Algebra 2

Alberto Canonaco alberto.canonaco@unipv.it

Università di Pavia Corso di Laurea in Matematica

Anno Accademico 2019/2020 Lezione del 15-05-2020

Polinomi separabili

Definizione

K campo. $f \in K[X]$ irriducibile è separabile (su K) se ha deg(f)radici distinte in un campo di spezzamento.

Ricordiamo che, se $K \subseteq L$ è un'estensione, $f \in K[X]$ e $\alpha \in L$ è radice di f (cioè $(X - \alpha) \mid f$), allora α è radice multipla di f (cioè $(X - \alpha)^2 \mid f) \iff \alpha$ è radice della derivata f' di f.

Lemma

 $f \in K[X]$ irriducibile è separabile $\iff f' \neq 0$.

Dimostrazione.

 $K \subseteq L$ campo di spezzamento di f.

- $\implies \exists \alpha \in L \text{ radice non multipla di } f \implies f'(\alpha) \neq 0 \implies f' \neq 0.$
- \iff deg(f') < deg(f) \implies $f \nmid f'$ \implies mcd(f, f') = 1 in K[X](perché f irriducibile in K[X]) $\Longrightarrow \exists g, h \in K[X]$ tali che $1 = gf + hf' \implies \operatorname{mcd}(f, f') = 1 \text{ in } L[X] \implies f \text{ non ha}$ radici multiple in L, cioè f è separabile.

Omomorfismo di Frobenius

Corollario

 $\operatorname{char}(K) = 0$, $f \in K[X]$ irriducibile $\implies f$ separabile.

Dimostrazione.

$$f$$
 irriducibile $\implies n := \deg(f) > 0$; $f = \sum_{i=0}^{n} a_i X^i$ con $a_n \neq 0$ $\implies f' = \sum_{i=1}^{n} i a_i X^{i-1} \neq 0$ (e $\deg(f') = n-1$) perché $n a_n \neq 0$ $\implies f$ separabile per il Lemma.

Definizione-Proposizione

A dominio, $\operatorname{char}(A) = p$ primo. L'omomorfismo di Frobenius (di A) è l'omomorfismo di anelli $\mathcal{F} \colon A \to A$, $a \mapsto a^p$.

Dimostrazione.

$$\mathcal{F}(1) = 1; \ \forall \ a,b \in A \ \mathcal{F}(ab) = (ab)^p = a^pb^p = \mathcal{F}(a)\mathcal{F}(b) \ e$$

$$\mathcal{F}(a+b) = (a+b)^p = \sum_{i=o}^p \binom{p}{i} a^{p-i}b^i = a^p + b^p = \mathcal{F}(a) + \mathcal{F}(b)$$
 perché $p \mid \binom{p}{i} = \frac{p!}{i!(p-i)!}$ per $0 < i < p$.

Campi perfetti

Definizione

Un campo K è perfetto se $\operatorname{char}(K) = 0$ o $\operatorname{char}(K) = p$ primo e $\mathcal{F} \colon K \to K$ è suriettivo (nel qual caso $\mathcal{F} \in \operatorname{G}(K) = \operatorname{G}_{\mathbb{F}_p}(K)$).

Proposizione

K campo è perfetto \iff f è separabile \forall $f \in K[X]$ irriducibile.

Dimostrazione.

Posso supporre char(K) = p primo.

- \Rightarrow $f \in K[X]$ irriducibile \Rightarrow per il Lemma basta dimostrare $f' \neq 0$. Per assurdo $f' = 0 \Rightarrow f = \sum_{i=0}^{n} a_i X^{pi}$; K perfetto $\Rightarrow \exists b_i \in K$ tale che $a_i = \mathcal{F}(b^i) = b_i^p \ \forall \ i = 0, \dots, n \Rightarrow f = \mathcal{F}(\sum_{i=0}^{n} b_i X^i) = (\sum_{i=0}^{n} b_i X^i)^p$, assurdo.
- \iff $a \in K \implies \exists K \subseteq L$ estensione tale che $X^p a$ ha una radice α in $L \implies \mathrm{m}_{\alpha,K} \mid (X^p a) = X^p \alpha^p = (X \alpha)^p \implies \mathrm{m}_{\alpha,K} = X \alpha$ (perché $\mathrm{m}_{\alpha,K}$ monico e irriducibile, quindi separabile) $\implies \alpha \in K$ e $a = \alpha^p = \mathcal{F}(\alpha)$

Esempi

- ▶ K finito $\implies K$ perfetto: $\operatorname{char}(K) = p$ primo e $\mathcal{F} \colon K \to K$ è suriettivo perché iniettivo.
- ▶ K algebricamente chiuso $\implies K$ perfetto: posso supporre $\operatorname{char}(K) = p$ primo $\implies \mathcal{F} \colon K \to K$ è suriettivo perché $\forall a \in K \ X^p - a$ ha una radice $b \in K$, cioè $a = b^p = \mathcal{F}(b)$.
- ▶ $K \subseteq L$ estensione algebrica, K perfetto $\Longrightarrow L$ perfetto: per la Proposizione basta dimostrare $f \in L[X]$ irriducibile (e posso supporre monico) $\Longrightarrow f$ separabile. $L \subseteq L'$ campo di spezzamento di $f \Longrightarrow L \subseteq L'$ algebrica $\Longrightarrow K \subseteq L'$ algebrica. $\alpha \in L'$ radice di $f \Longrightarrow f = \mathrm{m}_{\alpha,L} \mid \mathrm{m}_{\alpha,K}$. $\mathrm{m}_{\alpha,K}$ separabile per la Proposizione $\Longrightarrow f$ separabile.
- ▶ $\operatorname{char}(K) = p \text{ primo } \Longrightarrow K(X) \text{ non perfetto:}$ per assurdo $\exists f/g \in K(X) \text{ (con } f, g \in K[X] \text{ e } g \neq 0)$ tale che $X = \mathcal{F}(f/g) = f^p/g^p \Longrightarrow f^p = Xg^p \text{ in } K[X], \text{ assurdo.}$

Estensioni separabili

Definizione

 $K \subseteq L$ estensione.

- ▶ $\alpha \in L$ è separabile su K se α è algebrico su K e $m_{\alpha,K}$ è separabile.
- $ightharpoonup K \subseteq L$ è separabile su $K \ \forall \ \alpha \in L$.

Osservazione

 $F \subseteq K \subseteq L$ estensioni con $F \subseteq L$ separabile $\Longrightarrow F \subseteq K$ separabile (ovvio) e $K \subseteq L$ separabile (perché $m_{\alpha,K} \mid m_{\alpha,F} \ \forall \ \alpha \in L$).

Corollario

K è perfetto \iff ogni estensione algebrica di K è separabile.

Dimostrazione.

Segue dalla Proposizione, tenendo conto che $f \in K[X]$ irriducibile e monico $\implies \exists K \subseteq L$ estensione algebrica e $\exists \alpha \in L$ tale che $f = m_{\alpha,K}$.

K-omomorfismi da un'estensione finita

Teorema

$$K\subseteq L \ e \ i \colon K \to L' \ estensioni \ con \ [L:K] < \infty \implies$$

$$\#\{j\colon L\to L'\ :\ j\ K\text{-omomorfismo}\}\leq [L\colon K]$$

e vale l'uguaglianza \iff $m_{\alpha,K}$ ha $deg(m_{\alpha,K})$ radici distinte in L' (cioè $m_{\alpha,K}$ è separabile e si spezza su L') $\forall \alpha \in L$.

Dimostrazione (inizio).

Date estensioni $K \subseteq K' \subseteq K'' \subseteq L$ e un K-omomorfismo $i' \colon K' \to L'$, posto

$$E(K'',i'):=\{i''\colon K''\to L'\ :\ i''\ \text{omomorfismo di anelli,}\ i''|_{K'}=i'\},$$

la disuguaglianza da dimostrare è $\#E(L,i) \le n := [L:K]$. Per induzione su n: chiaro per n=1, quindi assumiamo n>1.

Dimostrazione (fine)

$$\forall \, \alpha \in L \text{ sappiamo che } e_\alpha := \#E(K(\alpha),i) \text{ soddisfa}$$

$$e_\alpha = \#\{\alpha' \in L' : \, \mathrm{m}_{\alpha,K}(\alpha') = 0\} \leq \deg(\mathrm{m}_{\alpha,K}) = [K(\alpha) : K] =: n_\alpha$$
 e che $e_\alpha = n_\alpha \iff \mathrm{m}_{\alpha,K}$ ha n_α radici distinte in L' .
$$\alpha \not\in K \implies n_\alpha > 1 \implies [L : K(\alpha)] = n/n_\alpha < n \implies$$

$$\forall \, i' \in E(K(\alpha),i) \text{ per induzione } \#E(L,i') \leq n/n_\alpha \text{ e vale l'uguale}$$

$$\iff \mathrm{m}_{\beta,K(\alpha)} \text{ ha } \deg(\mathrm{m}_{\beta,K(\alpha)}) \text{ radici distinte in } L' \, \forall \, \beta \in L.$$
 Da $E(L,i) = \coprod_{i' \in E(K(\alpha),i)} E(L,i') \text{ segue}$
$$\#E(L,i) = \sum \qquad \#E(L,i') \leq e_\alpha n/n_\alpha \leq n_\alpha n/n_\alpha = n$$

e se vale l'uguale allora $e_{\alpha}=n_{\alpha}$, per cui $\mathrm{m}_{\alpha,K}$ ha $n_{\alpha}=\deg(\mathrm{m}_{\alpha,K})$ radici distinte in L' ($\forall \, \alpha \in L \setminus K$, ma ovviamente anche $\forall \, \alpha \in K$). Viceversa, se $\mathrm{m}_{\alpha,K}$ ha $\deg(\mathrm{m}_{\alpha,K})$ radici distinte in $L' \, \forall \, \alpha \in L$, fissato $\alpha \in L \setminus K$ si ha $e_{\alpha}=n_{\alpha}$ e $\#E(L,i')=n/n_{\alpha}$ $\forall \, i' \in E(K(\alpha),i)$ (perché $\mathrm{m}_{\beta,K(\alpha)}$ ha $\deg(\mathrm{m}_{\beta,K(\alpha)})$ radici distinte in $L' \, \forall \, \beta \in L$, dato che $\mathrm{m}_{\beta,K(\alpha)} \mid \mathrm{m}_{\beta,K}$), e quindi #E(L,i)=n.

 $i' \in E(K(\alpha),i)$

Estensioni di Galois

Definizione

Un'estensione è di Galois se è finita, normale e separabile.

Osservazione

 $F \subseteq K \subseteq L$ estensioni con $F \subseteq L$ di Galois $\implies K \subseteq L$ di Galois.

Corollario

 $K \subseteq L$ estensione finita $\implies \# \mathrm{G}_K(L) \leq [L:K]$ e vale l'uguaglianza $\iff K \subseteq L$ è di Galois.

Dimostrazione.

 $j \colon L \to L$ K-omomorfismo $\Longrightarrow j$ suriettivo (perché j omomorfismo iniettivo di K-spazi vettoriali e $\dim_K(L) < \infty) \Longrightarrow$ per il Teorema

$$\#G_K(L) = \#\{j: L \to L: j \text{ } K\text{-omomorfismo}\} \leq [L:K]$$

e vale l'uguaglianza \iff $\mathrm{m}_{\alpha,K}$ separabile e si spezza su $L \ \forall \ \alpha \in L$ \iff $K \subseteq L$ separabile e normale \iff $K \subseteq L$ di Galois.

Campi finiti

K campo finito.

- ▶ char(K) = p primo $\implies \mathbb{F}_p \subseteq K$ estensione finita.
- ▶ $n := [K : \mathbb{F}_p] \implies K \cong \mathbb{F}_p^n$ come \mathbb{F}_p -spazio vettoriale (quindi $K \cong C_p^n$ come gruppo abeliano) $\implies \#K = p^n$.
- $\begin{array}{c} \boldsymbol{\wedge} & \boldsymbol{\alpha} \in K^* \implies \alpha^{p^n-1} = 1 \text{ (per il teorema di Lagrange)} \implies \\ \boldsymbol{\alpha}^{p^n} = \boldsymbol{\alpha} & \Longrightarrow \text{ ogni elemento di } K \text{ è radice di } X^{p^n} X \implies \\ \prod_{\alpha \in K} (X \alpha) \mid (X^{p^n} X) \implies X^{p^n} X = \prod_{\alpha \in K} (X \alpha) \\ \implies \mathbb{F}_p \subseteq K \text{ campo di spezzamento di } X^{p^n} X. \end{array}$

p primo, n > 0.

- ▶ $\mathbb{F}_p \subseteq K'$ campo di spezzamento di $X^{p^n} X \implies$ $K := \{\alpha \in K' : \alpha \text{ radice di } X^{p^n} X\} = \{\alpha \in K' : \mathcal{F}^n(\alpha) = \alpha\}$ sottocampo di $K' \implies K = K'$.
- $(X^{p^n}-X)'=-1$ non ha radici $\Longrightarrow X^{p^n}-X$ non ha radici multiple $\Longrightarrow \#K=\deg(X^{p^n}-X)=p^n$.

Gruppi di Galois di alcune estensioni tra campi finiti

Quanto appena visto dimostra i punti 1 e 2 del seguente enunciato.

Proposizione

- 1. Ogni campo finito ha ordine una potenza di un numero primo.
- 2. $\forall p \text{ primo } e \ \forall n > 0 \ \exists ! \text{ a meno } di \text{ isomorfismo } un \text{ campo } \mathbb{F}_{p^n}$ di ordine p^n ; inoltre \mathbb{F}_{p^n} è campo di spezzamento di $X^{p^n} X$ su \mathbb{F}_p .
- 3. L'estensione $\mathbb{F}_p \subseteq \mathbb{F}_{p^n}$ è di Galois e $G_{\mathbb{F}_p}(\mathbb{F}_{p^n}) = \langle \mathcal{F} \rangle \cong C_n$.

Dimostrazione di 3.

 $\mathbb{F}_p \subseteq \mathbb{F}_{p^n}$ è finita e normale (perché campo di spezzamento di un polinomio) e separabile (perché \mathbb{F}_p è finito, quindi perfetto). Per il Corollario $\#G_{\mathbb{F}_p}(\mathbb{F}_{p^n}) = [\mathbb{F}_{p^n} : \mathbb{F}_p] = n$, e basta dimostrare

Per il Corollario $\#G_{\mathbb{F}_p}(\mathbb{F}_{p^n}) = [\mathbb{F}_{p^n} : \mathbb{F}_p] = n$, e basta dimostrare ord $(\mathcal{F}) \geq n$, vero perché $0 < i < n \Longrightarrow$

$$\#\{\alpha \in \mathbb{F}_{p^n} : \mathcal{F}^i(\alpha) = \alpha^{p^i} = \alpha\} \le p^i < p^n \implies \mathcal{F}^i \ne \mathrm{id}_{\mathbb{F}_{p^n}}.$$