



ESERCIZIO 6: Sia p: $\mathbb{R} \to S^1$ p(x)= $e^{2\pi i x}$ e poniamo $\tau: \mathbb{K} \to \mathbb{K} \quad \tau(\chi) = \chi_{+1}$ (1) Mostrare che se E To S¹ é un fibrato vettoriale di rango r allora esiste un isomorfismo di fibrati a base variabile p*(E) ___ p*(E) $\mathbb{R} \xrightarrow{\tau} \mathbb{R}$ (2) Mostrare che due fibrati E - 51 e E' T' S' sono isomorfi se e solo se] isomorfismo $\psi: p^*(E) \longrightarrow p^*(E')$ tale che yoT= Toy dove Te T'sono come al punto (3) Fissata un'orientazione su p*(E) verificare che E é orientabile se e solo se T preserva l'orientazione. (4) Veriticare che un tibrato orientabile su S'é banale: Lsugg: Dal punto (2) é sufficiente costruise ay: R×R—0 p*(E) t.c. ψ·T=T·γ dove To(x, ξ)=(x+1, ξ). Fissata una banalizzazione globale di $p^*(E)$ in modo che $T(z,\xi)=(x+1,A(z)\xi)$ con $H(x) \in GL^+(r)$. Josto $\psi(x,\xi) = (x,\alpha(x)\xi)$ la condizione $\psi \circ T_0 = T \circ \psi$ \bar{e} equivalente ad $\alpha(x+1) = A(x) \alpha(x)$. (*) Verificare che ∃ a: R → GL (r) che verifica (*)]