hodge structure H ig defined, as usual, to be
c E P9 = Z /=T P9 gPrd

A polarization on H is a rational (non-degenerate) bilinear form @ F
symmetric if m is even, skew if m is odd, such that the Hodge-Riemann
bilinear relatiocn
o(FF, F™RHL
(4.3) =)
Qlce, ) > o if £ #o0
hold. 1In lecture 3 we have sketched a procf of the fact that the primitive

cohomology
P (1)

of a projective variety M carries 4 natural polarized Hodge structure of
weight m .
A morphism of type (r, r) between two Hodge structures H and wu!

is a rationally defined homomorphism

such that

$(FF) o piPtr

SOME TRANSCENDENTAL ASPECTS OF ALGEBRAIC GEOMETRY 5l

or, equivalently:

:P{HP:Q} c Hpﬂ’rcﬁ"r

Most linear algebra constructions, like taking Hem's, tensor products,
etc. of Hodge structures of arbitrary weights, or direect sums of Hodge
structures of the same weight, can be performed within the category of Heodge
structures.

The structure of the cohomology of general open or singular algebraic
varieties is more complex than a plain Hodge structure. However it is a

fundamental theorem of Deligne that:

The cohomology groups of a general algebraic variety carry natural,

functorial mixed Hodge structures.

We shall now define what such objects are and Prove a very special case of
Deligne's theorem,
A mixed Hodge structure consists of a real vector space HJR , a lattice

H, and two finite filtrations of HC = Hp® C :

D civa & Wy © Wm+l € rrt < Hy (weight filtration)

0c... cFP Pl .., ¢ H, (Hodge £iltration)

such that:

i) (W} is rationally defined
ii) {Fp} induces a Hodge structure of weight m on each of the

gquotients wm/Wm_l .

"Regular" Hodge structures of weight m can be viewed as mixed Hodge

structures with a trivial weight filtration:

0 = w 1 € Wm = H

m— C

A morphism of type (r, r) of mixed Hodge structures is a rationally

defined homomorphism

such that
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Ia{Wml = wr;|+2r

$(FF) < prPTT

Such morphisms turn out to be strict relative to both the weight and Hodge

filtration, i.e.

Im b N We o, = edW)

m ¢ n FPYY = o(FP) .

All the standard linear algebra constructions can be performed within the
category of mixed Hodge structure, which is, morecver, abelian.

We shall now prove, using differential forms, Deligne's theorem for
varieties of the wvery special form
X = p Xi
. §
where the Ki‘s are smooth, compact Kdhler subvarieties of X of the same

dimension meeting transversally.
To do this we first have to give an analogue of de Rham's theorem for

X . TFor every multiindex I = (io, SaTi iq) we set:

[T} = g+ 1

X, = X. N .2 nX .
z 1o iq
We also set:
flal = 1l X
]_‘[]=q+l
r,s [s]
A (X) = r-forms on X

The differentials d (exterior differentiation) and

s : a5 lixy o aTrS(x
defined by the formula:
§ eni g (Loneod, neni
80(igeeeig) = [ (-1 derigeeedeeipn]y
1] 5 ] (10---15)
make
Ay = @ A% (x)

.
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into a double complex,

(4.4) LEMMA: The (total) cchomology of A** (X} is canonically

isomorphic to the cohomology of X .

PROOF 1 We may define sheaves AI'S(X] whose sections over an open set U
are Ar’S(U} - These sheaves are obviously acyclic and their direct sum is
made into a double complex by d and 6§ . All we have to do is then to

show that A**(x} is a resolution of the constant sheaf © for TR, de-
pending on the coefficients we are using}. Tt is clear that a section ¢

of AO’O(X) such that

must be constant. It remains to prove the Poincaré lemma for APMRY. u
The E,-term of one of the two spectral sequences of the double complex

A** (%) is:
8% = mllrrx)) .

By the usual Poincaréd lemma this is zero whenever p > 0 , therefore

E2 = E, and

ad(A**x)y) = )T .

On the other hand qu' iz the g-th cohomology sheaf of the complex of

sheaves

S ¢ + e

(4.5) S I
x{q+l]

xlal

where CY stands for the constant sheaf C on Y . Now the formula for

§ is the same as the one for the coboundary operator on a simplex, there-

fore

which proves the Lemma, Q.E.D.

We now define the weight and Hodge filtrations on A**(X) as follows:
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wart(x) = [ atrtm
rim
FPa**(x) = | ¥PaT%(n) .
;8

These two filtrations induce filtration (W } and {F’} on the cohomology

of X .

We are going to show that:

{Wm} and {FP} give a mixed Hodge structure on the cochomology

of X .

PROOF: The first step is to replace the filtration {Wm} with a decreas-
ing filtration {ﬁh} which will induce the same filtration on each of the
cohomology groups of X (up to indices, of course) and will allow us to

use a spectral seguence argument. We set:

We shall show that the spectral sequence associated with the filtration
(ﬁh} degenerates at the Ez-term and that qu has a Hodge structure of

pure weight p . When coupled with the remark that
=h._.m - m
wE™x, o) = W "X, ©)

this will prove our contention.

We notice that the El-term of the above spectral seguence is

eRY = aP(x19), o)

and that

a, : B®P(xM9, o) » EPx[T,

is obvicusly a morphism of Hodge structures, therefore qu has a Hodge

structure of pure weight p . We shall show that d2 = 0 , the proof that
d3 = dd = +++ = 0 being similar. We choose a differential form o repre-
senting a class £ in qu . We may assume that o has pure type (r, s).
Then

da = 0
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and &8 is a representative of d2 . By the principle of two types we may
choose g to have type (r, s —1) or (r — 1, s} , therefore dzﬁ has

two different types and must be zero. Q.E.D.

A by-product of the above proof is that the weight filtration on

Hm(x, C) is of the form:
- m
DeWy e e aW = H (X C} .

The same limitations hold for the mixed Hodge structure on the cohomology of
a general complete variety.

The main reascn for discussing mixed Hodge structures in these lectures
is that, given a ocne-parameter family {Vt}0<|t|<l of projective varieties
degenerating into a singular one, VU , the Hodge structure on the cohomolo-
gy of Vy tends in a precise manner to a mixed Hodge structure which is
related to the mixed Hodge structure on the cohomology on Vg + The com-

parison of these two structures yields important geometric information.

b) VARIATION OF HODGE STRUCTURE. As mentioned in the preceding
lecture, the Hodge decomposition
{4.6) : i*(M, ¢) = ] ®P9m, o)
Prg
of the cohomology of a compact Kihler manifold reflects the particular com-
plex structure on M and it is therefore natural to study how (4.6) behaves
as the complex structure on M varies.

Geometrically, the basic situation is a family
(4.7) f:X + 5

of compact Kihler manifolds. Here X and S are generally non-compact
complex manifolds, X Kihler, and f is smooth and proper. The fibres

x, =1

(s) constitute an analytic family of Kdhler manifolds. The most
important case is when everything is algebraic, X and & are quasi-
projective and S is a curve. Thus & is obtained from a compact Riemann

surface 8 by deleting finitely many points and, by resclution of singular-

ities, we may embed (4.7) in a smooth compactification
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X e e E
| |
£ | | £
(4.8) ) Y
§ ¢ =8

o = faea ot
where ¥, § are smooth, but where f may fail to be smooth on £ ~ (8 — 8).

Moreover it may be assumed that the fibre of f over each point of § — 8

is a divisor with normal crossings.

. n B
Returning to the situation (4.7), we will denote by E the holomor

phic vector bundle en § whose sheaf of sectiens is
n
RUE,(Cy) 8 O .

E" comes to us naturally equipped with a distinguished sheaf of locally

constant sections, namely Rnf*{CX) , and hence with a flat holomorphic
connection V' (the so-called Gauss-Manin connection). The solutions of

V's = 0

are precisely the sections of Rnf*{C] . In the following we will dencte

. I - " .
by 7= %'+ V" the flat connecticn on E whose (0, 1)=-part ¥ is the

3 operator.
The Hodge numbers W9 s) = dim Hpqixs, c} , p+ag=n are upper

semi-continuous functions of s , as follows from general elliptic princi-

: n : f
ples; on the other hand they add up tc dim H {xs, C) , which is leocally

constant, hence they are locally constant, toc. It follows, again from

Pa g . ive a
general principles, that the groups H (xs, Cc) fit together to gi

smooth vector subbundle EPY of E™ . EPY has a natural holomorphic

structure, which comes to it from being the vector bundle associated to the
hi P : lomorphic p-forms

holomorphic sheaf qu*ni/s + Where Exks stands for holo = <]

along the fibres of f . However, in general ok} is not a holomorphic

subbundle of E" . We also set:

¥ = ] pPeneP
2P

] n
To see how the EF’Y behave relative to the complex structure of E

we need an explicit formula for the connection ¥ . The argument we shall
give is due, in an algebraic setting, to Katz-Cda.

Let {@S) be a smooth family of closed n-forms along the fibres of

’

| e —
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(4.7) giving a smooth section e of E® . Let u be a vector field on 8,
v a ¢” lifting of u to X Then it makes sense to consider the Lie
derivative of [¢S] along v , Liev({¢s}} . Since the Lie derivative

commutes with exterior differentiation along the fibres, this yields a
family of closed n-forms whose cohomology classes depend only on the coho-
mology classes of the ¢5 . Therefore Liev({¢s}} determines a section of

E"  which we may denote by Liev{e) We want to show that:

ta=2) Ve = Lie e .

It is guite obvious from the definition of Lie derivative that if e is
flat Liev{e} is zero. One thing that has to be proved is that Liev(e}

does not depend on the particular lifting v of u Granting this, Lie,
behaves like a connection except for the fact that it might not depend
linearly, over the c” functions, on u .

Now bo take the Lie derivative of {¢s} we may proceed as follows:
we lift {wsi to a form ¢ on X , take the Lie derivative of ¢ and
restrict the result to the fibres of (4.7). But then we may use the heomo-

topy formula:
(4.10) Lie ¢ = v = d¢ + d(v = ¢)

where = stands for contraction. d(v = 4) restricts to a family of exact
form, therefore I.ie“r has the required linearity properties. It is also
clear from (4.10} that, when v projects to zero on S " Liev(e) is
zero: in fact, in this case, v = d¢ wvanishes. This proves (4.9) .

It follows immediately from (4.9) and (4.10) that, if u is a vector
field of type (1, 0) , then
(4.11) 7.c7(FP) < ™Rl
and that if v has type (0, 1) , then

(4.12) 7.cT P e TPy .

Formula (4.12) says that ¥F is a holomorphic subbundle of E" , whereas

(4.11) is the horizontality property of variations of Hodge structure which

is a crucial ingredient in all applications. One should notice that there
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is a natural isomorphism of holomorphic vector bundles:

pPypPtl 3 pPs0P

To apply methods of differential geometry and analysis to study the
variation of the Hodge structures of the X_ , one needs to have metrics in
the various vector bundles involved. Such metrics are given, guite natural-
ly, by the Hodge-Riemann bilinear relations, provided of course that we pass
to the primitive cohomology. This is permissible, since the Lefschetz de-
composition is of a topological nature and hence is locally constant in
E=»58 .

The resulting data may be codified in the following, somewhat lengthy

DEFINITION: A variation of Hodge structure of weight =n ,

V=18, B, Ep, 7, Q iFP}} is given by a holomorphic vector

bundle E + S8 over a complex manifold § having the following
structure:

i) E has a flat holomorphic connection V and contains a

flat bundle of lattices ER {integral cchomelegy, in the geo-

metric case).

ii) The ¥F, p=20, ..., n , are a decreasing filtration of

E by holomorphic subbundles which satisfy the horizontality con-

dition
70 (¢F) < ﬂé{FP'l) .
iidi) Qe Ex @ ]:-:z + Z is a non degenerate, flat bilinear form
" such that .
/
Qle, e') = (-1)"a(e’, e) . '
iv) Por each s € 5 the filtration {Fg} and Qg give a

polarized Hodge structure on ES . Thus if we set:

gPrATB L pP 4 pDP

= ;P9 = H e-Riemann bilinear relations
then E Ep+q=n B and the Hodg

(4.3) are satisfied.
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All we have done here is to abstract the data arising from the varia-
tion of the Hodge decomposition in a family of compact Kihler manifolds
whose metric form is rational. It is, however, important to note that V
is not assumed to arise from geometry in this way. Moreover, even when the

| base space S 1is algebraic, one should not assume that an algebraic struc-

ture is given on V .

We will discuss scme foundational results on variation of Hodge struc-
ture. To state the first of these we assﬁme for simplicity that 8§ is an
algebraic curve, i.,e. that 8§ = § — {sl, S EN] is a compact Riemann

surface minus N points, and we set
- " = l:
slrl = {s e8| |5-_'Su| 2 ¢ for all ul.
The result is the following:

(4.13) Let V¥ = {8, E, Ep o 7 Q, {FP1} be a variation of Hodge

structure. Then E has an intrinsic algebraic structure where

the algebraic sections of E are those holomorphic sections £
which satisfy the growth estimate

(4.14) max log (Q(C_E(s), E(s)})) = O(log r)
se5[r]

where Cs is the Weil operator. Moreover, the PP oare algebraic

subbundles of E and V is algebraic.

Intuitively, (4.14) means that ¢ has at most "poles at infinity"
using the intrinsic Hodge norm to measure size.
i Actually the proof of the above result will yield more, namely that

the Gauss-Manin connection 7V has regular singular points; this means that

E has an algebraic extension E to § such that for every holomorphic
section e of E , Ve has at most simple poles. Ancther, eguivalent way
of defining regular singular peoints is that the length of a (multivalued)
flat section of E , measured using a ¢” metric on E ; should grow at
most like a polynomial when approaching a point in 8§ — 5 .
t When V comes from algebraic geometry there is another, possibly
different, algebraic structure on E , arising from Grothendieck's algebra-

ic de Rham theorem in relative form:
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qu*cx 8 05 = ®mI, (af )

/8

where ﬁ;?s is the complex of algebraic forms along the fibres of X -+ §
One can prove, however, that this algebraic structure is the same as the
one given by (4.13), thus proving the usual regularity theorem in algebraic
geometry.

The next results center around the lacal monodromy group.' Given a
variation of Hoedge structure V = {g, E, By, Y, Q {FP}} , there is a

monodromy representation

oot omy(8, s -+ Aut{Es )

o’ 4

gotten by displacing elements of Es around closed paths by parallel
0

translation. [ = pwy (8, S,)  is called the menodromy group of I . When

5 is a punctured disk A* , the image of the generator of ulta*} will be

depoted by T and called the Picard-Lefschetz transformation. This is
suggested by looking at the geometric situation £ : X + 8 , where
§ =8 — {55 cusy syl 1s a curve and then localizing around one of the

s; . The basic fact in this localized situation is the

MONODROMY THEOQREM: The Picard-Lefschetz transformation T is
quasi-unipotent of index of unipotency n , where n is the welght

of the variation of Hodge structure V . In other terms,

(rh ™ o g

for some positive integer . .

The mplest situation occurs when T is of Ffinite order. Then one

may go to a finite covering and prove the

REMOVABLE SINGULARITY THEQREM: If the Picard-Lefschetz trans-
formaticn T is the identity, the variation of Hodge structure

V  extends across the puncture of A% ,

In the general case, it was conjectured by Deligne and proved by
Schmid that, as £ ¢ A* tends to zero, the Hodge decompositien of B
tends to a mixed Hodge structure whose weight filtration is constructed

from T .
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The final results we wish to mention center arcund the global mono-

dromy representation

ooz 11(5, sﬂ} + Aut{ESO}

when the base space § is an algebraic variety. One of these results is

the

RIGIDITY THEOREM: Let V, V' be two variations of Hodge struc-
ture of weight n and assume that there is an isomorphism o
between them at one point sy - If ¢ is equivariant with res-

pect to p, p' , then it extends to a global isomorphism between

V and V!
Finally, there is Deligne's:

SEMI-SIMPLICITY THEOREM: The global moncdromy representation
p is completely reducible and the variation of Hodge structure

V  decomposes accordingly.

In classical terms, one has known for a long time that the position of
the singular points and global monodromy determine a wide class of ordinary
differential equations (e.g. the hypergeometric equations) on El having
regular singular peints. The above results assert the overwhelming influ-

ence of monodromy in variation of Hodge structures.
REFERENCES FOR LECTURE 4

Deligne's theory of mixed Hodge structures is given in

P. Deligne, Théorie de Hodge II, Publ. Math. L.H.E.S., vol. 40 (1972),
5557,

An alternate more analytic account of his results may be found in

P. Griffiths and W. Schmid, Variation of Hedge structure (a discussion
of recent results and methods of proof), to appear in Proc. Tata Institute

Conf. on Discrete Groups and Moduli.

This paper also contains an exposition of the theory of variation of Hodge
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structure, together with additional references on the subject,

The original proof of the menodromy theorem has finally appeared in

A. Landman, On the Picard-Lefschetz transformations, Trans. Amer. Math.

Soc. vol. 181 (1973), 89-126.

5. HERMITIAN DIFFERENTIAL GEOMETRY

In this talk we shall use the E. Cartan method of moving frames to

discuss the theory of holomorphic curves, including local versions of the

Wirtinger theorem and Pliicker formulae as illustrations of non-compact

algebraic geometry, and classifying spaces for variations of Hodge struc-
ture.

We begin with a homogeneous space G/H of a Lie group G by a closed
subgroup H . In practice, G may freguently be identified with a set of
"frames" on G/H , and when this is done the left-invariant Maurer-Cartan
forms on G appear in the structure equations of a moving frame. Further-
more, when mapping a manifold M into G/H ; there will frequently appear
natural "Frénet frames" or liftings of the map to G . Restricting the
Maurer-Cartan forms on G to these natural frames gives a complete set of

invariants for the map, by virtue of the following general principle:

(5.1) Let M be a connected manifold and G a Lie group with
basis {wi} for the Maurer-Cartan forms., Two maps £, f : M+ g
differ by a left translation in G if, and only if, £*u, = F*y
for all i .

(PROOF IN CASE G IS A MATRIX GROUP: In this case the w, are the ma-
i H i -1 ey =
trix entries in w =g "dg . Writing f(m) = g{m}-£{m) (m € M) ,
1

£(m) "rag(m) = £(m)"taF(m) + Em) "lig(m) lag(m 1E(m) . Thus

F*w = f*u <=> dg(m) = 0 . Q.E.D.)

Here are some examples.

a) COMPLEX PROJECTIVE SPACE. Points in P" will be written as

homogeneous coordinate vectors % = {zo, FE zn] . The frame manifold
n+l

Fe") consists of all unitary bases F = {Zﬂ, Zyr eens Zn} for C .
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Cheoosing a reference frame FU , any frame ¥ is uniquely'of the form

for some unitary transformation T ¢ un+l . The correspondence F <—> T

: . e ’ n, =
gives an identification F( P} = Un+l w
The vectors Zi may be considered as smooth maps Zi ¢ F( Pn) + Cn+l

Expanding the differential dzi( F) in terms of the basis vectors in the

frames ¥ leads to the structure equations of a moving frame:

(5.2)
B i
ij ji
which should be read: "Under infinitesimal displacement, the frame F

undergoes an infinitesimal unitary transformation with ccefficient matrix

U] i . T = i oo i
Bij . Since zi{f T} Tzi( ¥) for any fixed T , the alj give a
basis for the left-invariant Maurer-Cartan forms on Un+1 . The Maurer-

Cartan eguations
(5.3) ag; = I By o By

follow from d[dzi} =0 in (5.2).

A holomorphic curve is a holomorphic mapping 2 : S5 = 2" from a
Riemann surface inte B" , In case § is compact, Z(S8) is an algebraic
curve and hence has a degree, satisfies various Pliicker formulae, etc. We
shall eventually discuss certain non-compact analogues of these, In terms
of a local coordinate ¢ on S, & is given by Z(z) = [zn{g),...,zn{g}]

where the z,(z) are holomorphic. A frame field is given by a c” 1ife-

ing of %2 to F(®% ; i.e. by a c¢” frame F(z} = (25(8) ¢ vevy 2 (2)}
where ZD(L) ~ Z(g) = 0 . For such a frame field, the Maurer-Cartan forms
Hij = Bij + e;. are linear combinations of dz and dr , and we claim
that
(5.4) an = 0 (o = 1y wuvep n) .
n

. = " & 5 @ " FYom )

(PROOF: 0 = B3(2,(z) ~ 2(5)) = 32,(2) ~ 2(r) GEL 8o, (E) ~ B(2) )

Similarly, one may prove that
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o

v ~ B

n
5.5 a = 8
( ! ‘o l {ugl “Da Oa}

L&'

is independent of the frame field, and is the pull-back to S8 of the stan-

dard Kihler form on BP" (Fubini-Study metric).

b) CLASSIFYING SPACES FOR VARIATION OF HODGE STRUCTURE. Let E be

a complex vector space with integral lattice EZ and non-degenerate bi-

linear form
Qo Ezﬁ EE @
Q(e, e') = (-1)"g(e', e} .

Given a set of Hodge numbers hP'? with Ep+a=n W9 = dime, nPr9 =

= p4rP ; the set of all polarized Hodge structures

(5.6) E = &2 gPd
ptg=n

) . | .
with dim 889 = pPe9 % sope 4 classifying space D for polarized Hodge

structures of weight n .
A Hodge frame associated to a Hodge decomposition (5.6) is a collec-

tion ¥ = {En' £

fi-17r ++or £4}" where each Ep is a set {fp y ey E)

£,)
1 Py

gFrd

(k = hp'q} of vectors giving an orthonormal basis for , and where

= f . Upon choecsing a reference frame T the relation

£
=n-p =P [

gives an identification F(D) = G ©f the manifold F{D} of all Hodge
frames with the Lie group G of real automorphisms of E which preserve

Q . In particular, the classifying space is a homogeneous manifold
D = ‘Gm/EI

with compact isotropy group H .

A GIRuinvariant complex structure on D may be given by the reguire-

* This means that &P’ = §9'P | angd that the Hedge-Riemann bilinear
relations (I) and (II) from lecture 3 are satisfied.

" Throughout our discussions of Hodge theory, indices will appear in
decreasing order.
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ment that a ¢~ curve {EF'9(z)} (£ €U cc¢) in D wvaries holomorphical-
ly if, and only if,
P
(5.7) () o PPy
af
where Fp(;) = En'o(;) + ses + EP’R_P(gl is the associated Hodge filtra-
tion.
A variation of Hodge structure V = (5, E, Fp, Vv, Q} , as defined in

the third lecture, gives rise to:’

a) A classifying space D as above, where E =IES , =20 =
nPr? = gim EE'9 | etc.;

b} the monodromy group [, which is the subgroup of the arithmetic
group G, of all linear automorphisms of B, which preserve Q obtained
by displacing flat frames around closed paths vy € ﬁl(S, SO} ; and

¢} a holomorphic period mapping
(5.8) §: 8 > T\D

satisfying the infinitesimal period relation
2 o el

14 -

B =P
pg=n
depending on a homotopy class of

where by definition &(s) is the Hodge decomposition E, =

combined with an iscmorphism B = Es
0
paths frem s to Sg + and FP(:J is the image of En'D{s) + e+

+EF'"P(g) with 1 being the coordinate of s .

Conversely, such a period mapping ¢ gives rise to a variation of
Hodge structure by pulling back the universal family over [\D . Hence-

forth, a variation of Hodge structure shall mean either the bundle data

v=1{s, = ¥, 7, g}, or a period mapping (5.8) satisfying (5.9).

Suppose now that we are either working locally or on a universal
covering so that T may be taken to be trivial. Then we have ¢ : § +~ D
satisfying (5.9). In terms of a local coordinate ¢ on S , a Hodge
(L) +--r £5(5)) is defined to be a

i = {
frame field IF{L) (£, (2}, £,

smooth lifting of ¢(z} to F(D) . Given such a frame field, we set
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g
df = W £
=p gon  Pr9%g
where the up a are matrices of l-forms on S which are the pull-backs
r
of the Maurer-Cartan forms on F(D) = Gm . The symmetry relations
-p t -
W + (-1)F7P 55 = 0 " =
pig © 8 a,p ’ P.g “n-p,n-gq '
.10 w' = 0 for <
(3 ) D q g P
= 0 for —-qg| » 2
“p.q lp —al 2

result from the orthonormal symmetry relations on W (g) , the Cauchy-
Riemann equations (5.7) (as in the case of holomorphic curves in »" v BE

(5.4)), and the infinitesimal period relatien (5.9). Setting ¢P 5 mp p-l*
r

and ¢ ; the Maurer-Cartan matrix for a variation of Hodge structure

p - “pip
has the form

[ 4 W 0 o0

[ :o

*n ¢n-l " |

| o |

(5.11) W= | 0 - |
. . o

\ : % ¥1 |

- )

o e 0 i g !

and satisfies the Maurer-Cartan eguation

(5.12) dw = w A~ w

p . n
as in the case of curves in P .

The idea of how one proves the global results on variation of Hodge
structure‘ii;. (a} To apply curvature arguments as in lecture one to the
Hedge bundles TP —> § in the case when & is compact, the ¢p in {5.11
are the connection matrices in the Hodge bundles, and the curvature is com-
puted by (5.12); and (b) in case S is non—compact, the Ahlfors lemma
(lecture &) gives an estimate on wp , and judiciously choosing our frame
field then allows one to estimate ¢p using (5.12), the upshot being that
the arguments in the compact case carry over to the general situation.

This will all be explained in more detail in lecture 7 and in the seminar.

* The ¢p are (1, 0) forms with values in Hom(IEp,JEPbl} which
measure the variation of Hodge structure, and may be identified with the

Kodaira-Spencer class (cf. lecture 7 below).
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For the remainder of this lecture, we shall return to the study of holomor-
phic curves in projective space.

A holomorphic curve % : S + P is non-degenerate in case the image
does not lie in a proper linear subspace. Analytically, this is expressed

by the Wronskian condition

WE) = 35 A 2(g) A e~ 2P oz o0
Near a regular peoint () where wt;oj # 0 , we define Frénet frames by the
conditions:
Span {%Z,, ..., 2.} = Span {2, 2', ..., z“"} = Pk(C) ’

where Pk(c) is the kEE- osculating space. For a Frénet frame field,

dzk is clearly a linear combination of Zg' e Zk+1 and azk is a

4 This implies that

gr cree By - Hk,i

|k — 2] > 2 and eﬁ K+l = 0 , and thus the structure equations (5.2) for

a Frénet frame field reduce to the Frénet equations

linear combination of 2 = 0 for

Ay = O, k-1Zk-1 t B Bk T %, k+1lk41
(5.13)
a - " - 8 o *
Pk T T % B %0 g1 TP,k <O
The k&R associated curve is the locus of the osculating spaces

Pk{c} . Analytically, this curve is given by the holomorphic mapping
A(Z) = Z(Z) ~ B'(E) ~ see s z ) (o

from S into the Grassmannian Pa(k, n) of projective k-planes in p L
Here, we are tacitly using the Pliicker coordinates on PG(k, n) . Since

i A = P i i A :
first uktﬂ} Akzo{c} zktgl is a multiple of Zﬂ Zk as

vectors in Ak+lcn+l , and secondly by the Frénet equations (5.13)

ATy pove a By) = By e o Bp k@ g Bpen s on By g ow B g
it follows from (5.5) that
Va3 =
(5143 e = =l w8

* We note the similarity between the Maurer—Cartan matrices for a

variation of Hodge structure and for holemorphic curves.
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is the pull-back under Ak of the standard Kihler form on PG(k, n) . The k=0, ..., n —1 . Combining, we obtain ek = 5k . for all k , and
o o}

gquantities no, Qys By +.. are the complex analogues of arclength, curva- then & = § . Q.E.D.)

ture, torsion, ... for ordinary curves in R" . As in that situation, one

At this point, we make the following notaticnal convention: For a

may show: I
positive (1, 1} form

{515} Two holomorphic curves 2, % : § +P° differ by a rigid ' s
g = Y:hpar ~az = =L oga'y
unitary motion if, and only if, ﬁk = ﬁk for k=0, ..., n=1 . 2w am
4 o= e = . x
where & = a vhdf , the ceonnection form ¢ is characterized by
(PROOF : The result is local, and we choose Frénet frame fields [Zi] and
{Ei} for % and 2 . Fixing the Ei , we seek to rotate the zi by 48 = ¢ ~ @
=T p+F = 0
-1 i . '
(5.16) 3y @My (L=, couy M)
. and we define the Riceci form*
such that the Maurer-Cartan matrices agree on the new frame fields. The i v T,
result then follows from (5.1). Writing Bk,k+l = hde and ék,k+1 = . Rie O = r;i as .
= ﬁkdg , the assumption @ = ﬁk gives |h | = |ﬁk| or
Since Ric {I is a constant times the curvature form, it depends only on {
V=1 . } ;
h - T i From the first eguation in (5.18), the connection form for ﬂk is
k k

&

Xk ﬁk+l,k+1 + By the second equation there,

Under a rotation (5.186),

(5.19) Ric @ = =2&, + @ +: 8
V=1 - k K k-1 k+1
2] - e lwk wk+l} g
k,ktl k,k+1 ' ) . . ) oxmane
This beautiful relation, which is due originally toc H. and J. Weyl, has
sc that choosing P =y = T for k=20, ..., n-1 gives ' many applications, especially to "non-compact algebraic geometry." A Ffirst
- 4 by (5.13) one is:

[i] = 8 an v ¥

k, k+l k,k+1 '
(5.17) ’

= A {5.20) ] uniquely determines Tl W

Oy, k-1 B ,x-1 ¢ o i £ n-1

We are still free to rotate all Zi through the same angle ¢ . ) This follows from Ric i, = -290 + ﬁl , Ric 0, = —2ﬁ1 ¥ ﬁu + ﬁ2 , etec.
By the SE;E;ture eguations (5.3) and (5.13), } . In geometric terms, (5.20) states:
ds = (8 — 8 ) g For holomorphic curves, the curvature, torsion, ... are all func-
(5.18) X, k+1 k,k k+1l,k+1 K, k+1 :
i " . a tions of arclength alone. In particular, if two such curves os-
SR W L W R s T
culate to first order, they are congruent (theorem of Calabi).

Using (5.17) in the second egquation gives diek,k - Bk,k} = 0 . By the

: i fat i g throiah anale U ahere Before giving the second application we need some preliminary remarks

Poincare lemma, we may rotate a i gl = v o AR " % G B I e .

-~ o A = on 1e Wirtinger eorem. uppose a 1s a relatively compact cpen
s - = 3 a = g Now usin 5,.17) and the

an’n an’n V=1 dy to have B, emn ’ g ( ) i

y . L. y " . " set in a larger Riemann surface S' on which 2 is defined (an extreme
characterization of the Hermitian connection given in lecture 3 in the

first equation in (5.18) gives @8 -8 = 8§, — 8 for
% k,k L S Sk R+l ¥ This terminology will be justified in the next lecture,
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*
case is when S = §' 1is compact). For each hyperplane H ¢ ™ , the pro-
jective space dual to P" , the number of points of intersection n(S, H)

of Z(S) with H is finite. Crofton's formula from integral geometry is

the relation
(5.21) [, = n(s, H) du
g 0 :i[n*

expressing the area of 2(S) as the average number of intersections of
Z(S) with a hyperplane. A proof of (5.21) using frames is given in the
appendix to this lecture.

In case S = S' is compact, n(8, H) is independent of the hyper-
plane H since, by the Cauchy integral formula, a meromerphic function has
the same number of zerces as poles. The integer n(S, H) is called the

degree of the algebraic curve, and (5.21} is the Wirtinger theorem

{5.22) area {S5) = degree (3) .

For non-compact S , say for definiteness that 5' =C and 8 = ﬂR =

* the proof that n(S, H) is independent of H leads

=1z ec: |g] <R},
to the following significant analytical generalization of the Wirtinger
theorem (5.22), illustrating quite well, we think, the principle of non-

compact algebraic geometry: Setting n(r, H) = n{ﬂr, H} and n{0, H) =

= lim n(r, H) , the Nevanlinna inequality, also to be proved in the appen-—
r+0
dix
R R
d
(5.23) [ pe m o -ne, m}E < 7 {[f ) E+om,
0 0 Ap

bounding the growth of n(r, H) by the growth of the area, is valid.

To give our second application of (5.19), we define the mean degree of

the kEE osculating curve by
6 (8) = Ja .
5
For plane curves (n = 2) , 60(3} is the average number of intersections

of Z(8) with a line, and §,(8) is the average number of tangent lines

to Z(S) passing through a point in Pz (mean class).

* 72 geph may be called an entire holomorphic curve.
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When S = §5' is compact, we may apply the Gauss-Bonnet theorem for

singular metrics to (5.19) to obtain a formula
(5.24) x(8) + w (8) + 26, (8) = Sy (8) + Gk+1(51 .

Here, x(8) = 2 — 2g is the EBuler characteristic of 5 , and N, (8) mea-
sures the number and type of singular points on the kEE- osculating curve.
The relations (5.24) are the general Pliicker formulae of an algebraic curve.

When § is non-compact, e.g. in the study of an entire holomorphic
curve, the same Gauss-Bonnet method applies to give the Pliicker estimates,
which roughly state that

R R

PO B v %l F s eva U] ol &,

r r
and which serve to relate the orders of growth of the various asscciated
curves. These inequalities are of fundamental impertance in the transcen-—
dental theory of holemorphic curves, and serve to illustrate once again the

principle of non-compact algebraic geometry.

APPENDIX TO LECTURE 5:

PROOF OF CROFTON'S FORMULA AND THE NEVANLINNA INEQUALITY

A hyperplane H in ®% is spanned by n orthonormal vectors

Wo, ey ﬁn—l; i.e.
(A.5.1) H = WO WO wn_l A
We consider the manifold F{( Pn} of unitary frames {WD, VR Wn} in Cn+1
. . n n%x . F
and fibering F( ®B") » P given by {Wo, ey Wn} = Wh S B Woog »
Writing, as in (5.2},
n
aw., = ] ¢..W,
i jeg 1373

ij jd
we have that

n-1 n-1
)= (] 4 )Wya e aM

AW, ~+e ~W
g T i=0 p=0

-1
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n# ) i
It follows From (5.5) that the Kihler form §* on P , pulled back to
F(®") , is given by

-1
o - ZL(]

.~ ¢ -} .
2 5 un

un
nx .
The invariant measure on ¥ is thus
(n.5.2) ai = (@97 = nif
In 8 % P™ we consider the incidence divisor I of all points
(e, H) such that 2(z) € H . Clearly,

[ n(s, B = J aH .
mn* T

on I , we shall rewrite dH as
du(z, H) = Q) x ¥(z, H)

where ¥%(g, H) is the measure on the set of hyperplanes passing through
z{z} , and then apply the Fubini thecrem to conclude (5.21).

Choose a Frénet frame field [(Z,(z), ..., z,(c)} . Then all hyper-

planes (A.5.1} passing through %(;) are given by frames {WO, Wl, W Wn}

where
Wy = ZQ(C}
]
W= A oZ,(0)
o B2l af 8
. ) . t= -1 ¥
and A = tnuB) is an arbitrary unitary matrix. Using A=A an e
Frénet equation (5.13),
o -
dwo - ﬂUOZD * BOl[azl Aalwu]
E A (ag, 4ol
aw = ;o da A, Tr '
a g,y=1 afTaByY

which implies that, on the incidence divisor I ,

Pon = B41%01
n - d_
bun = .E aa A o {dg, 4z} .

From (A.5.2) it follows that
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where % is a differential form involving the matrix entries in A and
dA . Integrating ¥ over all hyperplanes containing Z(g) gives a con-

stant C independent of 2(r) , and thus, by the Fubini theorem,
Jfaa = cf 9 -
I =

Taking S to be a line in PB" gives C =1 . Q.E.D.

Now to the proof of (5.23). Let A ¢ {Cn+1}* be a unit vector such

that the hyperplane H is defined by
<A, 2> = 0
Cn C we define the potential function

2
ulz) = log l= B 2(2) >|
iz 2y ]

This function has logarithmic singularities on the divisor Dy where the

holomorphic curve meets the hyperplane H , and

dd™u = -— Qo
on C — Dy . Applying Stokes' theorem to d%  and taking into account the
singularities ¢f u gives
c
ni{r, H = f du + f Qo i
lz|=x by
c 1 d 1 .d
: = — r X @ ds + — =
In polar coordinates, d o7 ¥ e & 46 57 38 ® dr , and thus
d 1 e
nir, H) = r EE-[ e iy o ds) + [ ay -
|c|_r Ay
Assuming for simplicity that {0} § Dy , we may integrate this equation
and obtain the First Main Theorem
R R
P dr 1 " dar
(a.5.3) Jonle B o= o= [ uds + (] %) 5 -
0 |g|=R 0 Ay

In particular, since u % 0 , we find the Nevanlinna inequality (5.33).
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REFERENCES FOR LECTURE 5

The classic reference for moving frames is

E. Cartan, Groupes finis et continus et la géométrie différentielle,

Gauthier-Villars, Paris (1935).
A recent account is given in

P. Griffiths, On Cartan's method of Lie groups and moving frames as
applied to unigueness and existence questions in differential geometry, to

appear in Duke Math. J.
The theory of helomorphic curves is discussed in

M. Cowen and P. Griffiths, Holomorphic curves and metrics of negative

curvature, to appear in Jour. d'analyse.
Integral geometry is treated in

L. Santalo, Introduction to integral geometry, Hermann, Paris (1853) .,

6. CURVATURE AND HOLOMORPHIC MAPPINGS

The goal of this lecture is to provide an introduction to hyperbolic
complex analysis, which can be described as the study of how negative cur-
vature conditions influence holomorphic mappings. Together with Lie group
theory, this provides the basic tools for dealing with general wariations
of Hodge structure: examples of applications will be given in the next
lecture. On the other hand, hyperbolic complex analysis applies to Picard-
type theorems and their beautiful gquantitative refinement, the value dis-
tribution theory of R. Newvanlinna. It is mainly this aspect that we will
be discussing today.

In particular, we will be giving applications of the Ahlfors lemma, a
simple but extremely powerful generalization of the classical Schwarz
lemma. This result alone, for example, provides the estimates leading to
the results on variations of Hodge structure discussed in the fourth lec-
ture. Before formally stating the Ahlfors lemma, we will give some exam-

oles of hermitian manifolds to which it applies.
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A volume form ¥ on a complex manifold M of dimension m is a

smooth, positive (m, m) form. 1In local coordinates we may write
¥ = he¢

where

is the euclidean velume form and h is a positive function. We will also

be using pseudo-volume forms, these being non-negative, smooth (m, m)

forms ¥ that can be written locally as
¥ = |£]%ne

where h is a positive function and f is= a helomorphic function that is
not identically zero. FPseudo-volume forms naturally arise by pulling brck
volume forms under non-degenerate holomorphic mappings. 'The Ricci form of

¥ is the global, smooth, real {1, 1)-form giwven locally by

X V=T .=
R ¥ o= YT u
ic o ?8 log h

Volume forms which satisfy the curvature estimates:

v
f=1

Ric: ¥
(6.1) m
(Ric ¥)

W
&

play a crucial role in the theory. The estimates (6.1) are ebviously in-

variant under non-degenerate holomorphic mappings. Here are a few examples.

a) When m =1, there is a natural correspondence between hermitian

metrics and volume forms, given by:

d52 = h dzdz < > —%E hdz ~dz = Wy |,
For such a V¥ ,
Ric ¥ = — RY
where
11 3% logh
K = -=2¢2 4ogh
Th o oaa3z
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is the Gaussian curvature of ds® . Hence, in this case (6.1) just says
2 ;

that ds has Gaussian curvature bounded above by -1 . From this point

of view (6.1) appears to be a generalization to higher dimension of the
condition of having Gaussian curvature bounded above by a negative constant.

In particular, on the disk:
A(R) = {z ec : |z| <R}

the Poincaré metric

/T Rr%az ~ ai
T (Rr2 IZIZ)Z

n{R) =
is the unique invariant metric such that
Rie n(R) = n(R) .
We write n(l) =n , A(l) = A . The holomorphic mapping
wo+r (VT ow+ 1) /(- V=T w+ 1)
gives a conformal eguivalence between 4 and the upper half-plane:
= {fwee | mw> 0} .

Under this equivalence, n pulls back to

V=1 dw ~ dw
T (Im w)

This metric will also be denoted by n and referred to as the Poincaré

metric. The same will apply to the metric

AT _ ap - at
T fgl% (109 |2|D

on the punctured disk

*

A" = {g ec | 0 < |g] <1}

which corresponds to the Poincaré& metric on H via the covering map

o2mV=T w

b) On the polyeylinder
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m ! i~
AR = {2y, ..., 2z) €cC
the product of the Poincaré metrics induces a veolume form nm{R] such that

Ric ﬁm(RJ > 0
(6.2) i
(Ric nm(R]} = nmtR) i

As above, W induces volume forms, which will be denoted by the same

symbol, on the punctured polycylinders

* R/ *k ,m-k
o

The Bergmann volume form on the ball {z g ¢ | izfl < R} also satis-

fies the inequalities (6.1).

¢} A volume form ¥ on M is the same thing as a metric for the dual
of the canonical bundle K,_I , and Ric ¥ 1is the same as the first Chern
form of K relative to this metric. 1In case M is compact it followvu

M
that, after adjusting constants, we may find a volume form on M satisfying

(6.1) exactly when KM is positive.
This suggests that, for a general compact M , we look for such "nega-

tively curved" volume forms on M — D , where D 1is an effective divisor

such that K, ® [D] is positive. Some restrictions on the singularities

M
of D are necessary, and we will assume that D has simple normal cross-

ings, i.e. that

where the D, are distinct smooth divisors meeting transversally. In a
suitable neighborhoed of each point p € D , M — D looks like a punctured
polycylinder and this suggests the following global wersion of the Poincaré
volume form. Choose a smooth velume form ¥, on M and metrics in the

bundles [Di] such that the inequality of Chern forms:
(6.3) e (D]} + ey (Ky) = D

holds, and for each i let o5 be a section of [Di] which defines Di 3

Then for a suitable choice of the constants Gy the volume form:

=

| 12 | 7 L
(6.4) ¥ o= S idl lo; 1" (Logta, jo, |9}
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en M — D satisfies the curvature conditions (6.1).

The simplest special case is when M is projective m-space and the
are hyperplanes. Recalling that the canonical bundle of ®™ is g ™1
where H is the hyperplane bundle, (6.3) translates into N >m + 1
When m = 1 , this means that p must consist of at least three points.

We now state and prove the ubiguitous

AHLFORS LEMMA : If ¥ is a pseudo-volume form on AmfR} such

that (6.1) holds then W < n..(R) .

= 'm
PROOF: It obviously suffices to prove that ¥ < qm(rJ for r < R On
m 1
AN xr) v is bounded, whereas nm(r} goes to infinity at the boundary.
Therefore, if we write
¥ o= un (r)
@ has an interior maximum at some 25 - It follows that, at 3z
r 0 r
Y s
0 = 7 99 log u = Ric ¥ - Ric na (e} .
Taking mth i
g m exterior powers and using (6.1) and (6.2) gives
¥ 2 (Rie )™ < (Ric n (o)™ = (r)
- - m T 'ﬂm E
i.e. u(zo) 2 1, and therefore u = 1 everywhere as was to be proved.
A COROLLARY to the Ahlfors lemma is that if we write
¥ = he
where ¢ is the euclidean metric and ¥ is a metrie on A" (R) satisfying
(6.1), then
(6.5) R < c h(o) /3

for some universal constant ¢_ .,
m

We now give an immediate application of the Ahlfors lemma.

be a holomorphic mapping into an m-dimensional complex manifold

rolume form ¥ ., Write

Let

N

with a
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v = |g£|%s

where ¢ is the euclidean metric., If ¥ satisfies (6.1) then (6.5) im-

plies that

(6.6) R € |af(s) | “/m

1A

Applying this to the volume form Y -constructed in example ¢) gives the

GENERALIZED PICARD THEOREM IN FINITE FORM: Let M be an m-

dimensional compact, complex manifold, and let D be a divisor
with simple normal crossings whose Chern class satisfies (6.3).

Then for any non-degenerate holemorphic mapping:
£: ™R + M-D

the estimate (6.6) holds. In particular, an entire holomorphic

mapping:

is degenerate.

15

When M =P consists of three distinct points, this implies

and D

the usual Picard theorem. However, the above result gives more: restrict-

ing to the case of an entire meromorphic mapping

£:c » Bt

it says that, for any three points Zye Zyr Zg in ZPl and any point

such that f£'(z,}) # 0 , any disc around ¢ of radius > R(£f'(z5,))
i) 0 = 0

) [
will meet f‘l{[zl, Zay 23}J - In principle this gives a lower bound on
the "size" of f-l({zl, Zy 23}} which, when made precise, leads to the
beautiful defect relations of R. ﬁevanlinna.

We will now describe another, closely related, application of the
Ahlfors lemma, which leads to the basic estimates for studying variations

of Hodge structure. To give this we must first discuss holomorphic sec-

ticnal curvature.
Let M be a complex manifold, and suppose a hermitian metriec with

associated exterior form w is given on its tangent bundle. In the first
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lecture we have defined the curvature form 9(£) attached to such a metri
3 ¥ =k ric.

F an 3 ic £
or any holemorphic tangent vector & + the holomerphic sectional curvature
L FaTure

in the -direction, K(¢) , is defined as follows:
K(g) = 2L <0(8), £~E>

1=nd
el
It is clear from the definition that K(£) depends only on the direction

5

of £ . - is j i
£ When m 1, K(£) is Just the Gaussian curvature of M. We

say that M is hegatively curved when
K{E) = —-a < ¢

£ P i
or some positive A and every [ Multiplying the metric by 1/a , we

may assume that A = ] .

PROPOSITION (GENERALIZED SCHWARZ LEMMA) : Let f : A+ M bpe a
holomorphic mapping of the unit dise into a negatively curved com-

plex manifold. Then f is distance decreasing, in the sense that
ffu o< g
where n is the Foincaré metric on A .

2R H i
Q0F: To apply the Ahlfors lemma it suffices to show that f*y satiasfies

the inequality:
‘5-7,1 Ric (fw“]} _:; f*tu

't points where f' # g ., If U is a sufficiently amall neighborhood of

uch a point, £(U) is a submanifold of M » and has an induced hermitian

etric w|£(U) . (6.7) now follows from the curvature assumptions oen M )
nd from the principle that curvature decreases on submanifolds (cf. lec-—

are 1),

REMARK : The same proof as given above applies to the case when we
ily know that K(g) = -1 for all vectors £ which are tangent to f£(A) .
s will be the case in applications to variatien of Hodge struc;;;e.

When applied to M = unit disc and w = Poincaré metric ;, the abave

opositicon gives the invariant form of the Schwarz lemma due to Pick
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£1(z)]? . 1

@om | EE2NHE ™ e |25
The usual statement
[£2i0y] = 1
follows by assuming that £(0) = 0 and setting 2z = 0 in the above ine-

guality.

REFERENCES FOR LECTURE 6

The basic reference for hyperbolic complex analysis is

S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel

Dekker, New York (1970).
For value distributicn theory, the classic is

R. Nevanlinna, Le théoré&me de Picard-Borel et la théorie des fonctions

méromorphes, Gauthier-villars, Paris (1929).
A modern treatment is given in the monograph

P. Griffiths, Entire holomorphic mappings in one and several complex
variables, to appear as an Annals of Math. Studies, Princeton Univ, Press.

7. PROOF OF SOME RESULTS ON VARIATIONS OF HODGE STRUCTURE

We first establish some notational conventions, which will be valid

for the rest of this lecture. Let V = {§, E, Ez o V. Q, (FP1} be a vari-

ation of Hodge structure of weight m . The second Hodge-Riemann bilinear

relation says that, on gl mp , the hermitian form

(-1Pv=T ™ e, W)
is positive definite. To simplify notations in the following we shall

Q for V=TI ™ g , so that the Hodge hermitian metrie ( , ) is

write
related to Q(&, n) by

i 2 11 P, g
{7.1) {a, B) = ] (agr By) I -1 Qla,, B))

where up and 8 are the (p, m — p) components of a and B ,
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respectively. It will be cenvenient to consider P9 and E/Fp as ¢~
subbundles of E i for example E/FP will be identified to the orthogonal
complement of rF i g + @nd so on,

In lecture one the metric connection and curvature of a hermitian met-
ric were defined. That discussion carries over verbatim to non-degenerate,
but possibly indefinite, hermitian metrics. From this point of wiew the
Gauss-Manin connection v aAppears as the (1, 0) part of the metric con-
nection for E relative to the indefinite metric QUE, 7) . The metric

connection on FF g related to vy by:
D' o+ =
B v 4

wher ! i ‘ i
e ”p 1s the second fundamental form of rPoin E (Kedaira-Spencer

map). The (L, o part of the metric connection D
' B/rP
other hand, agrees with V , whereas the (0, 1) part is

on E/FP ; on the

5or by

P
where § is the Cauchy-Riemann operator for the complex structure of g

and i i joi 1 i i
up is the adjoint of *p - With these notations We may now prove

a) CURVATURE PROPERTIES op HODGE BUNDLES . We will show that the
Following formula holds for the curvature §_  of gPrmP
P

(7.2) (0,0, &') = (hpe, woe') + (&

Po prove (7.2} we have to describe how curvature behaves when onre goes tg
subbundles or quotient bundles, 7o some extent, this has already been done

- the first of thesge lectures, Suppose we are given an exact sequence of

lolomorphic vector bundies
0 + H'" + g . H" = o0

nd that H has a (possibly indefinite) hermitian metrie which induces

£

on-degenerate metrics on H' and gv | As usual, identify g~ s as a ©C

1 3 "‘-.’—’
andle, with the orthogonal complement of H' ip H . Let ¢ be the
:cond fundamental £ '

orm of H in  H . Then the curvatures GH' = BH"

‘e given hy:

e
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(Bgre, &') = (Bge, ') — (ve, oe'})
(7.3)
. ; t t
(Byue, e') = (8ye, ') — (Tae, “ve') .

The two equations (7.3) express the principle that curvature decreases on

subbundles and increases on quotient bundles (notice that ¢ has type
(0, 1)) . Applying (7.3) to the exact sequences:

0 -+ P + E + EFP 4+ g

p Pro-p
0+FP+1>FP+E »o0

and taking into account the alternation of signs (7.1) gives formula (7.2).

b) APPLICATIONS TO RIGIDITY THEOREMS AND RELATED MATTERS WHEN THE BASE

IS COMPACT. ©Let V = {5, E, Ep ¢ 0 ¥, {FP}} be a variation of Hodge

structure with compact base S . Let ¢ he a global holemorphic section of
FF | Suppose that £ is uasi-horizental, i.e. suppose that Vi is a sec-
tion of ﬂlprJ + In other terms this means that wpg =0 . Let gp be

the (p, m — p)-component of £ . Then, as follows from the results of the

first lecture,

)

o

= 20 Ve i -
a,”gp“ :Dp,p, Dpip} ( poer Sp

where Dp is the metric connection of gF/®P + Taking into account formu-
la (7.2) and the quasi-horizontality of £ , it follows that H&p”g is
plurisubharmonic, hence constant, due to the compactness of the base, there-

fore:
t
D' = H £ =
p'p "prltp PP

This means that gp is holomorphic, as a section of E , and horizental.
If we assume that : is horizontal, we may apply the same procedure to

5

£ - Sp and inductively chtain the following statement:

THEOREM OF THE FIXED PART: Let V = (s, E, Ey . 7, Q, {FP}} be
a4 variation of Hodge structure with compact base S , Let £ be
a flat global holomorphic section of E , Then each of the

P+ g)-components of £ 1is holomorphic and flat. In particular,

if £ has pure (p, g)-type at one point, then it has pure



84 MAURIZIO CORMALBA AND PHILLIP A. GRIFFITHS

(pr g)-type everywhere,

A straightforward application of the above theorem is a proof of the
rigidity theorem when the base is compact. Let V¥ and V' be variations
of Hodge structure of the same weight m . A 7y (8, sy)-equivariant iso-

morphism of Hodge structures

. - "
] : E * Esa

extends by parallel translation to a flat section ¢ of Hom(E, E'} ,
which has type (0, 0) at Sy - Applying the theorem of the fixed part to
the variation of Hedge structure Hom(V, V') gives that 4 has type

(0, 0) everywhere, which is just the rigidity thecrem.

Another application is the complete reducibility theorem of Deligne,

always when the base 8§ is compact. The full argument is too long to be

given here and we will content curselves with the weaker statement:

Let V be a variation of Heodge structure with compact base 8§
and monedromy group [' . Then ( is non-degenerate on the space

E' of TI-invariants. In particular,

To conclude we would like to remark that, since a bounded plurisubhar-
monic function on an algebraic (possibly non-compact) variety is constant,
the above proofs of the theorem of the fixed part and its corollaries would
go through for an arbitrary algebraic base S if we knew that a flat sec—
tion of E -+ S- has bounded length. This, and much more, follows from the

results of Schmid that we will discuss in a short while.

c) THE DISTANCE-DECREASING PROPERTY AND SOME APPLICATIONS. When
studying variations of Hodge structure on a non-complete algebraic curve,
one is naturally led, by localizing near points at infinity, to study vari-
ations of Hodge structure on a punctured disk A* . In the language of

classifying spaces for Heggg,structures we have a diagram
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H  — L > D
2Zav-1 w |
=3 | L
v
AF ____E_h_» r'\p

The monodromy group [ consists of multiples of the Picard-Lefschetz trans—

formation T and ¢ satisfies
Td{w) = d{w + 1) .

Moreover $ is horizontal in the following sense. The tangent bundle of
D has a distinguished holomorphic subbundle, the horizontal subbundle

TH(D) , comsisting of all tangent vectors X such that
P & pPl pP

(recall that a tangent vector at a point {FP} of D can be identified
with a collection of homemorphisms from =P  to E/FP , for each P ). Say-
ing that a mapping of a complex manifold into 0D is horizontal means that
it is tangent to TH(D) . Mappings arising from variations of Hodge struc-
ture are horizontal by definition (cf. (5.9)).

A consequence of the curvature properties of Hodge bundles is that, for
any suitably normalized Gjl-invariant metric, the holomorphic secticnal

curvature of D satisfies an ineguality
K(E) = -1

whenever £ lies in the horizontal subbundle TH(D) . Hence the Ahlfors

lemma applies to § and says that 3 is distance decreasing, in other

terms:
(7.4) ep@tw, Fwh) 2 pylw, w')
where Py is the invariant distance en D and oy iz the Poincaré dis-

tance on H .
A very elegant application of the distance decreasing property in this

form is Borel's proof of the guasi-unipotency of the Picard-Lefschetz
B L e g B ¥ Of the “icard-Lefschetz

transformation. Since T is integral, by a thecrem of Kronecker (an alge-

braie integer all of whose conjugates have absolute value one is a root of
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unity} it will suffice to prove that the eigenvalues of T have absolute an affine variety A . Choose a smooth compactification A of
A . If the curvature form of V satisfies estimates

value one. Choose a seguence {wn} of points of H whose imaginary part
goes to infinity with n  and write S & (0a, 51
flell
'Mwn}| T 9qPy
where 1 is the Poincaré metric in the punctured polyeylinders
r
Then at infinity, then Vv has an algebraic structure whose global

where Py is a reference Hodge filtration and 9, belongs to GR %
B - sections e satisfy estimates
Pplelw, + 1), d(w)) = Pp (T9,Py+ 9,Pg)

iF
P max (lo el) = o(log (2])
Pp 9, Ta, Py Py) . i—TE g e g (EJ

On the other hand where T. is an c-tube around & — 3 .

1 : ; ] " -
pH(wn + 1, W= O[EE—G—j This result immediately gives an algebraic structure on gP/™P : for each
n
w7 ) ) . P . In addition to (7.7) one has a description of the algebraic cohomology
so that pD(gn TgnPU’ pD} geos to zero as n  tends to infinity. Since n
! of E , this being given by closed modulo exact forms with appropriate

is the quotient of ¢ by a compact subgroup H , this says that a segquence
R S § S
growth conditions at infinity,

of conjugates of T tends to an element of H , and therefore all eigen-
To give the algebraic structure on E , we proceed by steps. Suppose

values of T must have absolute value one. pil
F has been algebraicized. Then it follows by the above description of

Another way of looking at the distance decreasing property for a vari-
cohomology and (again!) the distance decreasing property that the extension

ation of Hodge structure over A , H or A* is the following: " o
3 class of EgP/™P by FF is algebraic, which allows to algebraicize TF #

For every p and every section e of FP and so on.

ST The following local version of (7.7) also holds.
(7.5) T (wpe, bpe) = Cle, eln
(7.8)  Let v = {a*, E, Ep v Y Q {FP}} be a variation of Hodge

where 1  is the Poincaré metric and C a suitable positive con-
structures over the punctured disk A* = {fcec | o< lz] < 1} .

S Then each of the FP ig generated by a finite number of sections
This iz seen to be equivalent to (7.4) by recalling the explicit descrip- 1 e such that
tion of the tangent bundle to a Grassmannian (lecture 1).

_ o _ S~ ©(7.9) max (log fef) = o(log (X)) .

Formula (7.5) can be viewed as giving an estimate |z]2r E

(7.6) G {QEE’zeJ < en Rather than going into the details of the proof of (7.8} or of its
- lfef N global counterpart we wish to show how one can deduce from the distance de-

n the curvature of the Hodge bundles PP phe inequality (7.6) has creasing property that the Gauss-Manin connection is algebraic and has reg-
important conseguences. The first one is the algebrization theorem for & , ular singular points, when the base is an algebraie curve

The basic tool is theﬂfﬁiiowing general result. J B 8 = {sl, st SV} i B being smooth and complete.

By localizing at infinity we may work on a punctured disk a* =

(7.7) Let V + A be a holomorphic, hermitian vector bundle over
<1} . Let e bhe a (multi-valued) holomorphic flat section

=L L0y
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of E and write ¢ = re " ., We decompose e into (p, m — p)-components
. P,m-p
e = e e B ad
s g ©

The condition that e be flat means that, for any p

%% T T Vpri%n

and to say that e is holomorphic means that

= tw
PP = Yp-1%p-1 -

Now we take the radial derivative of the Hodge length of e .

3
ar

(e, e) = ] j% leg =)

d

= J2 RE{EF = poEP, ep)]

i T 3 T 3 t,
= 72 Re[ar = (Vp-lep—l' ep}] +:7 2 Re(~? = Ypr18pe1s ep}}

5]

Taking absolute values and using the Schwarz ineguality plus the distance
decreasing property and the explicit form of the Poincaré metric on A* one

gets

(7.10) I é%-(e, el| = .

By integrating the differential inequality (7.10) we obtain inequalities

1 -k 2 1 k
{7.11) €, {log TET—} s l=ll® = cy(leg TeT )

#hich hold uniformly on any angular sector, for suitable Cir Coe ko
Now let T be the Picard-Lefschetz transformation. For the sake of
simplicity, here, and in the following, we will always assume that the

’icard-Lefschetz transformations invelved are unipotent. Write

[ g+l
N = logr = J HL=0°-"
g=0 qg+1

e to the unipotency of T , the sum on the right hand side is a finite

sum.  Then for every flat section e of E ,
—

.5 exp (- Log: Wy,
2n/=1T
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is a single-valued never vanishing holeomorphic section of ® . These sec-

tions give a privileged extension of E across the puncture of A* , so

that, returning to the glebal situation, we have a privileged extension of
E to a vector bundle E' over § . By Serre's G.A.G.A. this has an alge-

braic structure: the upper bound in (7.11) together with (7.12) tells us

that this agrees with the intrinsic algebraic structure of E . Also
7 exp [_ leg N 6 'm . N exp[_ log Ny 7;
2nv=1 27/=T 2m/=1 =

which shows that 7 is algebraic and has regular singular points.

d) THE NILPOTENT ORBIT THEOREM. Let V be a variation of Hodge
structure of weight m on 4* . Another straightforward consequence of

{7.11) is the following metric comparison lemma. We denote by E' the

privileged extension of E to /A constructed at the end of ¢} and let

< , > be any ¢” inner product an E' . Then, on every compact subset of

A and for every section e of E ,

(7.13) A(og(T) el £ <o o> < 8 (tog (770) flel®

where A, B, k are suitable constants.

Now let f be a section of FP which satisfies the estimate (7.9).
The metric comparison lemma tells us that f is a linear combination with
meromorphic coefficients of sections of the form (7.12). Since the base is
one-dimensional, this and (7.8) imply that the filtration {rP}  extends to
a filtration {F'P} on E' .

What we have done here is essentially deducing from (7.8) the first

part of W. Schmid's nilpotent orbit theorem. To formally state this we

have to define the compact dual _5 of D . Recall that D can be viewed
as the set of all filtrations (with appropriate Hodge numbers) on a fixed
vector space which satisfy the two Hodge-Riemann bilinear relations. D is
defined to be the set of all filtrations satisfying the first Hodge-Riemann
bilinear relation, but not necessarily the second. D is easily seen to be
a projective homogeneous algebraic variety: D is an open subset of D .
With these notations what we have shown, in the language of classifying

spaces for Hodge filtrations, reads as follows.
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EXTENSION LEMMA. Let

i

H > D
|
|
v A
a* g > I'\D
be a variation of Hodge structure over 4* . Let T be the

Picard-Lefschetz transformation (which, for simplicity, we will

assume to be unipotent) and set N = leg T . Then the mappihq
W+ exp(-wN) & (w)

descends to a mapping

which extends across the puncture.

The remaining part of the nilpotent orbit theorem, which follows fairly

easily from (7.13}, says that, if we write Py = vy ,

(i) exp (wN)p, is horizontal;

(ii) there is a non-negative number « such that, if Im(w) > a ,
then exp(wN)po belongs to D ;

(iii) Exp{wNJp0 is strongly asymptotic te &(w) in the sense

that

=27 Im w

ople(w), explui)py) < (mm w)fe
for some £ > 0 and large enough Im w . i

We now give a sketch of the proof of (i), (ii), (iii). In the Hodge
bundle framework, the nilpotent orbit exp[wN)pO corresponds to a filtra-
tion {FP} of E' which agrees with {F'P} at 0 and is constant, rela-
tive to the sections of the type:

exp (- EELEEJE
2wv/=T

where e is flat. N can be viewed as a flat endomorphism of E which

extends across the puncture. (L) just says that {FP} satisfies the
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infinitesimal period relations (4.11). This follows from the fact that
NE'P F1P—1

at the origin, which in turn is a consegquence of the infinitesimal period
relations for {FF} .

To prove (ii) we must show that, for any non vanishing section e of

) (—l}PQ{eI;. e_I;") > 0

in a neighborhoed of the origin, where e = | eé is the decomposition of
e into (p, m — p) type relative to the filtration {FP} . Assume, in-

ductively, that this has already heen proved for sections of Fp+l and let

ptl

e be a section of FP whose projection intc FP/F does not vanish at

the origin. What we have to show is that

(-1)Potes, el) > o

near the origin. WNotice that the length of eé, < eé, eé >l/2 , relative

~to any ¢” metric on E' r is bounded both above and below. We may write

eﬁ = a+ B+ ¥
where o belongs to EF/™P g belongs to Fp+1 + ¥ belongs to
Fm—p+I . The metric comparison lemma plus the fact that (F'P} ana (#F}
agree at the origin imply the estimates
14-k

(2, a) 2 c,(log TeF

(7.14)
k
(8, 8) < C,lz[%(10g T%T} 2 v,y

in a neighborheood of the origin. Tt follows that
-DPa(el, e 2 (o, @ — (B, B) = (v, Y) > 0

near 0 , as was to be proved.

When suitably interpreted, the estimates (7.14) alsc give part (iii)
of the nilpotent orbit theorem.

In a way the nilpotent orbit theorem enables one to reduce most gues-—

tions about a general variation of Hodge structure on A% to gquesticns
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about the approximating nilpotent orbit, However, studying nilpotent
orbits seems to be a deeper matter than the nilpotent orbit theorem itself.
Very detailed information about nilpotent orbits is given by W. Schmid's
st-orhit theorem which will be discussed in the appendix to this lecture.
This theorem will not be formally stated here. We will just say that,

roughly, it enables us to construct a mapping

which lifts to a homomorphism of Lie groups

(W51}

& SLZfRJ - GR

and is asymptotic to the nilpotent orbit exp(wN}pG (in a much weaker
sense than above). Moreover the theorem gives very detailed information an
the way £ is related to Exp(wNJpG » and this is crucial in most applica-
tions.

Instead of insisting on the SL,~orbit theorem we will give some of
its consequences. To do so we have to go back to the original situation,
when we have a variation of Hodge structure of weight m over A% : as
usual the Picard-Lefschetz transformation T will be assumed to be unipo-
tent. The monodromy theorem in strong form, as folloﬁs from the 5L2-orbit
theorem, says that the index of unipotency of T is at most m » Provided
the Hodge numbers hP? are zere if p <0 or g>m . We have constructed
extensions of E and PP o 4« We will dencote these with the same sym-
bols as their restrictions to A* , y may be viewed as a flat endomorphism

of E on all of A . The weight filtration of E is the unigque filtration

i
NT o
Wm+£. /wm+i—l g wm—Q /wm—a—l
>0

is an isomorphism for every L

(Wi} can be constructed as follows. It is clear that Wom-1 = ker N and

. m : i . ) .
g =N (E) . Then we consider the linear mapping induced by N on
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WZm_lJWO and work our way down by induction on m .

Now denote by {FP} an approximating nilpotent orbit to (FF} . One

of the consequences of the SLz—orbit theorem is that
(7.15) {Wi} , (FP1 ¢ By induce a mixed Hodge structure on each
of the fibres of E[4* . Relative to this, N is a morphism of

type (-1, -1)

Let us remark that the last assertion follows immediately from the

infinitesimal period relation for the nilpotent orbit {FF} and from the

definition of {Wi} 4

What (7.15) tells us is that the Hodge structures on the fibres of E

asymptotically approach a mixed Hodge structure as we go into the puncture.

Another consequence is a concrete description of the weight filtration.

This is a refinement of the estimates (7.1l). Let e be a flat section of

E . Baying that e belongs to wx (at each point) means that the Hodge

length/ﬁﬂe“ satisfies an estimate

flell = oftog (12 7)

In particular, since ocbvicusly

uniformly on each angular sector.

ker N < Wm

then every invariant e (Te = e , or, which is the same, Ne = 0 ) is

bounded near the puncture. This is the statement needed to prove the

thecrem of the fixed part and its corollaries without completeness assump-

tions on the base.
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APPENDIX TO LECTURE 7: ON SCHMID'S SECOND THEOREM

This appendix is intended as an aid in understanding Schmid's proof of
his basic technical thecrem, the atz-orbit theorem, which appears in his
paper listed in the references to lecture 7, It is not our purpose to give
either the precise statement or complete proof, but rather to extract the
essential aspects of the argument and put them in a more differential-

geometric and less Lie-theoretic setting.
a) HEURISTIC REASONING. We consider a variation of Hedge structure

o+ (71

over the punctured disc. By passing to a finite covering of A* , we may

assume that the Picard-Lefschetz transformation 7T 1is unipotent with loga-

rithm
— 149
N = logT = J (-1 9 oLt g i
a 9
Lifting up to the universal covering H + 4% , there is an induced variation

of Hodge structure, still denoted by ¢ ,

& : H = D satisfying

¢(z + 1) = Td(z) .

Schmid's results allow us to approximate aﬁ;fsuch ® by an eguivariant

variation of Hodge structure
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satisfying the asymptotic estimate (z = x + /=1 y)
_ -1
ppltlz), Liz)) = oly ™)
for y >C . [ is induced by a representation

n o SLZ(l{} + GE

having very special properties, and most aspects of the behavior of ¢(z)
as Im z + = are the same as for ZI(z) and can therefore be deduced by Lie
algebra calculations.
Here is the heuristic reasoning behind Schmid's theorem. Let TF(z) be
a Hodge frame field for ¢(z) with Maurer-Cartan matrix w defined by
dF = w*F , where
{A.7.1)
du = W~ w .
We adopt the viewpoint that ¢ is completely determined by w , and thus
we should try to select the Hodge frame field F(z) such that the asympto-
tic behavior of w(z) as Im z + = becomes most transparent. As in lec-—

ture 5 we write

t

w = ¢+ Y+ P
where
0 oy, - 0
v = | ‘;’1
0 a ¥ a

is a matrix of (1, 0) forms giving the Kedaira-Spencer class for the

variation of Hodge structure, and where

0 - - 4y

gives the connection matrices in the variocus Hodge bundles. The pull-back

of the GR ~invariant metric on D is
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. t—
5 Trace (y, Vo)

so that if we write ¢ = Adz , the Ahlfors lemma From lecture 6 gives the

basic estimate
(3.7.2) alz) = ow™h (z = x + iy)

which underlies the whole development. What is suggested is that we try to
cheose F(z) such that ¢ can also be estimated.
The integrability condition (A.7.1) is now
A ~ @~ = Yo P+ Py

(A.7.3)
ay = ¢ .+ Y oAb,

Writing ¢ = Bdx + Cdy , the Ffirst egquation gives

ic 3B B = = _ -2
(A.7.4) % 3y - B Cl = —2/T [, Rl = o(y7H) .

This fails to yield an estimate on B or C , unless one or the other is
zero. The form of (A.7.4) suggests that we try to select our frame field

such that € = G . Then %% = O(y_zl so that

(A.7.5) B = oy h .

Frame fields with the property that ¢ = 0(dx) are characterized geometri-

cally by the condition that F(z) remains parallel to itself along the

vertical lines x = constant.* We shall call these gecdesic frame fields;

they are easy to construct by prescribing the initial wvalues Fix + /<T)
and then making parallel displacement up and down vertical lines. Geodesic
frame fields are the analogue of normal coordinates in Riemannian geometry,
and allow one to most easily recover properties of the connection matrix

from the curvature.

EXAMPLE: Over the upper half plane H we consider the universal

family of Hedge structures of weight one and genus one. The wector space

[0 -1
E is C2 s the quadratic form o = [ y + and each point =z € H gives
: 1 0

the polarized Hodge decomposition /’/-

* Here, parallel displacement is relative to the Hodge connection ¢

and ngt the Gauss-Manin connection.
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c” = Ic-(z, 1)] ® [C+(z, 1)] .

Since /=1 Q{{z, 1), (z, 1}} = 2y , the manifold F(H) of Hodge frames

consists of all pairs

{e, 8} where
(A.7.8)
e = &xp v-l o (z, 1) .
Y2y
The Maurer-Cartan matrix
/1 dx - ., 42
[ V=1 do + g exp 2v/-1 o 2y
A.T.T) i = —
{ L L xp(-2/°T o) 82 ~/Tag - ¥l |
/ exp ] 2y 5y

Geodesic frame fields are those frame fields f{efz), ET;}} € F(H) for
which ¢ = o(x) is a function of x alone. In particular, o = constant
defines one such. This example shows that the estimates (A.7.2) and
(A.7.5) are sharp.

Returning te the general case, we let F(z) be a geodesic frame field

lying over a variation of Hodge structure $(z) . On the basis of {a.7.2),

(A.7.5) and the above example, we might hope to have an expansion

W= m-—l + w
. : . - dz dz i
where 1 is a linear combination of A and v whose coefficient

matrices are constant, and whexre &(z) 1is of lower order as Im z » = .,

The second eguation in (A.7.1) should imply that
dw_l = wg e .
In this case, we may define a mapping
L:H > D
by sclving the differential eguation
{8.7.9) dglz) = w_;(z)c(z)

to find a Hedge frame field ¢ for ©§ . By comparing the form

w=¢ + P + tE of w with the form (A.7.7) of the Maurer-Cartan matrix
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for ELEEIR) = F(#) , and taking into account that w_y 1is a constant
linear combinaticn of %? and %;—, Z as defined by (A.7.9) is an egui-

variant variation of Hodge structure induced from a homomorphism

n: SLE(Dl} - Gm whose induced Lie algebra mapping is just w_y - More-
over, it is plausible that £ , viewed as the “"principal part" of ¢ as
Im z + = , should share its essential properties. Making this argument
precise constitutes Schmid's theorem.

To carry all this out, one essentially needs to know that for the
original variation of Hodge structure #{x + /-1 y) looked at along lines
parallel to the imaginary axis, the Maurer-Cartan matrix w(x + /=1 y) for
a geodesic frame field has a Laurent series expansion in powers of y_L as
y + = . In this case, the decomposition (A.7.6) can be analyzed by using
series expansions in the structure equations (&.7.3). However, it is not
at all clear that, for our given variation of Hodge structure &(z) , there
is some Hodge frame field F(z) (much less a geodesic one) whose Maurer-
Cartan matrix has such a Laurent series. Thus, the proof consists of first
replacing ¢(z) by a nilpotent orbit ¥(z) where it is easy to find a
(non-geodesic) frame field with this property, and then proving that rotat-
ing into a gecdesic frame field still yields a Maurer—-Cartan matrix having

the desired Laurent series.

b) FRAMING THE NILPOTENT ORBIT. Given a variation of Hodge struc-
ture ¢ : H + D satisfying &(z + 1) = Té&(z) where T is unipotent

with logarithm N , we consider nilpotent orbits

¥iz) = exp(zN}-Wn [?D € D) .

1

Any such nilpotent orbit is the restriction to H ¢ P° of a polynomial

mapping intc the dual classifying space D of all filtrations {FP} on E
satisfying the first bilinear relation Q(rP, Fn—p~l) =0 . In general,
hewever, ¥{z) is neither horizontal nor maps H intc D . Schmid's
first theorem asserts that, for a suitable choice of reference point ?D ’
the nilpotent orbit gives a variation of Hodge streptﬁre which is strongly

asymptotic to &(z) in the sense that

op(2(z), ¥(z)) = owy%e™)
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for z=x+vv-lyeH, ¥y > € . Henceforth, we shall restrict our atten-
tlon-to. Wiz} .

We first note that
exp(zN) = exp(xN) exp(v/-1 yH)

where exp(xN) ¢ GI&' Thus, the Gna-invariant properties of Y¥(z) are all
described by looking at ¥(/-1 y) .
In order to frame Y¥(z) , we fix a reference Hodge frame EO lying

aver TD . Then the frames
l E(z} = exp{zN)En

give a field of frames lying over V¥(z) which depend in a polyncmial fash-
ion en =z . However, these frames are not Hodge frames, but are only frames
adapted to the filtration ¥(z) . To ohtéin a Hodge frame field, it is
natural to apply the Cram-Schmidt process, which we now review.

Given a vector space V with Hermitian form ( , ) , a subspace W
such that { , ) is definite on W and on HL , and a basis
[wl, seer Wai Vipoeee, ve} for V such that Wis o eeeq Wy is a basis for

W , the Gram-Schmidt process without normalization consists of the following

three steps:

(i) a transformation

(wyr wy)

- —
(Wl: Wl} 1

converts Wyr eeay Wy into an orthogonal basis for W ;

{ii) assuming (i}, the transformation

(wyr v)
va-rva—i-——( w}wi
i Wy Wy

where the va's orthogonal to the wi's ; and

(iii) assuming (i) and (ii), we apply (i) to the vu's i
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t

In an obvious way, we may apply this process to the vectors in Flz) Writing we = ¢G + Ya + GG where
relative to the Hodge filtration ¥(z) and obtain an orthogonal frame - N - -
E?(z) in which the vectors are raticnal functions of 2z and Z . Finally, (3.7.10) ¢§tz’ = ly)ds
we may normalize to make the vectors in Eﬁ(z] have unit length to obtain $§‘Z] = Blylax (since ¢ is geodesic),
a Hodge frame field F(z) . Since, if aly) is a rational function of vy

it follows that h(y) is defined by the 0.D.E.
with a(y) » 0 for y > C then +a(y) has a convergent Laurent series
(A.7.11) h'(y) + hiylc{y) = 0

expansion in y-l/z for y 2 €' , our rational frame field F(z) has the

PrOperties; Our major step will be to prove that (A.7.11) has a regular singular point
F(2) is a Hodge frame field for ¥(z) ; at y = = , which, when taken—together with certain addition properties of
Flz + x) = exp (XN) F (2) (exp (xN] ¢ GHIJ’ and the seolution matrix hiy) , will lead to the desired Laurent series expan-

F(yY-1 y) has a convergent Laurent series expansion in sion. Writing

-1/2 ' =
for B G -(n+2) /2 i
y or y > cly) = ] e v (n#2)/2  _ c_NyN/2 Y () ey #0)
n=-N
Moreover, if the Maurer-Cartan matrix mF(z) is defined by dF = wFE_, then
= - we want to show that N = 0 . The idea is to use the 0.D.E. (A.7.11) to
wF{z + %} = wF(z} obtain certain growth estimates on the derivatives h(k}(y) , and then to
) compare these with estimates coming from the Ahlfors lemma and the struc-
since w is Gﬂlninvariant. Writing as usual
ture equations (A.7.3).
; t=-
i = ¢, + 0, + U i =
B S L ' mmn: 2% @y = o2 Ky a4 no better estimate is
@P = ‘a(y)dsz
= possible.
tp = blyldx + cly)dy ,
PROOF : Differentiating (A.7.11) leads to
the Ahlfors lemma gives
2
® h" = he” + he'
. -{n+2) /2
aly) = [ ay
A n=0 " i At .
n s
As discussed above, this does not seem to easily yield informatien on the '.° nfkl = {‘-l}khck + hd
Laurent series expansions of b(y) and cly) . (kN/2) - (k+1)
where dk has a Laurent series beginning with vy This fol-
Therefore, for the reasons discussed previocusly, we are led to con-
lows inductively from
sider a rotation
k k
d = (=1)7¢'e” —ed, + 4 W
G(z) = h(z)F(z) (h(z) € H) ks LR
- t=
: . Since H is a compact matrix group, hiy) = 0(1l) and c N + C_y = 0 .
taking F(z) inte a geodesic frame field G(z) . We may obviously assume k
Thus ¢ can be diageonalized, and in particular (c_N) # 0 for all k .
that hix + v/=1 y) = hily) is independent of x . The relation between N
5 : Consegquently
Maurer-Cartan matrices is
= -k
1 Bl = oqge (R IREG W o IR

Adhmg_ = h “dh + mE .
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and no better estimate is possible. Q.E.D.

Next, referring to (A.7.10), we shall prove the

LEMMA : A{k}(y) and B{k}{y} are Olyvkull .
PROQF : The structure eguations (A.7.3) give
v — t5
B'(y} = [A(y), Ay)]
A'(y) = [Bly), a(y)1 .

The Ahlfors lemma gives the estimate
Ay) = o™ .

It follows from the first equation that B'(y) = 0(y-2} so that

l} - The second eguaticn then implies that B'(y) = O(y-z) i

Bly) = o(y~
Differentiating the first equation then yields B" (y) = O(y-B) , and doing
the same in the second eguation gives A"(y) = o(y 2) . Continuing this

process gives the lemma.
LEMMA : h(k’(y} = oly"™) for some fixed Y s

PROOF:  We write G(y) = G(v=Ty) , F(y) = E(+°T y) and identify the

Hodge frame manifold with the matrix group Gﬂ?‘ Then

(A.7.12) hiy) = g(y}g'lfy} .
Moreover, Efl{y} has a Laurent series and so
Fl & < ok
for some fixed o . If we can prove that
(3.7.13) ey ) = owfE) ,

then the lemma will follow by differentiating (A.7.12) and taking

Y=o+ g .

B+1

Since hiy) = o(1l) , Gly) = h(ylEly) is oly ) - Moreover, the

structure equation dg = weG and previous lemma give

Gyl = wlylGly)
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(k) ~K=-1

where wly) = Oly ) . (A.7.13) now results inductively by differen-

tiating this eguation. Q.E.D.
Comparing the first and third lemmas gives N £ 0 ; i.e.

The O.D.E. (A.7.11) has a regular singular point at y = = .

The solution matrix to any such equation has an expansion in powers of

v 12 ana {log ¥)*%"9? yhere ¢ is an eigenvalue of c; . Moreover,

the log terms can occur only if two eigenvalues of = differ by an inte-

ger. Since e, + téo = 0 , the eigenvalues of ¢, are purely imaginary,
and thus no log terms can appear. To insure that h{y) has a Laurent
series in y_1/2 some further argument is necessary. What must be proved
is that Sy = o .
For this, we consider the rational frame field F({z) , which we know

has a Laurent series in y'l/ 2 along the imaginary axis. Since h Llh'
and Adheuw, are both D(y_l) , the Maurer—Cartan matrix

©, = Adhuw_ — h~lan

. g
is o(y™h) . fThus bly) = [ .o bny‘(“+2’/2 . The integrability conditions

(A.7.3) give
Bk [ony bel = —2/°T [as; S3.1
o' Po 0r 9o

/T by, agl = /7T leg, a,]

w
o
I

t= t= t=
a, = /=T by, “agl + v=T [y, “q,] .
Under these conditions, a lemma on Lie algebras due to Deligne gives that
[e a,] = 0 = |[e b 1
0* %o 0’ [ i
Along the imaginary axis,
E'(y) = [ley + ap + Tag)y™l + .. 1k(y)
Oy 0 0 0 ¥ FLY .

The matrix a; + tEo has real eigenvalues while those of ¢, are purely

imaginary. By the commutation relation, the eigenvalues of cg tag t Tay

are real if, and only if, cy = 0 . But F(y) has a Laurent series in

y™32 , which is possible only if oy + 8y + tsﬂ has only real eigenvalues.

In conclusicn:
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h{y) has a convergent Laurent series | h Y—n/2
nz0 . where
At this point, we have proved that the geodesic frame field G(z) for -(n+2) /2 T - (m+
Aly) = 5 ALy (n+2})/ ; Bly) = I By (m+2) /2

he nilpotent orbit has the following properties: nz0 m>0

The integrability relations (A.7.2) give

Gz + x) = exp(xN)G(z) (exp (x¥) ¢ GBI: H
- 5o
G(V=T y) has a Laurent series in y +/2 —a'ly) = [Bly), "B(y}]
(A.7.14) - 2B'(y}) = [Aly), B(y)]
the Maurer-Cartan matrix Wy = b+ U+ t@ where ¢ = bly)dx ZtET?;} - i, tﬁ?;}].

and ¢ = a(yldz with al(y), b(y) having Laurent series in ydlfz
i 2 2 -1 When expanded out, these become
beginning with vy i

. . . . Rt2. = 7 (B, %
@ are now in a pesition to pursue further the heuristic reasoning given in ] n pra=n p’ q
a).
(a.7.15) (n+2)B = ) 2, Bl
ptg=n
m+2)%8_ = § (a, %
. c) USE OF THE REPRESENTATION THEORY OF éf,z . Let ¥(z) be the nil- \ n pta=n e’ q’ -
otent orbit and G(z) the geodesic frame with Maurer-Cartan/matrix w. .
1 =) For n =0 , we cobtain
zecording to what was proved in (b}, we may write
£
A, = [B,, B,l]
we = wy + i 0 0 e
2 =% ) (A.7.16) 2B0 = {Aof 50]
fhere wy contains the terms in w, invelving y_l and & is a Laurent - Ztﬁn = [a,, tﬁal §
2ries in y-1/2 beginning with y—3/2 The integrability condition f . ;
= = N This says exactly that the assignment
”Q = mg_a mg_ obviously implies that
1 4}
3 B h = + A
d”ﬁ = wg ~ LuE . o -1 | 0
recording to the discussion in (a), iy is thus the Maurer-Cartan matrix - _ [ 0 k S %
- B N 0
x a geodesic frame H{z) associated to an equivariant variation of Hodge ' o ¢
& 0 0
g ture =
ructu ) e = . th.
1 o

gives a representation of Aﬂa on gf(E) . Since

To see better what is going on, we write as usual (ef. (A.7.7) for

te
stivation of constants) EE. = 6yt ¢0 + wu where
dx dz
t- = _ oy = | = L2
{AJG = ¢+ P+ 0 g P AO.«’_I 37 .]Jn BO 7y
¢ = =Aly) /=1 ax , W = B(y) %; this is certainly consistent with I being induced by a representation
2

L4 8 SL2(]R} - GIR

To use this, we identify the manifold F(D) of Hodge frames with the
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group G by choosing a reference frame gﬂ . Thus Glz) = G(z)-FG where

R
G(z), Flz) € G]{’ and the Maurer-Cartan forms are given by the matrices

w, = dg«g!

[2]

. u

Along the imaginary axis we may explicitly describe H(y) = H(/=I y) by

H(y) = exp(% log ¥ C,)
c, = T (B, — “B,)
0 o [ A
(PROOF : The vector field 2y é%— is the infinitesimal generator of the
3

l-parameter subgroup

t
e a s s 5
] of SLz{ﬂu acting by linear fractional

0o et
transformations on # , Setting g = Ly=1)
yl,f2 o
V=T y = -1/2 =T
0 ¥
1 25 0
= exp| 3 log y g /-1,
which implies that
1 41 0
LTyl = exp 5 log y n, Iy
0 -1
= expl % log ¥y < Wire 2y g% 5]-20
= expl £-1oq ¥ Cp)+E )
3 07 %o ¢
We now set Ji{y) = H(y}_ls(y} so that
(A.7.17) ag.al - _wlag + hd.[{_l(LuG,‘.l .

By what was just proved, along the imaginary axis
(A.7.18) ~8lan = —c; & .

The strategy is to first prove that the right hand side of (A.7.17) is a

Laurent series in y*l beginning with y-2 . If this has been done, Jl(y)

is regular at y = = ., Then
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[}

pp (/T v}, ¥(/T y)) op (H(Y) Eg, Gly)¥y)

= op(Zys B 6iy) ¥y

= 0(1)
since J(y) € Gm is regular at y = = ., Choosing I, =¥, gives
o (BT y), ¥(ATy)) = o™ h
from which it follows that
pp(Blz), ¥(z)) = pplexp(a) I(V=T y), exp(xN)¥(/~I y))

= op(ZGFTy), YT 1))

= oy Ly

proving that the orbits are asymptotic.

To carry this out, we write W = ouwy t @ and observe that by

{A.7.18)

-1 1 =
— H "dH + Ad(exp - 5 log vy Co)m§ = 0 .

It follows that

ageg™t = Ad(exp — % log v CG)G
(A.7.19) = ] Ad(exp — % log v Colcnyh(n+2)f2 where
n>0
- ts
C;. T /=T (8, - B .

The matrix Cy = tEO is Hermitian and has integral eigenvalues, since

H(y) = expl( % log y CD} is a Laurent series in y_l/2 . Thus we may write
Sy, = Es cn,s whers
[cﬂ' Cn,sl - scn,s *

Expanding (A.7.19) out gives

= - 2
(A.7.20) S ¥ o g SdEeR) )

n,s
n>0,s

What we must show is that C =0 unless n + s is even and positive.

n,s
The idea for proving this is to use (A.7.16} to have an action of 422
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on g&(E) . We may decompose g{(E) into the well-known irreducible rep-

resentations, and decompose the coefficients A B tﬁn accordingly.

When this information is fed into (A.7.15), many of the pieces in the re-

sulting decomposition are forced to be zero.

There is, however, one further hitch. Referring to (A.7.19) and

(A.7.20), it is desirable to have an &82 action in which C, » rather
than AO » plays the role of h . For this we set
FTBy) - Bly)) = cly) = ] cyo(0t2)/2
nz0 n
T AG) _Bly) | B _ Ey) = | 5y (+2)/2
p) 2 2 sbg
- /T aly) _ 28(y) _ 2%B0p) _ - (n+2) /2
2 E = by = ngl} Py
The equations (A.7.14) then give -
—C'ly) = [D{y), E(y)]
(A.7.21) —2D' [y} = [Ciy), Diy)]
ZE'y) = [cly), BE(y)] .

In particular, {cy, By Byl give an 5[2 action on gf(E) with ¢,

- Moreover, the relations (A.7.15) are now
0 -1

satisfied with Cn, Dn' En replacing An' B

L 0
correspeonding to h = [

t=
n' Bn

It is well known that the irreducible éﬂz-modules V. are indexed by

non-negative integers r ., Moreover, vr decomposes under h  into
l-dimensional eigenspaces Vr g for s=r, r -2, ..., -r on which h
r
has eigenvalue s . Write
(a.7.22) al(E) = D g2z, s)
r,s
r
where gl{r} = @ gllr, s) are the copies of V, appearing in the
s=-r
above atz action and g&(r, s) is the stB eigenspace. (A.7.22) in-
duces
c. = J cEfrs
n s B
P r,s
B = E Dy
r,s
_ 3
By = ] BoAE
r,s

nder these conditions, the representation theory of 4&, applied to the

‘elatiens (A.7.15) involving the ¢ Dyr E's gives the following (lemma

n’

-48) in Schmid's paper):
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" r.s _ r,s _ T8 _ J
{i) If n<r or n —r 1is not even, Cn = Dn = bn [
-n n,-n _ n,2-n _ L0o,a _ _n,n-2 0 ;
{id) 22 = oM = po* = op E, E,
n n
-2,n- -2,n-4
= = N-2,2-n n-2,n-2 _ n-2,4-n _ n-2,n-2 _ .n 2,n 0.
(1ii) Cﬁ_;:“ ? - Ln~2’ = Dn—Z' 2 Cn-z’ En-2 n-2

Referring to (A.7.20),
ag.g~t I e
In>0
‘r, = _
(2) , so that by (i) the only non-zero Cn'

r,s ~(n+s+2) /2
n ¥

NMow C '% =0 unless.r = s
n

are of the form

oAr2t, 2p (-2t < 2p < 2t)
n

< -1 " : . -2 .
Thus dJ-J_l has a Laurent series in vy beginning with vy as desired.

Schmid's theorems on variation of Hodge structure now follow from the

preceding analysis together with further discussion about the representa-

tion theory of 422 . Here is the idea.

Fixing a reference Hodge structure E = & BBr9 |, the pie alge! ra

p+g=n
&4 = YT peC has a Hodge structure of weight zero:
‘ ' o = B TeT
"(' T PR r
: : o

] 2 L
where 125'"Y are those linear transformations taking Eo' into
-

Eg+r,q—r . It is visibly the case that
2 + UL
ne t 42,(C) 9

L %}'"1 + @71'1.

’ . " 0
is a morphism of Hodge structures whose image lies in -%-'

To give an application of this, we fix the reference frame

e = L (T, 1, 8, = L+ (-/T, 1) in F(H) . Setting
o Z b vz
l ‘
eft) = L (/T+¢e, 1), e® = 55 (V- + ¢, 1) , the logarithm L of
V2
the monodromy matrix is obvicusly defined by
[ er(t) feq

| s
Le' el g

relative to the fixed frame. Explicitly,

lI -v=1 /=T
b 7[-«':1‘ C‘r]
In diz(C} , L 1is conjugate by some element g € SLz{C} to the standard
nilpotent matrix
fo 1)
e, = . 0} ’
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which lies in 42371 . hen

N o= n.{L) = t1,,{ge+g_—l) = n(g)n,,(e_,_)n(g}_l

1,1

where n,,{e+} € ::df,- by the previous remarks. This implies the strong

monodromy theorem

Nm—l

Pursuing the matter further, one may completely analyze any represen-—

tation

Ne 1 AL, (R) » O

with the above properties, and this leads to proofs of Schmid's theorems

for the SLz—crhit E:H~+D. If the 5L and nilpotent orbits were

2
asymptotic like yue_Y as y *+ « , then the general results on mixed Hodge
structures and monodromy weight filtrations would easily follow. However,
since the approximation is only of the order y"]' s one must go back to the
vanishing coefficient relations (i})-(iii) above to carry out the proof.

For the details together with further applications we refer to Schmid's

paper, listed in the references to lecture 7.

NOTE : The approach to Schmid's theorems using Hodge frames and their
structure equations was worked out with J. Carlson. Schmid's procfs are
heavily based on Lie theory using Iwasawa decompositions and the like.
Although the flavor of this approach is perhaps different, the three essen-
tial steps (the lemma on the regular singular points of the eguation
1" + ch = 0 , the use of Deligne's lemma to show that ¢y = 0 , and the

:oefficient relations (i)-(iii}) are the same.
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SOME DIRECTICNS OF RECENT PROGRESS IN COMMUTATIVE ALGEERA

4 David Eisenbud®

ABSTRACT
A}
Three recently active areas of commutative algebra are discussed, and some results
from each are presented, The areas are

1) Projective modules over polyncmial rings,

2) The recent work on the existence of Cohen-Macaulay modules, and its
relation to the conjectures on the rigidity of Tor, and on multiplicities,

3) Ideals of low codimension; two applications of the structure theorem for
perfect ideals of cedimension 2,

This article contains the write-ups of thfee independent talks on areas of
commutative algebra which have shown what seems to me striking recent progress, They
are alsc areas which ought to go on developing -- nearly all the main problems are still
unsclved,

I have not tried to merge the three talks; esch even retains its owm references,

I. THE SERRE FROBLEM ON FROJECTIVE MODULES

The problem,posed by Serre in 195k [4],is: Ilet k be a field; i1s every vrojective
k[xl,_ __,xn]-module free? Eguivalently, is every algebraic vector-bundle en affine
n-space over k free?

Progress on this question was smooth, if slow, wntil the early sixties, thanks to
the work of Serre, Seshadri, and Bass. By that time the answer to the question itself
was known only for n < 2 ("Seshadri's theorem" - the answer is "yes" in this casze); but
there was a wealth of subsidiary information on stable freeness and cancellation, which
showed, for instance, that projective k{xi,...,xn]—mcdules of rank > n+l are free,

Though many pecple contlnued to work on Serre's problem, little direct progress was

made for the next ten years, Then, in 1973, Murthy-Towber, Swan, Roitman, and
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