Corso di Algebra 1 – a.a. 2011-2012

Prova scritta del 23.2.2012

- 1. Sia G un gruppo. Poniamo $\Delta = \{(g,g) : g \in G\}$.
 - (a) Mostrare che Δ è un sottogruppo di $G \times G$.
 - (b) Mostrare che Δ è un sottogruppo normale di $G \times G$ se e solo se G è abeliano.
- 2. Dimostrare che i gruppi $D_4 \times \mathbb{Z}/3\mathbb{Z}$ e $D_3 \times \mathbb{Z}/4\mathbb{Z}$ non sono isomorfi.
- 3. Sia A un anello commutativo e $f: A \to \mathbb{Q}$ un omomorfismo di anelli.
 - (a) Dimostrare che \mathbb{Z} è contenuto nell'immagine di f.
 - (b) Dimostrare che il nucleo di f è un ideale primo, e che è massimale se e solo se f è suriettivo.
- 4. Sia K un campo e sia L un campo di spezzamento del polinomio $P(X) = X^3 + X^2 + 2$ su K. Calcolare il grado [L:K] nei seguenti casi:
 - (a) $K = \mathbb{Z}/(7)$
 - (b) $K = \mathbb{Q}$ (suggerimento: osservare che in questo caso P(X) ha una sola radice reale)

Solutioni

- 1. (a) Δ non è vuoto perché contiene (1,1). Δ è chiuso rispetto al prodotto perché $(g,g)(h,h) = (gh,gh) \in \Delta$. Infine Δ è chiuso rispetto all'operazione di inversa perché $(g,g)^{-1} = (g^{-1},g^{-1}) \in \Delta$.
 - (b) Se Δ è normale $(h,k)(g,g)(h,k)^{-1} \in \Delta$ per ogni scelta di $g,h,k \in G$. In particolare, per h=1, se ne deduce che $(g,kgk^{-1}) \in \Delta$, cioè che $g=kgk^{-1}$, per ogni scelta di $g,k \in G$. In altre parole, G è abeliano. Viceversa, se G è abeliano, $(h,k)(g,g)(h,k)^{-1} = (hgh^{-1},kgk^{-1}=(g,g))$ per ogni scelta di $g,h,k \in G$ e quindi Δ è normale.
- 2. Gli elementi di ordine 6 di $D_3 \times \mathbb{Z}/4\mathbb{Z}$ sono quelli della forma (g,h), dove g ha ordine 3 e h ha ordine 2. Le possibilità per g sono due e quelle per h una sola. Dunque $D_3 \times \mathbb{Z}/4\mathbb{Z}$ contiene esattamente due elementi di ordine 6. Invece gli elementi di ordine 6 di $D_4 \times \mathbb{Z}/3\mathbb{Z}$ sono quelli della forma (g,h), dove g ha ordine 2 e h ha ordine 3. Le possibilità per g sono 5 e quelle per h due. Dunque $D_4 \times \mathbb{Z}/3\mathbb{Z}$ contiene 10 elementi di ordine 6, e non è quindi isomorfo a $D_3 \times \mathbb{Z}/4\mathbb{Z}$.
- 3. (a) f(1) = 1, quindi $f(n \cdot 1) = n \cdot f(1) = n$. Dunque $f(A) \supset \mathbb{Z}$.
 - (b) Per i teoremi di isomorfismo f(A) è isomorfo a $A/\ker(f)$. Inoltre f(A) è un sottoanello di \mathbb{Q} , e quindi è un dominio. Ne segue che $\ker(f)$ è primo. Se f è suriettiva $A/\ker(f) \simeq \mathbb{Q}$ è un campo e quindi $\ker(f)$ è massimale. Viceversa se $\ker(f)$ è massimale $f(A) \simeq A/\ker(f)$ è un sottocampo di \mathbb{Q} . Dato che $\mathbb{Z} \subset f(A)$, quest'ultimo contiene tutte le frazioni m/n, dove $m, n \in \mathbb{Z}$, $n \neq 0$, cioè contiene \mathbb{Q} .

- 4. (a) Il numero 2 è una radice di P modulo 7, e la regola di Ruffini dà $P(X) = (X-2)(X^2 + 4X 1)$ in K[X]. Dunque L è un campo di spezzamento di $X^2 + 4X 1$. Dato che questo polinomio non ha radici in K e ha grado 2, è irriducibile. Se α è una sua radice, $X^2 + 4X 1$ si fattorizza completamente in $K[\alpha]$, ed è il polinomio minimo di α su K. Dunque $L = K[\alpha]$ e $[L:K] = \deg(X^2 + 4X 1) = 2$.
 - (b) Le radici razionali di P, se esistono, sono intere e dividono 2. Però ± 1 e ± 2 non sono radici di P, che è quindi irriducibile in $\mathbb{Q}[X]$. La derivata di P(X) vale $3X^2 + 2X = X(3X+2)$. Ne segue che P(X), visto come funzione reale di variabile reale, ha un massimo relativo per X = -2/3 e un minimo relativo per X = 0. Dato che P(0) = 2 > 0, il polinomio P(X) ha una sola radice reale α , il cui polinomio minimo su \mathbb{Q} è P. D'altra parte $P(0) \neq 0 \neq P(-2/3)$, e perciò P ha tre radici distinte, α appunto e altre due radici complesse coniugate β e $\overline{\beta}$. Dunque $L = \mathbb{Q}[\alpha, \beta, \overline{\beta}] = \mathbb{Q}[\alpha, \beta]$ e

$$[L:K] = \left[\mathbb{Q}[\alpha,\beta]:\mathbb{Q}[\alpha]\right]\left[\mathbb{Q}[\alpha]:\mathbb{Q}\right] = 2\cdot 3 = 6$$