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Plasticity equations describe the deformations e.g. of metal [1, 3]. As in
elasticity, one describes the body at rest with a domain Ω ⊂ Rn, the deforma-
tion of the material point x ∈ Ω by u(x) ∈ Rn, uses the symmetric gradient
∇su(x) = (∇u(x) + ∇u(x)T )/2 to describe local deformations, and the stress
tensor σ(x) to describe inner forces. The balance of linear momentum is as in
elasticity, (1a) with density % and load f .

In contrast to elasticity, the stress tensor is not in a linear relation with ∇su(x).
Instead, the deformation is decomposed (here: additively) into two parts, an elastic
strain and a plastic strain, ∇su(x) = e(x) + p(x), such that with e(x) Hooke’s
law is satisfied, σ(x) = De(x) for some elasticity tensor D. The plastic strain
can be considered as a component of a possibly larger vector of interior variables
ξ ∈ RN ; with a linear operator B : RN → Rn×ns that maps into the space of
symmetric matrices, we write p = Bξ and obtain (1b) as stress-strain relation.
Finally, in order to close the system, we have to introduce a flow-rule in (1c). It
provides an ordinary differential equation for the internal variables ξ(x, t) ∈ RN .
The nonlinear function g : RN → RN is assumed to be monotone and can be
multi-valued. The flow rule expresses changes of the internal variables ξ under
the influence of the forces σ. Hardening models include Lξ in the argument of g,
strictly monotone operators L : RN → RN contribute to regularity properties of
solutions. In particular, p need not be regarded as a measure, but can be expected
to be an element of L2(Ω) for every time instance.

In the homogenization analysis, one is interested in oscillatory dependence of
the material parameters on x ∈ Ω, we therefore provide the material variables with
a subscript η where η > 0 stands for the typical length scale in the heterogeneous
model. Since the solution depends on the coefficients, we mark also the solution
variables uη, ση, and ξη with a superscript η. The system under consideration
reads

%η∂
2
t u

η = ∇ · ση + f(1a)

ση = Dη(∇suη −Bηξη)(1b)

∂tξ
η ∈ gη(BTη σ

η − Lηξη)(1c)

For a time horizon T > 0, the equations are posed on ΩT = Ω× (0, T ).
The homogenization of the plasticity system (1) was analyzed recently by sev-

eral authors. The method of two-scale convergence was used in [9, 10, 11], quasi-
stationary evolutions were the underlying concept in [4, 5], and a phase-shift con-
struction was used in [2, 6]. Another method to derive similar results was intro-
duced in [8]: Based on Tartar’s original method of oscillating test functions in
homogenization, we constructed oscillating test-functions from the two-scale limit
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problem in order to prove the homogenization result. We note that all the ap-
proaches mentioned above have their own strengths. A strength of the approach
in [8] is the simplicity and flexibility. In particular, the treatment of the wave
equation (inclusion of %∂2

t u in (1a)) is possible without any additional difficulties.
Why is the homogenization of the plasticity problem difficult? It is astonishing

that the homogenization of this problem was only recently performed. Difficulties
lie in the non-linear character of the equations and, in particular, in the differential
inclusion (1c), which is typically formulated by imposing an energy-dissipation
inequality. From our view-point, the main problem lies in the fact that solutions
(of the two-scale problem) do not have sufficient regularity properties (in (x, y)).
We circumvent this problem as follows: we do not use the solution of the two-scale
problem to construct an oscillatory test-function, but we do use a Finite-Element
approximation of the two-scale problem. This approximation has all the regularity
properties that we need.

Results. We consider periodic homogenization. With the periodicity cell Y =
[0, 1)n we assume that the material parameters are given as

Dη(x) = D

(
x,
x

η

)
, Lη(x) = L

(
x,
x

η

)
, Bη(x) = B

(
x,
x

η

)
,

%η(x) = %

(
x,
x

η

)
, gη( · ;x) = g

(
· ;
x

η

)
.

The limit system for plasticity consists in a two-scale problem. In general, this
problem cannot be decoupled — we do not obtain a single macroscopic plasticity
system as an effective equation (except for the one-dimensional case, [7]). The
unknowns in the two-scale problem are the macroscopic deformation u : ΩT → Rn,
a corrector for the deformation v : ΩT × Y → Rn, the two-scale internal variables
w : ΩT × Y → RN , and the two-scale stress z : ΩT × Y → Rn×ns . The two-scale
system reads, for the averaged density %̄(x) > 0,

%̄∂2
t u = ∇ ·

(∫
Y

z dy

)
+ f(2a)

z = D(∇sxu+∇syv −Bw)(2b)

∇y · z = 0(2c)

∂tw ∈ g(BT z − Lw ; y)(2d)

The homogenization result takes the following form. We are currently working
on optimal assumptions on the coefficients, the following formulation is meant to
indicate work in progress (but we note that precise assumptions for a less general
model with an indicatrix map g are given in [8]).

Theorem 1. Let Ω ⊂ Rn be a bounded polygonal domain, T > 0. Let the maps
D(x) and L(x) be monotone, uniformly bounded with uniformly bounded inverse
operators. Let g : RN × Y → RN be a multi-valued monotone operator. Let the
density % be strictly positive, we use %̄(x) =

∫
Y
%(x, y) dy. Let initial data and

boundary conditions be such that solutions to the oscillatory system and to the
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two-scale system exist. Let (uη, ση, ξη) and (u, v, w, z) be solutions of problems (1)
and (2). Then, as η → 0,

∂tu
η → ∂tu strongly in L2(ΩT ),

ση ⇀

∫
Y

z dy, ξη ⇀

∫
Y

w dy weakly in L2(ΩT ).

As indicated, the proof of the theorem is based on solutions of a semi-discrete
version of the two-scale problem. More precisely, we define a space of piecewise
affine finite elements Uh ⊂ H1(Ω) and search for uh(., t) ∈ Uh. The other vari-
ables, vh(x, y, t), zh(x, y, t), and wh(x, y, t) are searched for in spaces of piecewise
constant functions in x. We solve∫

Ω

(∫
Y

zh dy

)
: ∇ψ dx =

∫
Ω

(f − %̄∂2
t uh) · ψ dx ∀ψ ∈ Uh(3a)

zh = D(∇suh +∇syvh −Bwh)(3b)

∇y · zh = 0(3c)

∂twh ∈ g(BT zh − Lwh; y)(3d)

For any function φ : Ω × Y × (0, T ) → Rm, we construct an oscillatory test-
function by setting φη(x, t) := φ(x, x/η, t). Using the solution (uh, vh, zh, wh) of
(3), constructing the oscillatory functions (uh,η, vh,η, zh,η, wh,η), and using them
as test-functions in the original system and in (3), we can derive Theorem 1 with
energy methods, using taylored div-curl-lemmas to show smallness of error terms.
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