Corso di Introduzione alla Topologia Algebrica - a.a. 2007-08

Prova scritta del 16.6.2008

- 1. Sia X una superficie topologica connessa, compatta e orientabile di genere g>0, e sia m un intero positivo.
 - (a) Mostrare che esiste un rivestimento di Galois $\alpha: Y \to X$ con gruppo $\operatorname{Aut}(Y/X)$ isomorfo a $(\mathbb{Z}/m\mathbb{Z})^{2g}$.
 - (b) Mostrare che, se $\beta: Z \to X$ è un altro rivestimento di Galois con gruppo $\operatorname{Aut}(Z/X)$ isomorfo a $(\mathbb{Z}/m\mathbb{Z})^{2g}$, esiste un isomorfismo di rivestimenti tra Z e Y.
- 2. Nell' \mathbb{R}^3 euclideo con coordinate ortogonali xyz sia Y il toro "pieno" tracciato facendo ruotare intorno all'asse delle z il disco chiuso di centro (1,0,0) e raggio 1/2 giacente nel piano di equazione y=0. Poniamo $T=\partial Y$. Sia X lo spazio topologico ottenuto da Y identificando (x,y,z) a (-x,-y,z) per ogni punto (x,y,z) di T. Calcolare i gruppi di omologia intera e a coefficienti in $\mathbb{Z}/2\mathbb{Z}$ di X.

Soluzioni

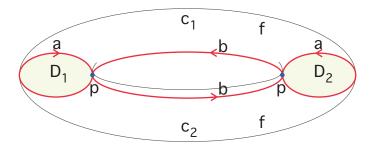
- 1. (a) Consideriamo l'omomorfismo suriettivo $\pi_1(X, x_0) \to (\mathbb{Z}/m\mathbb{Z})^{2g}$ ottenuto componendo l'omomorfismo $\pi_1(X, x_0) \to H_1(X, \mathbb{Z}) \cong \mathbb{Z}^{2g}$ con $\mathbb{Z}^{2g} \to (\mathbb{Z}/m\mathbb{Z})^{2g}$. Il nucleo di questo omomorfismo è un sottogruppo normale N di $\pi_1(X, x_0)$, e $Y = \widetilde{X}/N$ è il rivestimento cercato, dove \widetilde{X} è il rivestimento universale di X.
 - (b) Siano z_0 e x_0 punti base in Z e X tali che $\beta(z_0) = x_0$. A queste scelte corrisponde una identificazione tra $\operatorname{Aut}(Z/X)$ e $\pi_1(X,x_0)/\beta_*\pi_1(Z,z_0)$, e quindi un omomorfismo suriettivo $\varphi:\pi_1(X,x_0)\to (\mathbb{Z}/m\mathbb{Z})^{2g}$ con nucleo $\pi_1(Z,z_0)$. Dato che $(\mathbb{Z}/m\mathbb{Z})^{2g}$ è abeliano, il nucleo di φ contiene tutti i commutatori; dato che ogni suo elemento ha per ordine un divisore di m, il nucleo di φ contiene tutti gli elementi di $\pi_1(X,x_0)$ che sono m-esime potenze. Sia K il sottogruppo normale di $\pi_1(X,x_0)$ generato da commutatori ed m-esime potenze. Quello che si è mostrato è che ker $\varphi \supset K$. Vogliamo mostrare che questa inclusione è una uguaglianza, e quindi che il nucleo di φ è indipendente dal rivestimento scelto. Il teorema di omomorfismo dà un omomorfismo suriettivo $\xi:\pi_1(X,x_0)/K\to (\mathbb{Z}/m\mathbb{Z})^{2g}$. D'altra parte, ponendo $\Pi=\pi_1(X,x_0)$, si ha che

$$\Pi/K \cong (\Pi/[\Pi,\Pi])/(K/[\Pi,\Pi]) \cong H_1(X,\mathbb{Z})/mH_1(X,\mathbb{Z}) \cong (\mathbb{Z}/m\mathbb{Z})^{2g}$$

Dato che ξ è un omomorfismo suriettivo tra gruppi finiti con lo stesso numero di elementi, è un isomorfismo. Ne segue che $K = \ker \varphi$, come annunciato. Una conseguenza di quanto dimostrato è che l'immagine di $\pi_1(Z, z_0)$ in $\pi_1(X, x_0)$ coincide con quella di $\pi_1(Y, y_0)$, dove y_0 è un punto di Y con $\alpha(y_0) = x_0$. Ma allora $Y \to X$ e $Z \to X$ sono isomorfi per il teorema di classificazione dei rivestimenti.

2. Consideriamo la decomposizione cellulare di X descritta dal disegno qui sotto. Il disegno è relativo a Y, e la decomposizione si ottiene dopo il passaggio al quoziente. La decomposizione consta di una 0-cella p (in blu), due 1-celle a e b (in rosso), tre 2-celle D_1 , D_2 (in beige chiaro) e

f, e due 3-celle c_1 e c_2 . Quindi $C_3(X,R) = R^2$, $C_2(X,R) = R^3$, $C_1(X,R) = R^2$, $C_0(X,R) = R$ per ogni anello commutativo R.



I bordi di queste celle, opportunamente orientate, sono:

$$\partial c_1 = f + D_1 - D_2$$

$$\partial c_2 = f + D_2 - D_1$$

$$\partial D_1 = \partial D_2 = a$$

$$\partial f = 0$$

$$\partial a = \partial b = 0$$

Nel caso in cui $R = \mathbb{Z}$ ne segue che ∂_3 è iniettiva e ha immagine generata da $f + D_1 - D_2$ e $2(D_1 - D_2)$, che ∂_2 ha nucleo generato da f e da $D_1 - D_2$ e immagine generata da b, mentre ∂_1 è l'omomorfismo nullo. Dunque, indicando con [?] la classe del ciclo ?,

$$H_0(X,\mathbb{Z}) = \mathbb{Z}[p] \cong \mathbb{Z}$$

$$H_1(X,\mathbb{Z}) = \mathbb{Z}[a] \cong \mathbb{Z}$$

$$H_2(X,\mathbb{Z}) = \frac{\mathbb{Z}[D_1 - D_2]}{2\mathbb{Z}[D_1 - D_2]} \cong \mathbb{Z}/2\mathbb{Z}$$

$$H_3(X,\mathbb{Z}) = \{0\}$$

Nel caso $R = \mathbb{Z}/2\mathbb{Z}$, la sola differenza è che ∂_3 ha nucleo generato da $c_1 + c_2$ e immagine generata da $f + D_1 - D_2$. Ne segue che

$$H_0(X, \mathbb{Z}/2\mathbb{Z}) = \frac{\mathbb{Z}}{2\mathbb{Z}}[p] \cong \mathbb{Z}/2\mathbb{Z}$$

$$H_1(X, \mathbb{Z}/2\mathbb{Z}) = \frac{\mathbb{Z}}{2\mathbb{Z}}[a] \cong \mathbb{Z}/2\mathbb{Z}$$

$$H_2(X, \mathbb{Z}/2\mathbb{Z}) = \frac{\mathbb{Z}}{2\mathbb{Z}}[f] \cong \mathbb{Z}/2\mathbb{Z}$$

$$H_3(X, \mathbb{Z}/2\mathbb{Z}) = \frac{\mathbb{Z}}{2\mathbb{Z}}[c_1] \cong \mathbb{Z}/2\mathbb{Z}$$