Corso di Algebra 2 – a.a. 2012-2013

Prova scritta del 24.9.2013

- 1. Poniamo $\alpha = \sqrt{4 + 2\sqrt{3}}$ e $\beta = \sqrt{3 + 2\sqrt{3}}$.
 - (a) Calcolare il grado $[\mathbb{Q}[\alpha]:\mathbb{Q}]$ e il gruppo di Galois $Gal(\mathbb{Q}[\alpha]/\mathbb{Q})$; decidere se $\mathbb{Q}[\alpha]$ è o no una estensione galoisiana di \mathbb{Q} .
 - (b) Stesse domande per $\mathbb{Q}[\beta]$.
- 2. Sia P(X) il polinomio $X^4 + 2X^2 + 2$ sul campo $K = \mathbb{F}_p$, dove p è un numero primo. Rispondere alle seguenti domande per p = 3 e per p = 7:
 - (a) Dire se P è irriducibile su K
 - (b) Calcolare il gruppo di Galois di P su K
- 3. Sia p un numero primo. Ricordiamo che, a meno di isomorfismo, esistono esattamente due gruppi di ordine p^2 , il gruppo ciclico C_{p^2} e il prodotto $C_p \times C_p$ di due gruppi ciclici di ordine p. Posto p=5 ndichiamo con H il primo di questi gruppi e con K il secondo. Sia m un intero primo con p. Indichiamo con p0 un gruppo di ordine p2.
 - (a) Esistono un intero m e un gruppo G che abbia sia H che K come sottogruppi?
 - (b) Posto m = 3, esistono dei gruppi G non abeliani che contengono H? E che contengono K?
 - (c) Posto m=13, esistono dei gruppi G non abeliani che contengono H? E che contengono K?

Solutioni

- 1. (a) Notiamo che $\sqrt{3} = (\alpha^2 4)/2$ e quindi $\sqrt{3} \in \mathbb{Q}[\alpha]$. Inoltre $(1 + \sqrt{3})^2 = 4 + 2\sqrt{3}$. Quindi $\alpha = 1 + \sqrt{3} \in \mathbb{Q}[\sqrt{3}]$. In conclusione $\mathbb{Q}[\alpha] = \mathbb{Q}[\sqrt{3}]$. Ne segue che $[\mathbb{Q}[\alpha]:\mathbb{Q}] = 2$, che $Gal(\mathbb{Q}[\alpha]/\mathbb{Q})$ è ciclico di ordine 2 e dunque che $\mathbb{Q}[\alpha]$ è di Galois su \mathbb{Q} .
 - (b) Dato che $\sqrt{3} = (\beta^2 3)/2$, $\mathbb{Q}[\sqrt{3}] \subset \mathbb{Q}[\beta]$. Però $\beta \notin \mathbb{Q}[\sqrt{3}]$. Infatti supponiamo che $3 + 2\sqrt{3}$ abbia una radice quadrata $\gamma \in \mathbb{Q}[\sqrt{3}]$. Si può scrivere in un unico modo $\gamma = x + y\sqrt{3}$, dove x, y sono numeri razionali. Allora

$$3 + 2\sqrt{3} = \gamma^2 = x^2 + 3y^2 + 2xy\sqrt{3}$$

Ne segue che $x^2 + 3y^2 = 3$ e che xy = 1. La seconda di queste relazioni dice che $y = x^{-1}$; sostituendo nella prima e moltiplicando per x^2 si ricava che $x^4 - 3x^2 + 3 = 0$. Se ne deduce che

$$x^2 = \frac{3 \pm \sqrt{9 - 12}}{2}$$

Quindi x^2 non è razionale (e nemmeno reale), contro l'ipotesi. In definitiva $\left[\mathbb{Q}[\beta]:\mathbb{Q}[\sqrt{3}]\right]=2$, e quindi $\left[\mathbb{Q}[\beta]:\mathbb{Q}\right]=\left[\mathbb{Q}[\beta]:\mathbb{Q}[\sqrt{3}]\right]\left[\mathbb{Q}[\sqrt{3}]:\mathbb{Q}\right]=4$.

Dato che $\mathbb{Q}[\sqrt{3}]$ è una estensione normale di \mathbb{Q} , se $\mathbb{Q}[\beta]$ fosse di Galois su \mathbb{Q} ogni elemento di $Gal(\mathbb{Q}[\sqrt{3}]/\mathbb{Q})$ si estenderebbe a un elemento di $Gal(\mathbb{Q}[\beta]/\mathbb{Q})$. Il solo automorfismo

non banale di $\mathbb{Q}[\sqrt{3}]$ è l'automorfismo φ dato da $\varphi(x+y\sqrt{3})=x-y\sqrt{3}$. Se esistesse un automorfismo η di $\mathbb{Q}[\beta]$ che estende φ dovrebbe valere

$$\eta(\beta)^2 = \eta(\beta^2) = \eta(3 + 2\sqrt{3}) = \varphi(3 + 2\sqrt{3}) = 3 - 2\sqrt{3}$$

Dato che $3-2\sqrt{3}<0$, $\eta(\beta)$ non può essere reale. Questo è assurdo dato che $\mathbb{Q}[\beta]\subset\mathbb{R}$. Quindi $\mathbb{Q}[\beta]$ non è una estensione di Galois di \mathbb{Q} , e $Gal(\mathbb{Q}[\beta]/\mathbb{Q})=Gal(\mathbb{Q}[\beta]/\mathbb{Q}[\sqrt{3}])$. Quest'ultimo gruppo è il gruppo ciclico di ordine 2 generato dall'automorfismo ξ definito da $\xi(u+v\beta)=u-v\beta$, dove $u,v\in\mathbb{Q}[\sqrt{3}]$.

2. (a) Se P ha radici in K lo stesso è vero per $Q = X^2 + 2X + 2$. Questo accade se e solo se il discriminante di Q è un quadrato in K o anche, dato che il discriminante vale $4-8=-4=-2^2$, se e solo se -1 è un quadrato in K. Si verifica direttamente che -1 non è un quadrato né modulo 3 né modulo 7. Questo ragionamento mostra anche che non è possibile una fattorizzazione $P=(X^2-h)(X^2-k)$ dato che in questo caso h e k sarebbero radici di Q. Resta la possibilità che

$$P = (X^2 + aX + b)(X^2 + cX + d) = X^4 + (a+c)X^3 + (ac+b+d)X^2 + (ad+bc)X + bd (1)$$

con $a \neq 0$. Se questo accade deve essere c = -a e di conseguenza ad - ab = 0, cioè, dato che a non è nullo, d = b. Ma allora $2 = b^2$. Ora 2 non è un quadrato modulo 3, e quindi la fattorizzazione (1) è impossibile quando p = 3. In conclusione P è irriducibile su \mathbb{F}_3 . Invece per p = 7 si ha che $2 \equiv 3^2 \equiv (-3)^2 \mod p$. Allora la (1) dà $2 = 2b - a^2$ che in quanto equazione in a ha soluzioni $a = \pm 2$ se b = 3 (e nessuna soluzione se b = -3). In definitiva la decomposizione di P in fattori irriducibili modulo 7 è

$$P = (X^2 + 2X + 3)(X^2 - 2X + 3)$$
(2)

- (b) Supponiamo che p=3, sia α una radice di P e poniamo $F=K[\alpha]$. Segue da (a) che [F:K]=4. Inoltre F è una estensione di Galois di K e quindi coincide con il campo di spezzamento di P su K. Ne segue che il gruppo di Galois di P è ciclico di ordine 4, generato dall'omomorfismo di Frobenius.
 - Supponiamo invece che p=7. Il discriminante di ognuno dei due fattori di (2) è $\Delta=4-4\cdot 3=-1$. Quindi i due fattori si spezzano completamente su $L=K[\beta]$, dove β è una radice quadrata di -1. D'altra parte [L:K]=2 e quindi in questo caso il gruppo di Galois di P su K è ciclico di ordine 2, sempre generato dall'omomorfismo di Frobenius.
- 3. (a) No. Infatti H e K sarebbero due 5-sottogruppi di Sylow e perciò dovrebbero essere coniugati, e quindi isomorfi.
 - (b) Il numero dei 5-sottogruppi di Sylow è congruo a 1 modulo 5 e divide $3^2=9$; l'unica possibilità è che valga 1, cioè che vi sia un unico 5-sottogruppo di Sylow, normale, che indichiamo con A. Indichiamo inoltre con B un 3-sottogruppo di Sylow. Il gruppo G è isomorfo al prodotto semidiretto $A \rtimes_{\varphi} B$, dove φ è un omomorfismo $B \to \operatorname{Aut}(A)$. Questo prodotto è non abeliano se e solo se φ non è l'omomorfismo banale.
 - Supponiamo dapprima che A sia isomorfo a H, cioè al gruppo ciclico $\mathbb{Z}/(25)$. Si sa che il gruppo degli automorfismi di questo gruppo si identifica al gruppo moltiplicativo $(\mathbb{Z}/(25))^*$, che ha ordine 5(5-1)=20. Dato che 20 è primo con 9 l'omomorfismo φ

è necessariamente banale. Non esistono quindi gruppi non abeliani di ordine 5^23^2 che contengano H come sottogruppo.

Supponiamo invece che A sia isomorfo a K, cioè al prodotto $\mathbb{Z}/(5) \times \mathbb{Z}/(5)$. Il gruppo degli automorfismi di questo gruppo si identifica al gruppo delle matrici invertibili 2×2 a coefficienti nel campo $\mathbb{F}_5 = \mathbb{Z}/(5)$. Questo gruppo contiene elementi di ordine 3, ad esempio la matrice

$$\left(\begin{array}{cc} -1 & 1 \\ -1 & 0 \end{array}\right)$$

e quindi sottogruppi di ordine 3, cioè isomorfi a $\mathbb{Z}/(3)$. D'altra parte B è isomorfo a $\mathbb{Z}/(9)$ o a $\mathbb{Z}/(3) \times \mathbb{Z}/(3)$. In ciascuno di questi due casi vi è un omomorfismo suriettivo $B \to \mathbb{Z}/(3)$, nel primo caso il passaggio al quoziente $\mathbb{Z}/(9) \to (\mathbb{Z}/(9))/((3)/(9)) \cong \mathbb{Z}/(3)$, nel secondo la proiezione su uno dei fattori. Quindi esiste sempre un omomorfismo φ non banale. In altre parole vi è sempre un gruppo non abeliano di ordine 5^23^2 che ha K come sottogruppo.

(c) Il numero dei 5-sottogruppi di Sylow è congruo a 1 modulo 5 e divide $13^2 = 169$; l'unica possibilità è che valga 1, cioè che vi sia un unico 5-sottogruppo di Sylow, normale. Il numero dei 13-sottogruppi di Sylow è congruo a 1 modulo 13 e divide $5^2 = 15$; l'unica possibilità è che valga 1, cioè che vi sia un unico 13-sottogruppo di Sylow, normale. In questo caso dunque G contiene solo due sottogruppi di Sylow, A di ordine 25 e B di ordine 169. Inoltre A e B sono normali. Dato che hanno ordini primi fra loro la loro intersezione è ridotta all'elemento neutro. Ne segue che G è necessariamente isomorfo al prodotto diretto $A \times B$, ed è quindi abeliano dato che sia A che B sono gruppi di ordine p^2 e quindi abeliani.