GEOMETRIA B

Quarto scritto a.a. 09/10: 12 luglio 2010

Esercizio 1. Nel piano euclideo siano (x, y) coordinate cartesiane ortogonali, e siano $[x_1, x_2, x_3]$ le corrispondenti coordinate omogenee nel piano proiettivo reale $\mathbb{P}_2(\mathbb{R})$.

- 1) Siano S la simmetria rispetto all'asse x, T la traslazione che porta l'origine nel punto (2,0), e $G=T\circ S$. Si estenda G a $\mathbb{P}_2(\mathbb{R})$ e in $\mathbb{P}_2(\mathbb{R})$ si trovino punti fissi e rette fisse.
- 2) Si consideri poi in $\mathbb{P}_2(\mathbb{R})$ la conica Γ di equazione $x_1^2 + 2x_1x_3 + x_2x_3 = 0$. Si classifichi Γ dai punti di vista proiettivo e affine.
- 3) Sia Γ_0 l'intersezione del supporto di Γ con il piano euclideo. Si trovi $G(\Gamma_0)$. Si mostri che $G(\Gamma_0) = R(\Gamma_0)$, dove R è la simmetria rispetto all'origine.

Esercizio 2. Sia $T \subset \mathbb{R}^3$ il toro ottenuto ruotando attorno all'asse z la circonferenza nel piano (x,z) di centro (2,0,0) e raggio 1. Sia $R \subset T$ la regione regolare data da

$$R = \{(x, y, z) \in T \mid x \ge 0, y \ge 0\}.$$

- 1) Calcolare l'integrale su R della curvatura gaussiana di T.
- 2) Mostrare che R è uno spazio topologico connesso per archi e calcolarne il gruppo fondamentale.

Esercizio 3. Sia $S = \{(x, y, z) \in \mathbb{R}^3 \mid 4x^2 + y^2 + z^2 = 4\}.$

- 1) Mostrare che S è una superficie regolare e orientabile.
- 2) Calcolare la seconda forma fondamentale di S nel punto p = (0, 0, 2).
- 3) Sia $C \subset S$ una curva biregolare passante per p, avente in p tangente parallela all'asse p e versore binormale $(\sqrt{3}/2, 0, 1/2)$. Calcolare la curvatura di p in p.