CORSO DI GEOMETRIA E ALGEBRA	5 aprile 2013
Cognome e Nome:	Matricola:
Corso di Laurea:	Anno di corso:

1. Sia $L \colon \mathbb{R}^3 \to \mathbb{R}^4$ l'applicazione lineare:

$$L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ x-z \\ y+z \\ 2x+y-z \end{pmatrix}.$$

- (a) La matrice associata a L nelle basi canoniche di \mathbb{R}^3 e di \mathbb{R}^4 :
- (b) $\dim \operatorname{Im} L = \dim \operatorname{Ker} L =$
- (c) Le equazioni cartesiane di $\operatorname{Im} L$:
- (d) Stabilire se L è iniettiva o suriettiva.
- 2. Si considerino la matrice $A = \begin{pmatrix} 1 & h & 2+h \\ h-1 & 0 & -2 \\ h & h & h \end{pmatrix}$, il vettore $B = \begin{pmatrix} h \\ 0 \\ 1 \end{pmatrix}$, con $h \in \mathbb{R}$, e si indichi con X un vettore di \mathbb{R}^3 .
 - (a) Determinare il rango di A al variare di $h \in \mathbb{R}$:
 - (b) Determinare per quali valori di h il sistema AX = B ammette soluzioni:
 - (c) Risolvere il sistema omogeneo $AX = \mathbf{0}$ per h = 2:
 - (d) Calcolare, al variare di h, la dimensione del sottospazio V delle soluzioni del sistema lineare omogeneo $AX = \mathbf{0}$, e stabilire se esistono valori di h per i quali il sistema omogeneo $AX = \mathbf{0}$ ammette SOLO la soluzione banale:

3. Si consideri la matrice reale quadrata di ordine 3:

$$A = \begin{pmatrix} 2 & a & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 4 \end{pmatrix}$$

- (a) Scrivere il polinomio caratteristico di A:
- (b) Determinare gli autovalori di A con relative molteplicità algebriche:
- (c) Determinare al variare di $a \in \mathbb{R}$ le molteplicità geometriche degli autovalori di A:
- (d) Stabilire per quali valori di $a \in \mathbb{R}$ A è simile alla matrice $\Delta = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.
- 4. Fissato nello spazio un sistema di riferimento cartesiano ortogonale $\mathcal{R}(O, \hat{\imath}, \hat{\jmath}, \hat{k})$, si considerino il piano π di equazione 2x y + z = 0 ed il punto A = (1, 0, 1). Determinare:
 - (a) La direzione normale al piano π :
 - (b) Le equazioni cartesiane della retta r passante per il punto A ed ortogonale al piano π :
 - (c) L' equazione cartesiana del piano α parallelo a π e passante per A:
 - (d) La distanza tra i piani π e α :
- 5. Fissato in \mathbb{R}^4 il prodotto scalare standard, si considerino i sottospazi

$$V = \left\{ \boldsymbol{v} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \colon x + z = y = 0 \right\} \quad U = \operatorname{Span} \left(\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right).$$

- (a) $\dim U = \dim V =$
- (b) Una base ortogonale di V:
- (c) $\dim U \cap V = \dim U + V =$
- (d) Le equazioni cartesiane del complemento ortogonale di V:

CORSO DI GEOMETRIA E ALGEBRA	
	5 aprile 2013
Cognome e Nome:	Matricola:
Corso di Laurea:	Anno di corso:

Svolgere in modo completo il seguente esercizio, fornendo dettagli dei passaggi risolutivi:

Si consideri la matrice A quadrata 4×4 :

$$A = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- 1. Calcolare: $\det A$, $\det(A^3)$, $\det(-2A)$.
- 2. Stabilire se qualcuno dei vettori della base canonica di \mathbb{R}^4 è autovettore di A.
- 3. Calcolare il polinomio caratteristico di ${\cal A}.$
- 4. Sia $Q(X) = X^{T}AX$ la forma quadratica definita dalla matrice A. Determinare l'espressione polinomiale di Q(X).
- 5. Stabilire il segno della forma quadratica Q(X).

CORSO DI GEOMETRIA E ALGEBRA	5 aprile 2013
Cognome e Nome:	Matricola:
Corso di Laurea:	Anno di corso:

1. Sia $L \colon \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare:

$$L \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} x - y + z \\ x + z + t \\ y + 2t \end{pmatrix}.$$

- (a) La matrice associata a L nelle basi canoniche di \mathbb{R}^4 e di \mathbb{R}^3 :
- (b) $\dim \operatorname{Im} L = \dim \operatorname{Ker} L =$
- (c) Una base per il sottospazio $\operatorname{Ker} L$:
- (d) Stabilire se L è iniettiva o suriettiva.
- 2. Si considerino la matrice $A = \begin{pmatrix} 1 & k+1 & k+3 \\ k & 0 & -2 \\ k+1 & k+1 & k+1 \end{pmatrix}$, il vettore $B = \begin{pmatrix} k+1 \\ 0 \\ 1 \end{pmatrix}$, con $k \in \mathbb{R}$, e si indichi con X un vettore di \mathbb{R}^3 .
 - (a) Determinare il rango di A al variare di $k \in \mathbb{R}$:
 - (b) Determinare per quali valori di k il sistema AX = B ammette soluzioni:
 - (c) Risolvere il sistema omogeneo $AX = \mathbf{0}$ per k = 2:
 - (d) Calcolare, al variare di k, la dimensione del sottospazio V delle soluzioni del sistema lineare omogeneo $AX = \mathbf{0}$, e stabilire se esistono valori di k per i quali il sistema omogeneo $AX = \mathbf{0}$ ammette SOLO la soluzione banale:

3. Si consideri la matrice reale quadrata di ordine 3:

$$A = \begin{pmatrix} 3 & -1 & 0 \\ 2 & 0 & 0 \\ 2 & 1+a & 1 \end{pmatrix}$$

- (a) Scrivere il polinomio caratteristico di A:
- (b) Determinare gli autovalori di A con relative molteplicità algebriche:
- (c) Determinare al variare di $a \in \mathbb{R}$ le molteplicità geometriche degli autovalori di A:
- (d) Stabilire per quali valori di $a \in \mathbb{R}$ A è simile alla matrice $\Delta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
- 4. Fissato nello spazio un sistema di riferimento cartesiano ortogonale $\mathcal{R}(O, \hat{\imath}, \hat{\jmath}, \hat{k})$, si considerino il piano π di equazione x-2y+z=0 ed il punto A=(0,1,1). Determinare:
 - (a) La direzione normale al piano π :
 - (b) Le equazioni cartesiane della retta r passante per il punto A ed ortogonale al piano π :
 - (c) L' equazione cartesiana del piano α parallelo a π e passante per A:
 - (d) La distanza tra i piani π e α :
- 5. Fissato in \mathbb{R}^4 il prodotto scalare standard, si considerino i sottospazi

$$V = \left\{ \boldsymbol{v} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \colon x + y - t = 0 \right\} \quad U = \operatorname{Span} \left(\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right).$$

- (a) $\dim U = \dim V =$
- (b) Una base ortogonale di V:
- (c) $\dim U \cap V = \dim U + V =$
- (d) Le equazioni cartesiane del complemento ortogonale di V:

CORSO DI GEOMETRIA E ALGEBRA	5 aprile 2013
Cognome e Nome:	Matricola:
Corso di Laurea:	Anno di corso:

Svolgere in modo completo il seguente esercizio, fornendo dettagli dei passaggi risolutivi:

Si consideri la matrice A quadrata 4×4 :

$$A = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & -2 & 1 \end{pmatrix}.$$

- 1. Calcolare: $\det A$, $\det(A^{-1})$, $\det(-3A^T)$.
- 2. Stabilire se qualcuno dei vettori della base canonica di \mathbb{R}^4 è autovettore di A.
- 3. Calcolare il polinomio caratteristico di ${\cal A}.$
- 4. Sia $Q(X) = X^{T}AX$ la forma quadratica definita dalla matrice A. Determinare l'espressione polinomiale di Q(X).
- 5. Stabilire il segno della forma quadratica Q(X).