### Algebra 2

Alberto Canonaco alberto.canonaco@unipv.it

Università di Pavia Corso di Laurea in Matematica

Anno Accademico 2019/2020 Lezione del 20-05-2020

### Il teorema fondamentale

Ricordiamo che, fissato un campo L,

$$\{K : K \subseteq L \text{ di Galois}\} \rightarrow \{G : G < G(L) \text{ finito}\} \quad K \mapsto G_K(L)$$

$$\{G: G < G(L) \text{ finito}\} \rightarrow \{K: K \subseteq L \text{ di Galois}\} \quad G \mapsto L^G$$

sono funzioni biunivoche una l'inversa dell'altra e che invertono le inclusioni. Inoltre  $K \subseteq L$  di Galois  $\implies \#G_K(L) = [L : K]$ .

Teorema fondamentale della teoria di Galois

 $K \subseteq L$  estensione di Galois,  $G := G_K(L)$ . Allora

$$\{F: K \subseteq F \subseteq L \text{ sottocampo}\} \to \{H: H < G\} \quad F \mapsto G_F(L)$$
  
 $\{H: H < G\} \to \{F: K \subseteq F \subseteq L \text{ sottocampo}\} \quad H \mapsto L^H$ 

sono funzioni biunivoche una l'inversa dell'altra e che invertono le inclusioni. Inoltre, se  $K \subseteq F \subseteq L$  è un sottocampo, allora

- 1.  $F \subseteq L$  di Galois e  $\#G_F(L) = [L : F]$ ;
- 2.  $K \subseteq F$  normale  $\iff H := G_F(L) \triangleleft G \implies G_K(F) \cong G/H$ .



### Dimostrazione

- ▶ La prima parte e il punto 1 seguono da quanto già visto, tenendo conto che  $K \subseteq F \subseteq L$  sottocampo  $\implies F \subseteq L$  di Galois (perché  $K \subseteq L$  di Galois).
- ▶ Per dimostrare il punto 2, ricordiamo che  $K \subseteq F$  è normale (e quindi di Galois)  $\iff F$  è G-stabile.
- ▶  $K \subseteq F$  normale  $\implies f : G \to G_K(F)$ ,  $\sigma \mapsto \sigma|_F$  ben definita. Chiaramente f omomorfismo e  $\ker(f) = H$ , per cui  $H \triangleleft G$  e  $G/H \cong \operatorname{im}(f)$  per il primo teorema di isomorfismo. Inoltre

$$\#\operatorname{im}(f) = \#(G/H) = \frac{\#G}{\#H} = \frac{\#[L:K]}{\#[L:F]} = [F:K] = \#G_K(F),$$

 $\implies f$  suriettiva e  $G_K(F) \cong G/H$ .

►  $H \triangleleft G \implies \sigma(\alpha) \in F \ \forall \ \sigma \in G \ e \ \forall \ \alpha \in F \ (quindi \ K \subseteq F \ normale): \ \sigma(\alpha) \in F = L^H \iff \tau(\sigma(\alpha)) = \sigma(\alpha) \ \forall \ \tau \in H \ \iff (\sigma^{-1}\tau\sigma)(\alpha) = \alpha \ \forall \ \tau \in H, \ vero \ perché \ \sigma^{-1}\tau\sigma \in H \ e \ \alpha \in F = L^H.$ 

### Esempio

 $K := \mathbb{Q} \text{ e } L := \mathbb{Q}(\sqrt[3]{2}, \omega) \text{ con } 1 \neq \omega \in \mathbb{C} \text{ tale che } \omega^3 = 1.$ 

- $ightharpoonup \mathbb{Q} \subset L$  di Galois (è campo di spezzamento di  $X^3-2$ ) e  $G := G_{\mathbb{Q}}(L) = G(L)$  tale che  $\#G = [L : \mathbb{Q}] = 6$ .
- ightharpoons  $\mathbb{Q}\subset\mathbb{Q}(\sqrt[3]{2})$  non normale  $\implies \mathrm{G}_{\mathbb{Q}(\sqrt[3]{2})}(L)< G$  non normale  $\implies G \cong S_3$
- ▶  $\exists ! H \triangleleft G$  non banale (di ordine 3)  $\Longrightarrow [L : L^H] = 3, \mathbb{Q} \subset L^H$ normale e  $G_{\mathbb{O}}(L^H) \cong G/H \cong C_2 \implies L^H = \mathbb{O}(\omega)$ .
- G ha anche 3 sottogruppi non normali non banali (di ordine 2), che corrispondono a  $\mathbb{Q}(\omega^i\sqrt[3]{2})$  per i=0,1,2.

#### Osservazione

- $ightharpoonup K \subseteq L$  di Galois  $\implies \#\{F : K \subseteq F \subseteq L \text{ sottocampo}\} < \infty$ perché coincide con  $\#\{H: H < G_K(L)\}$ .
- $\blacktriangleright$   $K \subseteq L$  finita  $\implies \#G_K(L) \le [L:K] < \infty \implies L^{G_K(L)} \subseteq L$ di Galois e  $\#G_K(L) = [L : L^{G_K(L)}] \mid [L : K]$  (perché  $K \subset L^{G_K(L)} \subset L$ , quindi  $[L:K] = [L:L^{G_K(L)}][L^{G_K(L)}:K]$ ).

## Gruppi di Galois di estensioni di campi finiti

p primo, n > 0.

- ▶  $\mathbb{F}_{p^n} \subseteq L$  estensione tale che  $[L : \mathbb{F}_{p^n}] = d \implies L \cong \mathbb{F}_{p^n}^d$  come  $\mathbb{F}_{p^n}$ -spazio vettoriale  $\implies \#L = (p^n)^d = p^{nd} \implies L \cong \mathbb{F}_{p^{nd}}$ .
- ▶  $d > 0 \implies \mathbb{F}_p \subseteq \mathbb{F}_{p^{nd}}$  di Galois con  $G := G_{\mathbb{F}_p}(\mathbb{F}_{p^{nd}}) = \langle \mathcal{F} \rangle \cong C_{nd} \implies H := \langle \mathcal{F}^n \rangle \triangleleft G$  e  $F := \mathbb{F}_{p^{nd}}^H \subseteq \mathbb{F}_{p^{nd}}$  di Galois con  $G_F(\mathbb{F}_{p^{nd}}) = H \cong C_d$ ,  $G_{\mathbb{F}_p}(F) \cong G/H \cong C_n \implies F \cong \mathbb{F}_{p^n}$ .
- ▶ Dunque  $\exists$  estensione  $\mathbb{F}_{p^n} \subseteq \mathbb{F}_{p^{n'}} \iff n \mid n'$ , e in questo caso l'estensione è di Galois con gruppo di Galois  $\langle \mathcal{F}^n \rangle \cong C_{n'/n}$ .

#### Osservazione

Fissata una chiusura algebrica  $\mathbb{F}_p\subseteq\overline{\mathbb{F}}_p$  di  $\mathbb{F}_p$ , l'unico campo di spezzamento di  $X^{p^n}-X$  su  $\mathbb{F}_p$  contenuto in  $\overline{\mathbb{F}}_p$  è  $\mathbb{F}_{p^n}=\{\alpha\in\overline{\mathbb{F}}_p:\alpha^{p^n}=\alpha\}$  (e in questo caso  $\mathbb{F}_{p^n}\subseteq\mathbb{F}_{p^{n'}}$  sottocampo se  $n\mid n'$ ). Inoltre  $\overline{\mathbb{F}}_p=\bigcup_{n>0}\mathbb{F}_{p^n}$ :  $\alpha\in\overline{\mathbb{F}}_p\Longrightarrow n:=[\mathbb{F}_p(\alpha):\mathbb{F}_p]<\infty\Longrightarrow\mathbb{F}_p(\alpha)\cong\mathbb{F}_{p^n}$ 

# Gruppi finiti come gruppi di Galois

G gruppo finito  $\implies \exists K \subseteq L$  di Galois tale che  $G_K(L) \cong G$ :

- ▶ basta trovare L campo e G' < G(L) tale che  $G' \cong G$  (perché poi  $K := L^{G'} \subseteq L$  di Galois con  $G_K(L) = G' \cong G$ );
- ▶ per il teorema di Cayley basta dimostrare che  $\forall$   $n > 0 \exists L$  campo e  $\exists$   $G_n < G(L)$  tale che  $G_n \cong S_n$ ;
- ▶ F campo,  $L := F(X_1, ..., X_n)$  e  $G_n := \{ \tilde{\sigma} \in G_F(L) : \sigma \in S_n \}$  con  $\tilde{\sigma}$  tale che  $\tilde{\sigma}(X_i) = X_{\sigma(i)} \ \forall i = 1, ..., n$ .

Il problema di Galois inverso chiede, fissato un campo K, per quali gruppi finiti G esiste  $K \subseteq L$  di Galois tale che  $G_K(L) \cong G$ .

- ▶ K algebricamente chiuso  $\implies G \cong C_1$  (perché K non ha estensioni algebriche non banali).
- ▶  $K = \mathbb{R} \implies G \cong C_1$  o  $C_2$  (perché  $\mathbb{R} \subseteq K$  algebrica  $\implies \exists$   $\mathbb{R}$ -omomorfismo  $K \to \mathbb{C}$ , dato che  $\mathbb{R} \subset \mathbb{C}$  è una chiusura algebrica di  $\mathbb{R}$ ).
- ightharpoonup K finito  $\implies$   $G \cong C_n$  con n > 0.
- ▶ II problema è aperto per  $K = \mathbb{Q}$ .



## Il gruppo di Galois di un polinomio

#### **Definizione**

K campo,  $0 \neq f \in K[X]$ . Il gruppo di Galois di f su K (ben definito a meno di isomorfismo) è  $G_K(f) := G_K(L)$  con  $K \subseteq L$  campo di spezzamento di f.

#### Osservazione

 $K \subseteq L$  campo di spezzamento di  $f \in K[X] \setminus \{0\}$ ,  $G := G_K(f)$ .

- ▶ K perfetto  $\implies K \subseteq L$  di Galois  $\implies \#G = [L : K]$ .
- $ightharpoonup K = L \implies G = \{1\}$ ; vale  $\iff$  se K è perfetto.
- ▶  $R := \{\alpha \in L : f(\alpha) = 0\} \implies n := \#R \le \deg(f).$   $\sigma \in G, \ \alpha \in R \implies \sigma(\alpha) \in R$ , quindi si ottiene una funzione  $G \to S(R) \cong S_n, \ \sigma \mapsto \sigma|_R$ , che è un omomorfismo iniettivo (perché L = K(R))  $\implies G \cong G' < S_n$  ( $\implies \#G \mid n!$ , e dunque  $[L : K] \mid n!$  se  $K \subseteq L$  di Galois).
- ▶ *K* perfetto, *f* irriducibile  $\implies$  deg(*f*) = *n* e *n* | #*G* | *n*!.

### Esempi

K perfetto,  $f \in K[X]$  irriducibile, n := deg(f),  $G := G_K(f)$ .

- ▶  $n = 3 \implies 3 \mid \#G \mid 3! \implies \#G = 3 \circ 6 \implies G \cong C_3 \circ S_3$  (perché  $G \cong G' < S_3$ ).

$$f=X^3-2 \implies G\cong S_3 \text{ se } K=\mathbb{Q}, \ G\cong C_3 \text{ se } K=\mathbb{Q}(\omega).$$

 $\triangleright$   $n = 4 \implies 4 \mid \#G \mid 4! \implies \#G = 4, 8, 12 o 24 \implies$  $G \cong C_4, C_2^2, D_4, A_4 \text{ o } S_4 \text{ (perché } G \cong G' < S_4 \text{)}.$  $f = X^4 - 10X^2 + 1 = m_{\alpha, \mathbb{O}} \text{ con } \alpha = \sqrt{2} + \sqrt{3} \implies G \cong C_2^2$ :  $\mathbb{Q} \subset \mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$  normale (perché campo di spezzamento di  $(X^2-2)(X^2-3)$   $\implies$  f si spezza su  $\mathbb{O}(\alpha)$  $\implies \mathbb{Q} \subset \mathbb{Q}(\alpha)$  campo di spezzamento di  $f \implies$  $G = G_{\mathbb{Q}}(\mathbb{Q}(\alpha)) \implies \#G = [\mathbb{Q}(\alpha) : \mathbb{Q}] = \deg f = 4 \text{ e}$  $G \ncong C_4$  perché  $\sigma \in G = G_{\mathbb{Q}}(\mathbb{Q}(\sqrt{2}, \sqrt{3})) \implies$  $\sigma(\sqrt{2}) = \pm \sqrt{2} e \sigma(\sqrt{3}) = \pm \sqrt{3} \implies \sigma^2(\sqrt{2}) = \sqrt{2} e$  $\sigma^2(\sqrt{3}) = \sqrt{3} \implies \sigma^2 = \mathrm{id}_{\mathbb{Q}(\sqrt{2},\sqrt{3})}.$ 

## Generatori di $S_n$

#### Lemma

 $\sigma, \tau \in S_n$  con  $\sigma$  n-ciclo e  $\tau$  trasposizione.

- 1.  $\sigma = (1, 2, \dots, n), \tau = (1, 2) \implies S_n = \langle \sigma, \tau \rangle$ .
- 2.  $n = p \text{ primo } \Longrightarrow S_p = \langle \sigma, \tau \rangle$ .

#### Dimostrazione.

- 1.  $\sigma^k \tau \sigma^{-k} = (k+1, k+2) \in \langle \sigma, \tau \rangle$  per  $k = 0, \dots, n-2 \implies$  $\langle \sigma, \tau \rangle \supset H_n := \langle (1, 2), \dots, (n-1, n) \rangle$ , e basta dimostrare che  $H_n = S_n$  per induzione su  $n \ge 2$ . Vero per n = 2, e per n > 2basta dimostrare che  $1 < i < j < n \implies (i, j) \in H_n$ :  $i < n \implies (i, j) \in H_{n-1} \subset H_n$ ;  $i = n \implies$  posso supporre  $i < n-1 \implies (i, n) = (i, n-1)(n-1, n)(i, n-1) \in H_n$ perché  $(i, n-1) \in H_{n-1} \subset H_n$  e  $(n-1, n) \in H_n$ .
- 2. Posso supporre  $\tau = (1, 2)$ .  $\exists 1 < k < p$  tale che  $\sigma^k(1) = 2$ .  $\operatorname{ord}(\sigma^k) = \rho \implies \sigma^k = (1, 2, \dots) \text{ p-ciclo e } \langle \sigma, \tau \rangle = \langle \sigma^k, \tau \rangle$  $\implies$  posso supporre  $\sigma = (1, 2, ..., p)$  e applico il punto 1.

# Polinomi con gruppo di Galois $S_p$

#### Corollario

 $f \in \mathbb{Q}[X]$  irriducibile,  $\deg(f) = p$  primo, f con esattamente p-2 radici reali (e 2 complesse coniugate non reali)  $\implies G_{\mathbb{Q}}(f) \cong S_p$ .

#### Dimostrazione.

 $G_{\mathbb{Q}}(f)\cong G < S_p$ ,  $p \mid \#G \implies \exists \, \sigma \in G \, \text{tale che ord}(\sigma) = p \implies \sigma \, p\text{-ciclo}$ . Inoltre il coniugio  $\mathbb{C} \to \mathbb{C}$ ,  $a+bi\mapsto a-bi$  è un automorfismo che manda l'insieme R delle radici di f in R (perché  $f\in \mathbb{R}[X]$ ), e dunque si restringe a un elemento di  $G_{\mathbb{Q}}(f)$ . Indicando con  $\tau\in G < S_p$  l'elemento corrispondente e identificando  $S_p$  con S(R), chiaramente  $\tau$  è la trasposizione che scambia le 2 radici non reali di f. Allora  $G=S_p$  per il Lemma.  $\square$ 

### Esempio

 $f:=X^5-4X+2$  irriducibile per Eisenstein, ha al massimo 3 radici reali perché  $f'=5X^4-4$  ha 2 radici reali e ne ha almeno 3 perché  $f(-2)<0,\ f(0)>0,\ f(1)<0,\ f(2)>0 \implies \mathrm{G}_{\mathbb{Q}}(f)\cong S_5.$