Geometria e Algebra — Appello d	el 5 febbraio 2019		
1 1	e per comporre il proprio numero di ora. Vietato l'uso di appunti, libri, di calcolo e/o comunicazione (cell, domande con il segno & possono ste corrette. Risposte gravemente e punteggi negativi.		
Determinare una base dell'autospazio V_5 , motivando la rispo	osta. w p a c		

Domanda [openspettraleB] Sia $A \in \mathcal{A}$	$M_{\mathbb{R}}(4)$ una matrice simme	etrica 4×4 avente 2, 3 e -4
come $unici$ autovalori di A . Sia $V_3 = \{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$	$ = \mathbb{R}^4 x + z = y + 3t = 0 \} e $	$A \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 2 \\ 0 \end{pmatrix}$. Determinare
una base dell'autospazio V_{-4} , motivando	la risposta.	
Domanda [openspettraleC] Sia A come $unici$ autovalori di A . Sia $V_6 = S$	$\operatorname{Span}\left(\begin{pmatrix}1\\0\\1\\0\end{pmatrix},\begin{pmatrix}0\\2\\0\\1\end{pmatrix}\right) \in A\begin{pmatrix}1\\0\\-1\\0\end{pmatrix}$	etrica 4×4 avente $3, -4 \in 6$ $\begin{pmatrix} 3 \\ 0 \\ -3 \\ 0 \end{pmatrix}$. Determinare le
equazioni dell'autospazio V_{-4} , motivando	la risposta.	_w _p _a _c

Domanda [openspettraleD] Sia $A \in M_{\mathbb{R}}(4)$ una matrice simmetrica 4×4 avente $-1, -2$ e 5					
com	come unici autovalori di A . Sia $V_5 = \operatorname{Span}\left(\begin{pmatrix} 2\\0\\0\\-1 \end{pmatrix}, \begin{pmatrix} 0\\-3\\1\\0 \end{pmatrix}\right) \in A\begin{pmatrix} 1\\0\\0\\2 \end{pmatrix} = \begin{pmatrix} -1\\0\\0\\-2 \end{pmatrix}$. Determinare le				
equ	azioni dell'autospazio V_{-2} , motivando la risposta. $\qquad \qquad \qquad$				
	manda [questlinapplsA] Dimostrare che il nucleo Ker L di un'applicazione lineare $L: V \to \mathbb{R}$ un sottospazio di V . $\mathbf{w} \mathbf{w} \mathbf{p} \mathbf{a} \mathbf{c}$				
L					
	manda [questlinapplsB] Dati U e W sottospazi vettoriali di V , dimostrare che $U \cap W$ è sottospazio di V .				

Domanda [questlinapplsC] Siano applicazione lineare $L \colon V \to W$.	V e W spazi vettoriali; dare la definizione generale d [w p a c
${f Domanda}$ [questlinapplsD] Sia V tospazio vettoriale di V .	uno spazio vettoriale; dare la definizione generale di sot $\begin{tabular}{c} $ \mathbf{w} \begin{tabular}{c} $\mathbf{p} \begin{tabular}{c} $\mathbf{a} \begin{tabular}{c} $\mathbf{v} tab$
	$\begin{pmatrix} 4 & 2 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$. Quale delle seguenti affermazione è corretta?
$\blacksquare A^{-1} = \begin{pmatrix} 1/2 & -2 & 3\\ 0 & 1 & -2\\ 0 & 0 & 1 \end{pmatrix}.$	\square A non è invertibile.
$\mathbf{Domanda} \; [\mathtt{inversadnB}] \text{Sia } A = \begin{pmatrix} 4 \\ 6 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2 & 2 \\ 3 & 2 \\ 0 & 1 \end{pmatrix}$. Quale delle seguenti affermazione è corretta?
	A non è invertibile.

Domanda [inversadnC] Sia $A = \begin{pmatrix} 2 & 4 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix}$. Quale delle seguenti affermazione è corretta?

$$\blacksquare A^{-1} = \begin{pmatrix} 1/2 & -1 & 1\\ 0 & 1/2 & -1\\ 0 & 0 & 1 \end{pmatrix}.$$
 \square A non \(\delta\) invertibile.

Domanda [inversadnD] Sia $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$. Quale delle seguenti affermazione è corretta?

$$\blacksquare A^{-1} = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1/2 & -1/2 \\ 0 & 1/2 & 1/2 \end{pmatrix}.$$
 \square A non \(\delta\) invertibile.

$$\blacksquare \mathbf{u} = \begin{pmatrix} 23 \\ 17 \\ -3 \end{pmatrix} \qquad \square \mathbf{u} \in \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2)$$

$$\square \ \boldsymbol{u} = \begin{pmatrix} 3 \\ 5 \\ -11 \end{pmatrix} \qquad \square \ \boldsymbol{u} = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}$$

Domanda [coordbasisdnB] Quale fra le seguenti affermazioni è corretta, sapendo che $u \in \mathbb{R}^3$ ha coordinate $[u]_{\mathcal{B}} = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}$ rispetto alla base $\mathcal{B} = \left\{ v_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, v_2 = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, v_3 = \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix} \right\}$?

Domanda [coordbasisdnC] Quale fra le seguenti affermazioni è corretta, sapendo che $\boldsymbol{u} \in \mathbb{R}^3$ ha coordinate $[\boldsymbol{u}]_{\mathcal{B}} = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix}$ rispetto alla base $\mathcal{B} = \left\{ \boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \boldsymbol{v}_2 = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, \boldsymbol{v}_3 = \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix} \right\}$?

Domanda [coordbasisdnD] Quale fra le seguenti affermazioni è corretta, sapendo che $\boldsymbol{u} \in \mathbb{R}^3$ ha coordinate $[\boldsymbol{u}]_{\mathcal{B}} = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix}$ rispetto alla base $\mathcal{B} = \left\{ \boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \boldsymbol{v}_2 = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, \boldsymbol{v}_3 = \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix} \right\}$?

$$\blacksquare \ \boldsymbol{u} = \begin{pmatrix} 14\\14\\0 \end{pmatrix} \qquad \qquad \square \ \boldsymbol{u} \in \operatorname{Span}(\boldsymbol{v}_1, \boldsymbol{v}_2)$$

$$\square \mathbf{u} = \begin{pmatrix} 19\\21\\-3 \end{pmatrix} \qquad \square \mathbf{u} = \begin{pmatrix} 4\\0\\2 \end{pmatrix}$$

Domanda [ortonormA] \clubsuit Sia $\{Y_1, \ldots, Y_k\}$ un sistema ortogonale di vettori di \mathbb{R}^4 . Quali delle seguenti affermazioni sono **necessariamente** vere?

Esiste una base ortogonale di vettori di \mathbb{R}^4 I vettori Y_1, \dots, Y_k generano un sottospazio di \mathbb{R}^4 di dimensione k.

 $k \ge 4.$ $Y_1 \ne 0.$

Domanda [ortonormB] \clubsuit Sia $\{Y_1, Y_2, Y_3, Y_4\}$ un sistema ortogonale di vettori di \mathbb{R}^n . Quali delle seguenti affermazioni sono **necessariamente** vere?

Domanda [ortonormC] \clubsuit Sia $\{Y_1, \dots, Y_k\}$ un sistema ortogonale di vettori di \mathbb{R}^4 . Quali delle seguenti affermazioni sono **necessariamente** vere?

k=5. I vettori Y_1,\ldots,Y_k sono linearmente indipendenti.

 $k \le 4. Y_1 \neq \mathbf{0}.$

Domanda [ortonormD] \clubsuit Sia $\{Y_1, Y_2, Y_3\}$ un sistema ortogonale di vettori di \mathbb{R}^n . Quali delle seguenti affermazioni sono **necessariamente** vere?

 $n \leq 3$. $Y_3 \neq 0$. Y_1, Y_2, Y_3 è un sistema di generatori di

 \mathbb{R}^n . \mathbb{R}^n tun sistema di generatori di Y_1 è ortogonale a $(Y_2 + Y_3)$.

Domanda [geometriadnA] ♣ Stabilire per quali dei seguenti sistemi l'insieme delle soluzioni è un piano nello spazio:

Domanda [geometriadnB] ♣ Stabilire per quali dei seguenti sistemi l'insieme delle soluzioni è vuoto:

Domanda [geometriadnc] . Stabilire per quali dei seguenti sistemi l'insieme delle soluzioni è una **retta** nello spazio:

$$\square \begin{cases} x + 2y + z = 3\\ 3x + 6y + 3z = 2 \end{cases}$$

$$\begin{cases} x+y-z=2\\ x-y+2z=0\\ 2x+z=2 \end{cases}$$

$$\blacksquare \begin{cases} x = 2 \\ y = -1 \end{cases}$$

Domanda [geometriadnD] . Stabilire per quali dei seguenti sistemi l'insieme delle soluzioni è un **piano** nello spazio:

$$\square \begin{cases} x - y - 2z = 1\\ 3x - 3y - z = 3 \end{cases}$$

$$\square \begin{cases} x - y - 2z = 2\\ 2x + y + 2z = 0 \end{cases}$$

Domanda [autoA] \clubsuit Si consideri la seguente matrice $A = \begin{pmatrix} 4 & 2 & 0 \\ 5 & 4 & -3 \\ 2 & -2 & 6 \end{pmatrix}$ e si stabilisca quali delle seguenti affermazioni è corretta:

- $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ è autovettore di A con autovalore 6.
- \square Il vettore nullo è autovettore di A.

Domanda [autoB] \clubsuit Si consideri la seguente matrice $A = \begin{pmatrix} 3 & 2 & 7 \\ -2 & -4 & -10 \\ 5 & -2 & 1 \end{pmatrix}$ e si stabilisca quali delle seguenti affermazioni è corretta:

- \blacksquare $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ è autovettore di A con autovalore 8. \square $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ è autovettore di A.
- $\begin{bmatrix} 2 \\ -2 \\ 2 \end{bmatrix}$ è autovettore di A con autovalore 16. $\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$ è autovettore di A.

Domanda [autoC] \clubsuit Si consideri la seguente matrice $A = \begin{pmatrix} 4 & -1 & 1 \\ 0 & 2 & 2 \\ -4 & 5 & 3 \end{pmatrix}$ e si stabilisca quali delle seguenti affermazioni è corretta:

- \square Il vettore nullo è autovettore di A.
- - \blacksquare $\begin{pmatrix} 1\\2\\-2 \end{pmatrix}$ è autovettore di A.

Domanda [autoD] \clubsuit Si consideri la seguente matrice $A = \begin{pmatrix} -2 & 2 & 0 \\ 1 & -5 & -2 \\ 0 & 8 & 4 \end{pmatrix}$ e si stabilisca quali delle seguenti affermazioni è corretta:

- $\blacksquare \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ è autovettore di A con autovalore -4. $\blacksquare \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ è autovettore di A.

 $\begin{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ è autovettore di A.

 $\left[\left(\begin{array}{c} 2 \\ -2 \\ 2 \end{array} \right)$ è autovettore di A con autovalore -8.

Domanda [canfquadA] \clubsuit Data la forma quadratica $q \colon \mathbb{R}^3 \to \mathbb{R}$ associata alla matrice $\begin{pmatrix} -2 & 3 & 0 \\ 3 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, quali delle espressioni seguenti sono una sua possibile forma canonica $q_c(x', y', z')$?

 $(x')^2 + (y')^2 - 5(z')^2$. $(x')^2 - 5(y')^2 - 5(z')^2$.

 $(x')^2 - 5(y')^2 + (z')^2$.

 $-2(x')^2 + 3(y')^2 + (z')^2$.

Domanda [canfquadB] \clubsuit Data la forma quadratica $q \colon \mathbb{R}^3 \to \mathbb{R}$ associata alla matrice $\begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & -3 & 1 \end{pmatrix}$, quali delle espressioni seguenti sono una sua possibile forma canonica $q_c(x', y', z')$?

 $4(x')^2 - 2(y')^2 - 2(z')^2$.

 $-2(x')^2 - 2(y')^2 + 4(z')^2.$

Domanda [canfquadC] \clubsuit Data la forma quadratica $q \colon \mathbb{R}^3 \to \mathbb{R}$ associata alla matrice $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$, quali delle espressioni seguenti sono una sua possibile forma canonica $q_c(x', y', z')$?

 $(x')^2 + 3(y')^2 + (z')^2$.

 $(x')^2 + 3(y')^2 + 3(z')^2$.

 $3(x')^2 + (y')^2 + (z')^2$.

 $(x')^2 - (y')^2 + 2(z')^2$.

Domanda [canfquadD] \clubsuit Data la forma quadratica $q \colon \mathbb{R}^3 \to \mathbb{R}$ associata alla matrice $\begin{pmatrix} 3 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$, quali delle espressioni seguenti sono una sua possibile forma canonica $q_c(x', y', z')$?

 $4(x')^2 + 2(y')^2 + 4(z')^2$.

 $1 2(x')^2 + 2(y')^2 + 4(z')^2$

 $4(x')^2 + 4(y')^2 + 2(z')^2$.

 $3(x')^2 - (y')^2 + 4(z')^2$