CORSO DI GEOMETRIA 2

Appello del 16 luglio 2012

Esercizio 1

Sia I un intervallo di \mathbb{R} e $\alpha \colon I \to \mathbb{R}^3$ una curva biregolare parametrizzata rispetto alla lunghezza d'arco con torsione τ mai nulla. Sia inoltre $\beta \colon I \to \mathbb{R}^3$ la curva definita da $\beta(t) = \mathbf{b}(t)$ (dove **b** indica il versore binormale di α).

- (1) Dimostrare che β è biregolare.
- (2) Dimostrare che β ha curvatura costante se e solo se κ/τ è costante (dove κ indica la curvatura di α).
- (3) Dimostrare che, se κ e τ sono costanti, allora il sostegno di β è contenuto in una circonferenza.

Esercizio 2

Sia $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 y^2 z^3 = 1\} \subset \mathbb{R}^3.$

- (1) Dimostrare che S è una superficie regolare orientabile di classe C^{∞} .
- (2) Sia $F: \mathbb{R}^3 \to \mathbb{R}^3$, F(x, y, z) = (y, x, z). Mostrare che la restrizione di F ad S è un'isometria di S.
- (3) Sia $\gamma:(0,+\infty)\to\mathbb{R}^3$, $\gamma(t)=(t,t,t^{-\frac{4}{3}})$. Mostrare che γ è una curva regolare contenuta in S.
- (4) Dire se una sua parametrizzazione per lunghezza d'arco è una geodetica.
- (5) Dire se γ è una linea asintotica.

Esercizio 3

Sia $f_t: \mathbb{R}^n \to \mathbb{R}, f_t(x_1, \dots, x_n) = x_1^2 + \dots + x_{n-1}^2 + tx_n^2$.

- (1) Determinare i punti critici e i valori critici di f_t al variare di $t \in \mathbb{R}$.
- (2) Se n=2, dire per quali valori di $t\in\mathbb{R}$ la fibra $f_t^{-1}(1)$ è connessa.
- (3) Se n=3, dire per quali valori di $t\in\mathbb{R}$ la fibra $f_t^{-1}(1)$ è semplicemente connessa.