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Abstract: We introduce a new method to homogenization of non-periodic

problems and illustrate the approach with the elliptic equation −∇·(aε∇uε) =

f . On the coefficients aε we assume that solutions uε of homogeneous ε-

problems on simplices with average slope ξ ∈ Rn have the property that

flux-averages −
∫
aε∇uε ∈ Rn converge, for ε → 0, to some limit a∗(ξ), in-

dependent of the simplex. Under this assumption, which is comparable to

H-convergence, we show the homogenization result for general domains and

arbitrary right hand side. The proof uses a new auxiliary problem, the needle

problem. Solutions of the needle problem depend on a triangulation of the

domain, they solve an ε-problem in each simplex and are affine on faces.

1 Introduction

Due to its relevance in many applications, homogenization theory is nowadays an

important field of mathematical analysis. To give a very general description, homog-

enization is concerned with solutions uε of partial differential equations Aε(uε) = f ,

where f are given data and Aε is a differential operator with oscillatory coefficients

that vary on a scale of order ε > 0. The task is to determine a homogenized operator

A∗ such that solutions u∗ of A∗u∗ = f are approximations of the oscillatory solutions

uε in the sense that uε → u∗ for ε→ 0 in some norm.

Let us be more specific and describe the idea in the most simple case of (Aεu)(x) =

−∇ · (aε(x)∇u(x)) for u ∈ H1
0 (Q), understood in the weak sense on Q ⊂ Rn. The

homogenized operator turns out to be A∗u = −∇·(a∗∇u(x)) with a matrix a∗ ∈ Rn×n

that can be characterized as follows. If a solution sequence uε of ∇ · (aε∇uε) = 0 has

the average slope ξ ∈ Rn, then the corresponding fluxes aε∇uε have the average value

a∗ξ,

∇uε ⇀ ξ ⇒ aε∇uε ⇀ a∗ξ. (1.1)

Most often, the effective coefficient a∗ ∈ Rn×n is described with a cell problem, a

periodic problem on a unit cell in the case of periodic homogenization problems,

and a problem on Rn in the case of stochastic homogenization problems. The more

1Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87, D-44227 Dort-

mund, Germany.
2Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, H3A

2K6 Montreal, Quebec, Canada.



2 The needle problem approach to non-periodic homogenization

abstract characterization of a∗ ∈ Rn×n of (1.1) can be considered the defining property

of H-convergence, see [21] and [31, Definition 6.4].

The aim of our contribution is to provide a new method of homogenization, which

allows one to conclude from property (1.1) of the coefficients that uε ⇀ u∗, weakly in

H1(Q), where u∗ is a solution of −∇·(a∗∇u∗) = f , for arbitrary Q and f . Our method

does not rely on periodicity of the coefficients or a specific stochastic construction.

As we detail below, the theory of H-convergence provides a simple proof of the

same result. Our aim is to introduce a new and flexible method. A novelty in our

method is the explicit construction of an approximating sequence, in the spirit of

multiscale finite elements [4, 17] and of the heterogeneous multiscale method [15, 16].

The above problem was treated and solved for periodic coefficients [5, 6, 14, 26,

30], with the method of two-scale convergence [2, 22], with the periodic unfolding

method [10], and in the stochastic case [8, 13, 18, 19]. Regarding homogenization

of other equations we mention [1, 27, 29, 32, 33], regarding a further analysis of

the homogenization limit or the homogenized problem [20, 34]. In the forthcoming

contribution [28], we address the extension of stationary homogenization results to

time-dependent parabolic and hysteresis problems. Recent results typically regard

large coefficients or singular geometries [3, 7], for more abstract approaches see [23, 24].

Numerical studies are concerned with the construction of fast methods that resolve

the fine scale only on small sub-domains.

Homogenization and discretization. The needle problem approach is inspired

by numerical methods and, more generally, by the principle of representative volume

elements (RVEs). A loose description of such approaches is the following: the macro-

scopic domain is discretized with a triangulation as if a homogenized problem was

available. In order to find the effective coefficients in each volume element of size h,

a representative volume element is chosen with diameter large compared to ε, but

small compared to h. The solution of an ε-problem on the RVE provides via (1.1) the

effective coefficients in the volume element.

The heterogeneous multiscale method follows this idea, convergence results for the

elliptic problem are obtained e.g. in [16]. The authors use an error e(HMM) which

measures how well the homogenized matrix can be recovered by solving problems on

RVEs. Theorem 1.1 of [16] shows that, without any assumptions on the coefficients,

e(HMM) and the grid size control the error of the scheme. Further theorems provide

the smallness of e(HMM) with appropriate bounds in several cases: in the periodic

case, and in a stochastic case with mixing properties in dimensions 1 and 3.

We show a rigorous result in this spirit: we assume that homogeneous solutions

on simple domains with affine boundary conditions corresponding to slope ξ have an

averaged flux a∗ξ, independent of the domain. Our result is that then a∗ is the matrix

of homogenized coefficients in general boundary value problems. The needle problem

introduces intermediate solutions that can be regarded as the analog to discrete solu-

tions in the heterogeneous multiscale method. The method has also similarities with

multiscale finite element methods. In equation (23) of [4], a reference problem similar

to ours is used, but the further construction uses Kozlov’s harmonic coordinates.



B. Schweizer and M. Veneroni 3

Homogenization as a two-step procedure. We regard the homogenization of an

equation as a two-step procedure: in a first step one has to understand the behavior

of solutions uε that approximate an affine function. These are the functions that

are usually considered in cell problems. For such functions, the constitutive relation

(e.g. between flux aε∇uε and gradient ∇uε) must be investigated and an averaged

constitutive relation for weak limits must be derived. In our case, this averaged

relation is given by the matrix a∗ in (1.1). In a second step, the data of the concrete

problem are incorporated. One considers no longer simple domains and homogeneous

solutions, but solutions uε to given data Q and f . The aim in this second step is to

show that the averaged constitutive relation defines indeed the averaged operator A∗.
Our contribution regards entirely the second step, our aim is to assume as little as

possible about the first step.

With this aim, we will not even use the weak convergence that was indicated in

(1.1), but we impose only a property of averages. Our stabilization result provides

(1.1) as a consequence of the weaker assumption of Definition 1.1. The main diffi-

culty in the verification of that assumption is to show that the limit of the averages

exists and that it is independent of the simplex. In the context of stochastic coeffi-

cients, these properties can be regarded as an ergodicity and stationarity assumption

on the coefficients. We emphasize that, in the standard stochastic setting, all our

assumptions are satisfied, see Appendix A.

Since our new approach is very general, we believe that it allows furthermore to

perform the second step of the homogenization procedure for more complex operators

such as e.g. hysteresis operators of plasticity equations.

The technique of the needle problem approach. The usual way to perform

step 2 in the above program is to start from solutions of the cell problem and to

construct test-functions. Our aim is not to use cell problem solutions, since they

might not be available. As a replacement, we use solutions to the needle problem.

The needle problem is the original problem with coefficients aε, introducing a side

condition with a triangulation Th: we search for functions uεh that are solutions in

each simplex of Th and that are affine on all faces of the grid Th. The condition of

affine boundary data on each simplex implies that our general assumption on solutions

to affine boundary data of Definition 1.1 is applicable. On the other hand, for small

h, the side condition is not a severe restriction, and we find that uε−uεh is small. The

combination of these two facts allows to conclude the homogenization result.

The main technical problem in our new method is that we need a div-curl-Lemma

in each simplex of the triangulation. Since in the simplices of the triangulation we

do not have prescribed boundary conditions for uε, the standard div-curl-lemma does

not apply. We will provide a div-curl-lemma under the assumption that the grid is

adapted to the sequence uε. To give a first idea of that property, we observe the

following: Since the sequence ∇uε is bounded in L2(Q), on almost every hyperplane

E through Q, the sequence ∇uε|E is also bounded. This implies that the trace uε|E is

not only controlled in H1/2(E), but also in H1(E). The corresponding compactness

allows to conclude the div-curl-lemma.

The construction of adapted grids is lengthy, we perform it in several steps in
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Section 3. The final result is the div-curl-Lemma on fine grids, as presented in The-

orem 1.3. We state it in a general and self-contained way. We hope that it turns

out to be useful in other non-periodic homogenization problems. We remark that

the construction of the adapted grids has some similarities with the constructions of

[11, 12].

Main results

Let Q ⊂ Rn be bounded, open, with Lipschitz boundary, and let the family of co-

efficients (aε)ε, with aε ∈ L∞(Q;Rn×n) for ε > 0, satisfy the uniform ellipticity and

boundedness condition

α1|η|2 ≤ aε(x)η · η ≤ α2|η|2, ∀ η ∈ Rn, for a.e.x ∈ Rn, (1.2)

for constants 0 < α1 < α2. In the next condition we use a simplex T ⊂ Q and, for

ξ ∈ Rn and b ∈ R, the affine function Uξ(x) := ξ · x + b on T to prescribe boundary

conditions. To these data, we study the unique weak solution uεT,ξ : T → R of the

problem

−∇ · (aε∇uεT,ξ) = 0 in T,

uεT,ξ = Uξ on ∂T.
(1.3)

In the subsequent definition we use the notation −
∫
A
f := |A|−1

∫
A
f for averages of an

integrable function f on a domain A.

Definition 1.1. We say that the coefficients aε allow averaging of the constitutive

relation with the matrix a∗ ∈ Rn×n if the following is satisfied: for every simplex

T ⊂ Q and every ξ ∈ Rn, b ∈ R, the solutions uεT,ξ of (1.3) satisfy

lim
ε→0
−
∫
T

aε∇uεT,ξ = a∗ξ . (1.4)

As mentioned before, the property (1.4) is satisfied for periodic coefficients aε and

for ergodic stochastic coefficients. Regarding the latter, we mention in Appendix A a

theorem which is derived in [18] and which implies that ergodic stochastic coefficients

allow averaging of the constitutive relation.

It would be slightly more general to write on the right hand side of (1.4) a general

function a∗(ξ) with a∗ : Rn → Rn. Since the problems are linear in ξ, we actually

know that the limit (if it exists) must also be linear in ξ. The important assumption

is therefore that the limit exists and that it is independent of T .

In order to illustrate our new approach, we prove the following homogenization

theorem.

Theorem 1.2. Let Q ⊂ Rn be an n-dimensional bounded domain with Lipschitz

boundary and n = 2 or n = 3. Let f ∈ L2(Q) be arbitrary and let ψ ∈ H1(Q) be

affine. We assume that the coefficients (aε)ε satisfy the ellipticity relation (1.2) and
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that they allow averaging of the constitutive relation with the matrix a∗ ∈ Rn×n in the

sense of Definition 1.1. Then the sequence (uε)ε of weak solutions of

−∇ · (aε∇uε) = f in Q,

uε = ψ on ∂Q,
(1.5)

satisfies

uε ⇀ u∗ weakly in H1(Q), (1.6)

aε∇uε ⇀ a∗∇u∗ weakly in L2(Q), (1.7)

where u∗ is the weak solution of

−∇ · (a∗∇u∗) = f in Q,

u∗ = ψ on ∂Q.
(1.8)

The theorem is given here only for space dimension n = 2 and n = 3. The needle-

problem approach, used in Section 2, is independent of the dimension, but it uses the

adapted grids of Theorem 1.3. The construction of adapted grids is performed only in

the lower dimensional cases n = 2 and n = 3 to avoid involved notation. We expect

that Theorem 1.3 holds in arbitrary space dimension.

By an approximation argument, the condition f ∈ L2(Q) can easily be relaxed to

f ∈ H−1(Q). The above theorem is stated for an affine boundary condition ψ. A

general Dirichlet condition with ψ ∈ H1(Q) can also be treated, we restrict to the

affine case for ease of notation. We note that the boundary condition u∗ = ψ on ∂Q

is automatically satisfied for H1(Q)-weak limits u∗. Therefore, we only have to verify

the elliptic relation of (1.8) in the interior of Q.

Our method does not exploit the scalar character of the equation and we expect

that the proof extends to the vector valued case. Furthermore, the effective coefficient

may also depend on the slow variable, a∗ = a∗(x). In such a situation we would

assume (1.1) with a∗(x) instead of (1.4). The needle problem approach can provide

homogenization result also in this case.

Theorem 1.2 in the light of H-convergence. A powerful abstract method for

the derivation of non-periodic homogenization results has been developed in [21] with

the notion of H-convergence, for which we refer also to the recent monograph [31]. The

definition of H-convergence of coefficients aε to a matrix field a∗ as in [31, Definition

6.4] is closely related to property (1.1). The compactness result of [21] (compare [31,

Theorem 6.5]) can be used to show our Theorem 1.2 along the following lines. For a

subsequence, the coefficients aε H-converge to some matrix field and by assumption

(1.4) the limit must be a∗. In particular, the whole sequence aε H-converges to a∗.

The H-convergence of the coefficients implies Theorem 1.2.

At this point we emphasize once more that our main goal is not to prove Theorem

1.2, but to introduce a new method of homogenization.
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The needle problem method

Our method is based on a discretization of Q. The discretization introduces a mesh

Th, the parameter h stands for the mesh-size. Given the triangulation, we consider

two auxiliary problems. The first problem is the standard finite element discretization

of the homogenized problem (1.8) with a solution Uh, introduced in Subsection 2.1.

The solution Uh is used additionally in (2.7) to substitute the given right hand side f

with an equivalent jump condition across the interfaces of the mesh.

The second auxiliary problem is the needle problem and we refer to Subsection

2.2 for its definition. Solutions are denoted as uεh, these functions are affine on the

interfaces introduced by Th, and they solve −∇· (aε∇uεh) = 0 in the simplices. These

conditions help to conclude uεh ⇀ Uh weakly in H1(Q), for ε→ 0. The homogenization

program follows the scheme

uεh
L. 2.10−→

ε
Uh

ε, h

xyP. 2.6 h

yL. 2.1

uε u∗

(1.9)

The diagram illustrates the following results: limh→0 limε→0 ‖uε − uεh‖H1(Q) = 0

of Proposition 2.6, the weak-H1(Q) convergence uεh ⇀ Uh for ε → 0 of Lemma 2.10,

and Uh ⇀ u∗ in H1(Q) for h → 0 of Lemma 2.1. The combination of these results

provides, since h is arbitrary, the weak-H1(Q) convergence uε ⇀ u∗. In the diagram,

the arrow on the right is a standard result for finite element discretizations. The arrow

on the left is done by energy methods and reflects the testing procedure in common

homogenization approaches; our new div-curl lemma is used here. The arrow on top is

based on the averaging assumption of Definition 1.1. It involves a stabilization result,

namely that indeed ∇uε and aε∇uε converge weakly in L2(Q) to piece-wise constant

functions as in (1.1).

We will prove Theorem 1.2 with the needle problem idea in Section 2. The proce-

dure will be rather elementary, but we use Theorem 1.3 in Proposition 2.6. Theorem

1.3 is shown in Section 3.

Adapted grids and a div-curl Theorem

We consider bounded Lipschitz (not necessarily polygonal) domains Q ⊂ Rn in two or

three space dimensions. Since our technique is based on the homogeneous solutions

on simplices, we want to introduce a triangulation of the domain. To be precise, we

use, for arbitrary h > 0, a polygonal domain Qh ⊂ Q and a triangulation with the

properties

Th := {Tk}k∈Λh
is a triangulation of Qh, diam(Tk) < h ∀Tk ∈ Th,

Qh has the property that x ∈ Q, dist(x, ∂Q) ≥ h implies x ∈ Qh ,
(1.10)

where Tk are disjoint open simplices and Λh is a finite set of indices. We always

assume that the sequence of meshes is regular in the sense of [9], section 3.1.
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Much of the effort of this contribution is devoted to the construction of grids as

above with additional properties regarding a fixed sequence of functions. The result

of Section 3 is the following.

Theorem 1.3. Let Q ⊂ Rn, n = 2 or n = 3 be a bounded Lipschitz domain, (uε)ε be

a sequence of functions with

uε ⇀ u weakly in H1(Q) for ε→ 0.

Let h > 0 be arbitrary. Then there exists an adapted grid, i.e. Qh ⊂ Q and a

triangulation Th of Qh with the properties (1.10), such that the following compensated

compactness result holds.

For every sequence (qε)ε in L2(Q,Rn) satisfying

qε ⇀ q weakly in L2(Q), (1.11)

f ε := ∇ · qε → f strongly in H−1(T ), for all T ∈ Th (1.12)

holds

lim
ε→0

∫
Qh

qε · ∇uε dx =

∫
Qh

q · ∇u dx. (1.13)

Let us describe assumption (1.12) more precisely. For a fixed simplex T , we

consider the distribution f ε := ∇ · qε : H1
0 (T ) → R, a linear form that acts on

test-functions with vanishing boundary values. For this reason, assumption (1.12)

contains no information on the divergence of qε along the boundary of the simplex

T . The crucial point in the formulation of the theorem is therefore the choice of an

appropriate grid Th. If Th is chosen such that the sequence uε has good regularity

properties on all boundary pieces ∂T , then this additional information on uε can

compensate for the lack of information on qε.

2 The needle problem approach on adapted grids

2.1 Discretization and the solution Uh

For arbitrary h > 0 we want to discretize Q with simplices. Since Q is, in general,

not a polygonal domain, we discretize only a smaller, polygonal domain Qh ⊂ Q as

described in (1.10). For this triangulation, we consider the finite element space of

continuous and piecewise linear functions with vanishing boundary values,

Yh :=
{
φ ∈ H1

0 (Q) : φ|Tk is affine ∀Tk ∈ Th, φ ≡ 0 on Q \Qh

}
.

With the matrix a∗ ∈ Rn×n of Definition 1.1, with f ∈ L2(Q) and the affine boundary

condition ψ, we consider the following approximate problem.

Find Uh ∈ ψ + Yh with

∫
Q

(a∗∇Uh) · ∇φ =

∫
Q

fφ, ∀φ ∈ Yh. (2.1)

The following comparison is a standard observation for finite element approximations.
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Lemma 2.1 (Comparison of Uh and u∗). There exists a unique solution Uh of (2.1).

For an affine boundary condition ψ there holds

Uh ⇀ u∗ in H1(Q) (2.2)

for h→ 0, where u∗ is the solution of (1.8).

Proof. Existence and uniqueness of solutions Uh together with uniform estimates

in H1(Q) follow from the Lax-Milgram theorem, applied in the space Yh. Weak

convergence of a subsequence follows by compactness. The unique characteriza-

tion of the limit is a consequence of the fact that the L2-orthogonal projections

Ph : H1
0 (Q) → Yh ⊂ H1

0 (Q) satisfy Ph(φ) → φ for h → 0, strongly in H1(Q), for

all φ ∈ H1
0 (Q).

Our next aim is to transform the right hand side f into jump conditions across

edges of the grid Th. We will extract the relevant information on jumps from the

finite element solution Uh of system (2.1). We denote the set of interior interfaces by

Γh and the interface of two simplices Tk and Tj by Γkj,

Γh :=

(⋃
k

∂Tk

)
\∂Qh =

⋃
k<j

Γkj, Γkj := T k ∩ T j .

We furthermore use the notation ν(k) for the outer normal to Tk on ∂Tk. For a function

f ∈ L2(Q;Rn), such that f |Tk has a trace on ∂Tk for all k, the jump across Γkj is

defined as

JfKkj := f |Tk · ν(k) + f |Tj · ν(j) =
(
f |Tk − f |Tj

)
· ν(k).

By definition, there holds JfKkj = JfKjk. We consider the jump as a scalar function

on Γh. With the solution Uh of (2.1), we define gh : Γh → R as the function

gh|Γkj := Ja∗∇UhKkj. (2.3)

The gradients ∇Uh are constant in each simplex Tk, hence gh : Γh → R is constant on

each interface Γkj.

Remark 2.2. The finite element solution Uh was defined in (2.1) with f . We can

equivalently characterize Uh with gh as the unique solution of

Uh ∈ ψ + Yh, with Ja∗∇UhKkj = gh|Γkj ∀k < j. (2.4)

Problem (2.4) is equivalent to problem (2.1). This is a consequence of the fact that

the jump conditions determine piecewise affine functions uniquely: for all U, V ∈ Yh

J∇UKkj = J∇V Kkj, ∀ k 6= j implies U ≡ V.

The remark indicates that the right hand side f has been transformed into the

jump condition gh. This is even more clear with the observation that, for all φ ∈ Yh,∫
Q

fφ =

∫
Q

a∗∇Uh · ∇φ =
∑
k

∫
∂Tk

(a∗∇Uh · ν(k))φ =
∑
k<j

∫
Γkj

Ja∗∇UhKkjφ =

∫
Γh

ghφ,

(2.5)

since a∗∇Uh is constant in each Tk. Considering only functions φ ∈ Yh, we have

therefore equivalently replaced f ∈ L2(Q) by ghHn−1|Γh ∈ H−1(Q).
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2.2 Approximation property of the needle problem

Until now, we considered the original problem with solution uε and a discrete problem

with solution Uh. The needle problem lies in between: we search for a function uεh
which solves the original problem in each simplex, but we demand that it is affine

on all interfaces. The above transformation of f into jump conditions gh is made in

order to reduce the problem to harmonic solutions in each simplex. In the subsequent

definition we assume that a discretization of Qh ⊂ Q is given as in (1.10).

Definition 2.3 (The needle problem). We are given a Lipschitz domain Q ⊂ Rn, a

triangulation Th of Qh ⊂ Q with interior interfaces Γh, and a piecewise affine function

ψ prescribing a boundary condition. We introduce the function space

Nh :=
{
φ ∈ H1

0 (Q) : φ|∂Tk is affine for all Tk ∈ Th, φ ≡ 0 on Q \Qh

}
.

For a given function gh : Γh → R, the needle problem is to find uεh ∈ ψ + Nh such

that ∫
Q

aε∇uεh · ∇φ =

∫
Γh

ghφ ∀φ ∈ Nh . (2.6)

We observe that, for gh ∈ L2(Γh,R), the trace theorem implies ghHn−1|Γh ∈
H−1(Q). In particular, in that case, the Lax-Milgram theorem is applicable and

yields the unique existence of a solution uεh ∈ ψ +Nh of the needle problem.

A formulation of (2.6) on single simplices is as follows: we search for uεh ∈ ψ+Nh
with

−∇ · (aε∇uεh) = 0 in Tk, ∀Tk ∈ Th ,∫
Γh

(Jaε∇uεhK− gh)φ = 0 ∀φ ∈ Nh.
(2.7)

Indeed, from equation (2.7) we calculate for φ ∈ Nh∫
Q

aε∇uεh · ∇φ =
∑
k

∫
Tk

aε∇uεh · ∇φ =

∫
Γh

Jaε∇uεhKφ =

∫
Γh

ghφ.

A similar calculation shows that every solution of (2.6) solves (2.7).

The name needle problem is chosen for the following reason. We think of a two-

dimensional domain Q and of functions u : Q → R, which we consider as height

functions that describe a two-dimensional surface above Q. In the needle problem

we search for a surface that minimizes the Dirichlet energy corresponding to aε, but

we want the surface to contain a straight segment above each Γkj. We imagine the

surface like a soap-film containing thin needles which force the free boundary to follow

straight segments at certain places.

Definition 2.4. We introduce projections Fh : Nh → Yh ⊂ Nh as follows: a function

u ∈ Nh (which is piecewise affine on edges) is mapped to the piecewise affine extension

of the values of u on edges. More precisely, Fh(u) : Q→ R is the function

Fh(u) ∈ Yh, Fh(u)|Γh = u|Γh . (2.8)

We use the construction also in affine spaces and define Fψ
h : ψ + Nh → ψ + Yh as

Fψ
h (u) := ψ + Fh(u− ψ).
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Some useful properties of the projections Fh are collected in Lemma 2.5 below. At

this point, we want to observe the following consequence of the above constructions:

for solutions uεh of the needle problem and arbitrary φ ∈ Nh holds∫
Q

aε∇uεh · ∇φ
(2.6)
=

∫
Γh

ghφ
(2.8)
=

∫
Γh

ghFh(φ)
(2.5)
=

∫
Q

fFh(φ). (2.9)

This shows once more that the needle problem (2.6) can be regarded as a variant of

the original problem with right hand side f in the space Nh.

Lemma 2.5. We study the projections Fh : Nh → Yh ⊂ Nh of Definition 2.4. These

projections and their affine counterparts Fψ
h have the following properties.

1. ∇Fh(u)(x) = −
∫
Tk

∇u for x ∈ Tk.

2. Let uε ∈ Nh, uε ⇀ u weakly in H1(Q) for fixed h > 0. Then

Fh(u
ε) ⇀

ε
Fh(u), weakly in H1(Q).

3. Let uh ∈ Nh, uh ⇀ u weakly in H1(Q) for h→ 0. Then

Fh(uh) ⇀
h
u, weakly in H1(Q).

Proof. Concerning property 1, we first note that ∇Fh(u) is indeed a constant vector

in each simplex. The claim follows from the following calculation for a direction ej,

j = 1, ..., n, and a simplex Tk with exterior normal ν,

−
∫
Tk

∂jFh(u) =
1

|Tk|

∫
∂Tk

Fh(u) ej · ν =
1

|Tk|

∫
∂Tk

u ej · ν = −
∫
Tk

∂ju .

For property 2 we note that the projection is bounded in H1(Q). Indeed, for

u ∈ Nh, by Poincaré’s and Jensen’s inequalities

‖Fh(u)‖2
H1(Q) ≤ C‖∇Fh(u)‖2

L2(Q) = C
∑
k

∫
Tk

∣∣∣∣−∫
Tk

∇u
∣∣∣∣2 ≤ C

∫
Q

|∇u|2.

In particular, for sequences uε ∈ Nh, uε ⇀ u weakly in H1(Q) for ε → 0, we find a

subsequence of Fh(u
ε) which converges weakly in H1(Q) to a limit F ∈ Yh. We used

here that Yh is weakly closed in H1(Q). We can identify the limit to be F = Fh(u)

by noting that, for all Tk ∈ Th and all x ∈ Tk

∇Fh(u
ε)(x) = −

∫
Tk

∇uε →
ε
−
∫
Tk

∇u = ∇Fh(u)(x).

In order to show property 3, let Nh 3 uh ⇀ u weakly in H1(Q). As noted above,

the sequence Fh(uh) is also bounded in H1(Q). We can thus find a subsequence such

that Fhl(uhl) ⇀ F in H1(Q).
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In order to identify the limit as F = u, we choose an arbitrary test-function

φ ∈ C∞c (Q;Rn). By density of the piecewise constant functions in L2, we find a

sequence (φh) of piecewise constant functions with φh → φ strongly in L2(Q;Rn). We

compute ∣∣∣∣∫
Q

∇Fh(uh) · φ−
∫
Q

∇u · φ
∣∣∣∣

=

∣∣∣∣∫
Q

∇Fh(uh) · φh +

∫
Q

∇Fh(uh) · (φ− φh)−
∫
Q

∇u · φ
∣∣∣∣

≤
∣∣∣∣∫
Q

∇uh · φh −
∫
Q

∇u · φ
∣∣∣∣+ ‖∇Fh(uh)‖L2‖φ− φh‖L2 .

The first term on the right-hand side converges to zero since ∇uh ⇀ ∇u weakly and

φh → φ strongly in L2(Q;Rn), the second term vanishes by boundedness of the first

factor and strong convergence of φh. We can therefore conclude F = u.

The definition of Fψ
h implies that properties remain valid on affine subspaces.

Our next aim is to compare the original solution uε with the needle problem

solution uεh. This comparison is provided with the following Proposition.

Proposition 2.6 (Comparison of uεh and uε). Let coefficients aε ∈ L∞(Q;Rn×n),

n = 2 or n = 3, satisfy the ellipticity (1.2) and let ψ be an affine function. Let

uε ∈ H1(Q) be the weak solution of the original problem (1.5), and let uεh ∈ ψ+Nh be

solutions to the needle problem (2.6) with gh of (2.3). Furthermore, we assume that

the grids Th are adapted grids for (uε)ε, such that the assertion of Theorem 1.3 holds.

Then

lim
h→0

lim
ε→0
‖uεh − uε‖H1(Q) = 0. (2.10)

The idea of the proof is to use (uε−uεh) as a test-function for the original problem

(1.5) and in the needle problem (2.6), and to take the difference. We note that this

test function satisfies a homogeneous Dirichlet condition. By ellipticity of aε, the

result provides an upper bound for ‖uε−uεh‖2
H1(T ). It remains to show that the upper

bound vanishes in the limit as ε→ 0 and then h→ 0.

Proof. All solution sequences of the proposition are bounded in H1(Q). This allows

to choose a subsequence and limit functions such that, as ε→ 0,

uε ⇀ u, uεh ⇀ uh weakly in H1(Q), (2.11)

∇uεh ⇀ ∇uh, qεh := aε∇uεh ⇀ qh weakly in L2(Q). (2.12)

We note that the distributional divergence of qεh vanishes in each simplex Tk by (2.7).

Since the needle problem does not allow to use uε as a test function, we must apply

a projection. We use the L2(Q)-orthogonal projection Ph : L2(Q)→ Yh ⊂ L2(Q) and

the affine counterpart Pψ
h : L2(Q)→ ψ + Yh defined by Pψ

h (u) := ψ + Ph(u− ψ). As

a consequence of (2.11), we have the strong convergence uε → u in L2(Q), and hence

also Pψ
h (uε) → Pψ

h (u) in L2(Q). Since Pψ
h maps into a space of finite dimension, the

convergence is in all norms, in particular, as ε→ 0, also

Pψ
h (uε)→ Pψ

h (u) in H1(Q).
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We can now start the computations. For some α0 > 0 that combines the ellipticity

constant α1 > 0 and the constant from Poincaré’s inequality, we find

α0‖uε − uεh‖2
H1(Q) ≤

∫
Q

aε∇(uε − uεh) · ∇(uε − uεh)

=

∫
Q

aε∇uε · ∇(uε − uεh)−
∫
Q

aε∇uεh · ∇(uε − uεh)

(1.5)
=

∫
Q

f (uε − uεh)−
∫
Q

aε∇uεh · ∇(uε − Pψ
h (uε))−

∫
Q

aε∇uεh · ∇(Pψ
h (uε)− uεh)

(2.9)
=

∫
Q

f (uε − uεh)−
∫
Q

aε∇uεh · ∇(uε − Pψ
h (uε))−

∫
Q

f Fh(P
ψ
h (uε)− uεh)

=

∫
Q

f (uε − Pψ
h (uε)) +

∫
Q

f (Fψ
h (uεh)− uεh)−

∫
Q

qεh · ∇(uε − Pψ
h (uε)).

In the last line we only re-ordered terms and used Fψ
h ◦ P

ψ
h (uε) = Pψ

h (uε). Our aim

is to show that the right hand side vanishes as ε → 0, and then h → 0. Concerning

the first integral we have

lim
h→0

lim
ε→0

∫
Q

f (uε − Pψ
h (uε)) = lim

h→0

∫
Q

f (u− Pψ
h (u)) = 0.

In order to treat the second integral we select a subsequence h → 0 such that

uh ⇀ ũ for h→ 0, weakly in H1(Q) for some limit ũ. This allows to use Lemma 2.5,

first property 2 together with (2.11), and then property 3. We find

lim
ε→0

∫
Q

f (Fh(u
ε
h)− uεh) =

∫
Q

f (Fh(uh)− uh)→ 0 for h→ 0.

Concerning the third integral, we must use a div-curl lemma. The integrand is

the product of the functions qεh = aε∇uεh ⇀ qh in L2(Q), and of ∇(uε − Pψ
h (uε)) ⇀

∇(u − Pψ
h (u)) weakly in L2(Q), both convergences for ε → 0. On the other hand,

we treat the product of a weakly convergent sequence qεh satisfying ∇ · qεh = 0 with a

weakly convergent sequence of gradients. The grid is adapted to the sequence uε, such

that the assertion of the div-curl Theorem 1.3 can be used. Relation (1.13) allows to

calculate the limit

lim
ε→0

∫
Q

qεh · ∇(uε − Pψ
h (uε)) = lim

ε→0

∫
Qh

qεh · ∇(uε − Pψ
h (uε)) =

∫
Qh

qh · ∇(u− Pψ
h (u)).

We now use that qh is bounded in L2(Q) and Pψ
h (u)→ u converges strongly in H1(Q)

to conclude

lim
h→0

lim
ε→0

∫
Q

qεh · ∇(uε − Pψ
h (uε)) = lim

h→0

∫
Q

qh · ∇(u− Pψ
h (u)) = 0.

This implies smallness of the third integral and verifies the claim of the proposition.

We note that, at this point, we have already verified the smallness conditions re-

garding vertical arrows in the diagram of (1.9), namely limh→0 limε→0 ‖uε−uεh‖H1(Q) =

0 of the above Proposition, and Uh ⇀
h
u∗ in H1(Q) in Lemma 2.1. We emphasize that

we used one non-trivial ingredient: the fact that the triangulation can be chosen

adapted to the sequence uε and the corresponding div-curl Theorem 1.3.
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2.3 Stabilization result and proof of Theorem 1.2

To conclude the diagram of (1.9), it remains to check the horizontal arrow. We want

to verify for the needle problem solution uεh and the finite elements solution Uh the

weak H1-convergence uεh ⇀
ε
Uh. This convergence result is quite straightforward once

that we know, using the notation of Definition 1.1, the L2-convergence ∇uε ⇀ ξ and

aε∇uε ⇀ a∗ξ for some ξ in each triangle. The important point here is that the weak

limits are constant functions; we refer to this fact as stabilization. The verification of

the stabilization is the main purpose of this section. The conclusion of Theorem 1.2

is then performed easily with Lemma 2.10.

As a preparation, we observe that the averaging property (1.4) extends to se-

quences of affine boundary conditions.

Lemma 2.7. Let the coefficients aε allow averaging of the constitutive relation with

the matrix a∗. Then, for every simplex T ⊂ Q and every sequence Uξε(x) = ξε·x+bε →
Uξ(x) = ξ · x+ b, the solutions uεT,ξε of

−∇ · (aε∇uεT,ξε) = 0 in T,

uεT,ξε = Uξε on ∂T,
(2.13)

satisfy

lim
ε→0
−
∫
T

aε∇uεT,ξε = a∗ξ. (2.14)

Proof. It suffices to compare uεT,ξε and uεT,ξ. For the solutions uεT,ξ, the averages

converge as in (2.14) by the averaging property (1.4). On the other hand, the difference

uε − ũε is small in H1(T ). This smallness follows by linearity and ellipticity of the

equation.

Proposition 2.8 (Stabilization). Let the coefficients aε ∈ L∞(Q;Rn×n) satisfy (1.2)

and allow averaging with matrix a∗ in the sense of Definition 1.1. Let T ⊂ Rn be a

simplex, Uξ(x) = ξ · x+ b an affine function, and uε a sequence of weak solutions of

−∇ · (aε∇uε) = 0 in T,

uε = Uξ on ∂T.
(2.15)

We denote the limits of functions and fluxes by u and q, i.e. we assume

uε ⇀ u weakly in H1(T,R),

qε := aε∇uε ⇀ q weakly in L2(T ;Rn).

Then u is affine and q is constant. More precisely, there holds

∇u ≡ ξ in T, (2.16)

q ≡ a∗ξ in T. (2.17)

Proof. In this proof, we consider sequences uε on a fixed simplex T . The simplex T

now plays the role of the arbitrary domain Q of Subsection 2.2, and our aim is to use
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the results obtained so far. We fix a sequence h ↘ 0. We choose polygonal domains

Th ⊂ T and triangulations of Th,

Sh := {Sk}k∈Λh
be a triangulation of Th,

where Sk are simplices such that max{diam(Sk)| k ∈ Λh} < h and Th ⊂ T as in (1.10).

By Theorem 1.3 we may assume that, for all h, the subdivision Sh is an adapted grid

for uε and that the div-curl property (1.13) holds.

Let (uεh)ε be a subsequence of solutions of the needle problem (2.6) on T with

vanishing jump conditions g ≡ 0 and with boundary condition ψ = Uξ. We select

a subsequence ε → 0 and limit functions uh such that, for all h in the sequence,

uεh ⇀ uh for ε→ 0, weakly in H1(T ). We note that all functions uεh, and thus also uh,

are affine on all ∂Sk. The needle problem comparison result of Proposition 2.6 yields

‖u− uh‖2
H1 ≤ lim supε→0 ‖uε − uεh‖2

H1 ≤ η(h)→ 0 for h→ 0.

Proof of relation (2.16). Corresponding to the needle problem solution uεh, we

consider the piecewise affine functions ūεh := Fψ
h (uεh), and (after selection of a weakly

convergent subsequence) their weak limits ūh ∈ H1(T ). We use the abbreviations

ξεk := ∇ūεh|Sk → ∇ūh|Sk =: ξk. For fixed h, we consider a test-function φ in the

corresponding needle space: φ is continuous on T̄ , vanishes on T \Th, and is piecewise

affine on every simplex Sk. We calculate, exploiting that ∇φ is constant on each

simplex Sk, for ε→ 0,

0
(2.6)
=

∫
T

aε∇uεh∇φ =
∑
k

∫
Sk

aε∇uεh∇φ
(2.14)→

∑
k

∫
Sk

a∗ξk∇φ =

∫
T

a∗∇ūh∇φ .

We conclude that ūh is a finite element solution of −∇ · (a∗∇ūh) = 0 with affine

boundary condition Uξ, which implies ūh = Uξ. Property 2 of Lemma 2.5 implies

ūεh = Fψ
h (uεh) ⇀ Fψ

h (uh) in H1, hence Uξ = ūh = Fψ
h (uh). The convergence uh → u

in H1(T ) from the needle problem estimate allows to conclude, using property 3 of

Lemma 2.5, Fψ
h (uh) ⇀ u in H1 for h→ 0, and hence u = Uξ. This shows (2.16).

Proof of relation (2.17). We consider, after selection of a subsequence, the limiting

fluxes qε = aε∇uε ⇀ q and qεh := aε∇uεh ⇀ qh, with weak convergence in L2(T ) for

ε→ 0. Lower semi-continuity of the norm and the estimate for the needle problem of

Proposition 2.6 yields limh→0 ‖q − qh‖L2 ≤ limh→0 lim infε→0 ‖aε∇uε − aε∇uεh‖L2 = 0.

Our aim is to show q ≡ a∗ξ.

We use an arbitrary function ψ ∈ C1
c (T ), which we approximate by functions

ψh : T → R that vanish on T \Th and are piece-wise constant in each simplex Sk ⊂ T

(for the triangulation corresponding to h), with ψh → ψ strongly in L2(T ) for h→ 0.

We use once more Lemma 2.7 in each Sk, where uεh satisfies affine boundary conditions

with slope ξεk → ξ. We calculate, for ε→ 0,∫
T

qhψh ←
∫
T

aε∇uεhψh =
∑
k

∫
Sk

(aε∇uεh)ψh →
∑
k

∫
Sk

a∗ξψh =

∫
T

a∗ξψh .

The strong L2-convergences qh → q and ψh → ψ yield q ≡ a∗ξ, since ψ was arbitrary.

This concludes the proof of Proposition 2.8.
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The result of the above proposition remains valid for a convergent sequence of

affine boundary conditions. We note this direct consequence for later use.

Corollary 2.9. Let the coefficients aε satisfy (1.2) and allow averaging with matrix

a∗ in the sense of Definition 1.1. We study a simplex T and a convergent sequence of

affine functions Uξε(x) = ξε · x+ bε → Uξ(x) = ξ · x+ b. Then, the solutions (wε) of

−∇ · (aε∇wε) = 0 in T

wε = Uξε on ∂T

satisfy

∇wε ⇀ ξ weakly in L2(T ),

aε∇wε ⇀ a∗ξ weakly in L2(T,Rn).

Proof. We use the solutions uε of

−∇ · (aε∇uε) = 0 in T

uε = Uξ on ∂T

as studied in Proposition 2.8. In view of that proposition, it suffices to derive smallness

in H1(T ) of uε−wε. We multiply the equation for uε−wε with (uε−Uξ)− (wε−Uξε),
which vanishes on the boundary ∂T . By Hölder’s inequality and uniform ellipticity

of aε, there exists C > 0 such that

‖uε − wε‖2
H1(T ) ≤ C‖Uξ − Uξε‖2

H1(T ) → 0.

This yields the claim.

The subsequent lemma shows the missing convergence in the diagram of (1.9). It

hence concludes the proof of Theorem 1.2.

Lemma 2.10 (Comparison of needle problem and discretized problem). Let the do-

main Q, coefficients aε, f and ψ be as in Theorem 1.2. Let h > 0 be fixed, Uh the

solution of the auxiliary problem (2.1) and gh as in (2.3). Let uεh be the solution of

the needle problem (2.6). Then, as ε→ 0,

uεh ⇀ Uh weakly in H1(Q,R),

aε∇uεh ⇀ a∗∇Uh weakly in L2(Q,Rn).

Proof. Let uεh be the solution of (2.6) and let uh be any H1(Q)-weak limit point

of (uεh)ε, as ε → 0. As solutions of the needle problem, the functions uεh are affine

on the boundaries of each simplex. For fixed h and fixed simplex Tk, we denote

the corresponding affine function by U
(k)
ξεk

, and find further subsequences ε → 0 such

that these functions converge for each simplex to affine functions U
(k)
ξk

. Corollary 2.9

implies, for all Tk ∈ Th, as ε→ 0,

∇uεh ⇀ ξk weakly in L2(Tk),

aε∇uεh ⇀ a∗ξk weakly in L2(Tk).
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In particular, uh ∈ Yh. We now use an arbitrary test-function φ ∈ Yh and use the

needle problem characterization (2.9) to find, for ε→ 0,∫
Q

fφ =

∫
Q

aε∇uεh · ∇φ→
∫
Q

a∗∇uh · ∇φ.

By uniqueness of solutions of the discrete problem (2.1), we find uh = Uh and have

thus verified the claim.

3 Adapted grids

This section is devoted to the proof of Theorem 1.3. We consider an n-dimensional

domain Ω and a fixed family of functions uk : Ω → R, bounded in H1(Ω). Since we

will treat integrals over objects of different dimensions, we write Lm and Hm for the

m-dimensional Lebesgue- and Hausdorff-measure. Our boundedness assumption on

the sequence uk is then written as∫
Ω

|uk(z)|2 dLn(z) +

∫
Ω

|∇uk(z)|2 dLn(z) ≤ C0 ∀ k ∈ N, (3.1)

for some C0 > 0. Our interest in this section is to find (many) simplices contained in

Ω, such that, loosely speaking, ∇uk is L2-bounded on the faces. Such a boundedness

implies compactness of the boundary values in H1/2 and allows to construct extensions

of the boundary values that are strongly convergent in H1. The fact that on almost all

(n− 1)-dimensional hyperplanes the functions ∇uk are L2-bounded is a consequence

of Fubini’s theorem.

In the construction of strongly convergent extensions we must be careful in the

treatment of the (n − 2)-dimensional edges of the simplices, the boundaries of the

(n−1)-dimensional faces. In order to treat these boundaries, we demand additionally

that the averages of |∇uk|2 over small neighborhoods of edges are bounded. To make

such a property precise, we use a sequence of positive numbers δk → 0, these numbers

will be radii of small balls or cylinders.

3.1 Adapted grids in two dimensions

This subsection is devoted to the construction of adapted grids for the case n = 2.

Some concepts are independent of the dimension and are treated here for general

dimension as a preparation for n = 3. We always assume that we are given a sequence

of positive numbers δk → 0 and a sequence of functions uk : Ω→ R satisfying (3.1).

Definition 3.1 (Points of typical average). Let Ω ⊂ Rn be an open domain, δk → 0,

and (uk)k be a sequence in H1(Ω). We say that x ∈ Ω is a point of typical average

for (δk)k and (uk)k if the following holds. There exists a subsequence kj → ∞ and
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real numbers cx and Mx such that

−
∫
Bδkj

(x)

|∇ukj(z)|2 dLn(z) ≤Mx ∀ kj (3.2)

ckjx := −
∫
Bδkj

(x)

ukj(z) dLn(z) → cx for kj →∞. (3.3)

We say that (kj)j is a good subsequence for the point x when (3.2) and (3.3) are

satisfied along this subsequence for some cx and Mx.

Since uk is not defined outside Ω, we use the convention that integrals
∫
B

denote

integrals
∫
B∩Ω

. Since Ω is open, the balls Bδk(x) are contained in Ω for large k.

We note that a point of typical average is similar to a Lebesgue point — but the

point has good properties for a whole sequence of functions.

Lemma 3.2 (Many points of typical average). Let Ω ⊂ Rn be an open domain,

δk → 0, and (uk)k be a bounded sequence in H1(Ω). Then almost every point x ∈ Ω

is a point of typical average for (δk)k and (uk)k.

Proof. For x ∈ Ω and k ∈ N we set

F (k, x) := −
∫
Bδk (x)

|uk|2 + |∇uk|2 . (3.4)

As a first step of the proof we verify the following. Claim 1. For arbitrary ϑ > 0 there

exists a small exceptional set E ⊂ Ω of Lebesgue measure |E| ≤ ϑ with the property

∀x ∈ Ω \ E ∃ subsequence (kj)j : F (kj, x) is bounded. (3.5)

Once that Claim 1 is verified, the assertion of the lemma follows easily. Indeed,

since the set E has arbitrarily small measure, for almost every x ∈ Ω the boundedness

of F (k, x) along a subsequence is satisfied. This shows (3.2) and, because of |uk| ≤
1+ |uk|2, it proves also the boundedness of the c

kj
x in (3.3) for almost every point along

an appropriate subsequence. By boundedness of c
kj
x , taking a further subsequence, we

find additionally a limit value cx and the convergence as claimed in (3.3). This shows

that almost every point is a point of typical average and concludes the proof of the

lemma.

In order to verify Claim 1, we fix an arbitrary ϑ > 0. For a contradiction argument

we assume that there exists a (large) exceptional set E ⊂ Ω of measure |E| > ϑ,

consisting of points x such F (kj, x) is unbounded along every subsequence (kj)j. In

order to derive a contradiction we fix a constant M ∈ R with M > 3n+1C0/ϑ, where

C0 is the H1(Ω)-bound of the sequence uk. Let now x ∈ E be arbitrary. Since along

all subsequences kj the values F (kj, x) are unbounded, there exists K(x) ∈ N such

that

F (k, x) ≥M for all k ≥ K(x). (3.6)

We choose with K(x) := 1 + max{k ∈ N|F (k, x) < M} the minimal K(x) with this

property. With this choice, K : Ω → N is lower semi-continuous, as can be seen
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with a brief contradiction argument: assume that for a sequence xj → x0 there exists

k̄ ∈ N such that K(xj) → k̄ < K(x0). Then F (k̄, xj) ≥ M and F (k̄, x0) < M

for all sufficiently large j, a contradiction to continuity of x 7→ F (x, k̄). The lower

semi-continuity of K implies, in particular, that K is (Borel-)measurable.

We now consider the measurable sets

EN := {x ∈ E : K(x) ≤ N},

such that

E =
⋃
N∈N

EN , EN+1 ⊃ EN , and hence |E| = lim
N→∞

|EN |. (3.7)

By hypothesis we have |E| > ϑ, thus we find N ∈ N with |EN | > ϑ/2. By measura-

bility of EN , there exists a compact set ẼN satisfying

ẼN ⊂ EN , |ẼN | >
ϑ

3
. (3.8)

Corresponding to the covering

ẼN ⊂
⋃
x∈ẼN

BδN (x)

we find a finite sub-covering by compactness of ẼN . We can apply an elementary

covering lemma (see, e.g., [25], Lemma 7.3) to select a finite set of points (xm)m such

that

ẼN ⊂
⋃
m

B3δN (xm), BδN (xm1) ∩BδN (xm2) = ∅, for all m1 6= m2 . (3.9)

Up to choosing a new, possibly bigger, value for N , it is not restrictive to assume that

d(ẼN , ∂Ω) > 1/N, so that BδN (xm) ⊂ Ω. Recalling the H1-boundedness (3.1) of the

sequence, we can now calculate with k = N

C0 ≥
∫

Ω

{
|uk|2 + |∇uk|2

}
≥
∫
⋃
mBδN (xm)

{
|uk|2 + |∇uk|2

}
(3.9)
=
∑
m

∫
BδN (xm)

{
|uk|2 + |∇uk|2

} (3.6)

≥
∑
m

|BδN (xm)|M

≥

∣∣∣∣∣⋃
m

B3δN (xm)

∣∣∣∣∣M3n (3.9)

≥ |ẼN |
M

3n

(3.8)

≥ M
ϑ

3n+1
> C0,

where we used M > 3n+1C0/ϑ in the last step. This provides the desired contradiction.

We exploited in the above calculation that xm ∈ ẼN ⊂ EN implies inequality (3.6)

for k = N .

We next study conditions for segments. For points x, y ∈ Rn we use the notation

[x, y] := {θx+ (1− θ)y : θ ∈ [0, 1]} and refer to [x, y] as the segment to the pair (x, y).

Loosely speaking, we want to show that, for most segments Γ ⊂ Ω, the sequence of

gradients ∇uk|Γ is bounded in L2(Γ).
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Let us start with a general comment on the construction. With uk as above, the

L2(Ω)-function ∇uk is specified almost everywhere, hence the values of the function

on segments Γ are specified almost everywhere on the segment, at least for almost

every segment. In this sense, we can consider integrals of the gradient over segments.

Later on, we want to relate the gradient to traces. For n = 2, given a segment Γ,

we consider the H1/2(Γ)-functions uk|Γ and their distributional (tangential) gradients

∇τuk|Γ. For smooth functions, these coincide with the projection of ∇uk to the

tangential space of the segment Γ. With smooth test-functions and an integration

over families of parallel segments one can verify that the two constructions yield the

same function ∇τuk|Γ for almost all segments Γ.

Definition 3.3 (Typical segments). For Ω ⊂ Rn open, given a sequence δk → 0 and

a bounded sequence (uk)k ∈ H1(Ω), we say that a segment Γ = [x, y] is a typical

segment if the following holds: There exists a subsequence kj → ∞ and a constant

MΓ > 0 such that

‖ukj |Γ‖2
L2(Γ) + ‖∇τukj |Γ‖2

L2(Γ) ≤MΓ. (3.10)

We furthermore demand that the end-points x and y are points of typical average and

that the subsequence (kj)j is a good subsequence for x and for y.

A subsequence (kj)j with the above properties is called a good subsequence for the

segment Γ.

Lemma 3.4 (Many typical segments). Let Ω ⊂ Rn be a convex domain, δk → 0, and

let (uk)k ⊂ H1(Ω) be a bounded sequence. Then, for almost every x ∈ Ω, there is a

good set Gx ⊂ Ω of full measure |Gx| = |Ω|, such that for all y ∈ Gx the segment [x, y]

is a typical segment according to Definition 3.3.

Proof. Let us first observe that almost every x ∈ Ω is a point of typical average by

Lemma 3.2. We fix such a point x and the subsequence δkj and apply the Lemma

again. We find that almost every y ∈ Ω is a point of typical average. This provides,

in particular, a good subsequence for both x and y.

We additionally have to verify that almost every segment (chosen in the described

way) satisfies (3.10). We abbreviate the integrands as fk(x) := |uk|2(x) + |∇uk|2(x),

a sequence of non-negative functions that are defined almost everywhere. The family

fk satisfies
∫

Ω
fk ≤ C0. With the diameter diam(Ω) of Ω we calculate for segments∫

Ω

∫
Ω

∫
[x,y]

fk(z) dH1(z) dy dx ≤ diam(Ω)

∫
Ω

∫
Ω

∫ 1

0

fk(θx+ (1− θ)y) dθ dy dx

= diam(Ω)

∫ 1/2

0

∫
Ω

{∫
Ω

fk(θx+ (1− θ)y) dy

}
dx dθ

+ diam(Ω)

∫ 1

1/2

∫
Ω

{∫
Ω

fk(θx+ (1− θ)y) dx

}
dy dθ

≤ diam(Ω)

∫ 1/2

0

∫
Ω

2nC0 dx dθ + diam(Ω)

∫ 1

1/2

∫
Ω

2nC0 dx dθ = diam(Ω)|Ω|2nC0,

where, in the last inequality, we used the change of variables y 7→ θx+(1−θ)y for the

first integral, and the change of variables x 7→ θx + (1 − θ)y for the second integral.
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This calculation provides that the family of maps

F k : Ω× Ω→ R, (x, y) 7→
∫

[x,y]

fk(z) dH1(z)

is bounded by some constant C1 > 0 in L1(Ω×Ω). Let E ⊂ Ω×Ω be the (exceptional)

set of pairs (x, y) such that there is no subsequence (kj)j and no constant MΓ with

F kj((x, y)) ≤ MΓ. Let M > 0 be arbitrary. We consider the sets EN := {(x, y) ∈
Ω × Ω : F k((x, y)) ≥ M ∀k ≥ N}. These sets satisfy E ⊂

⋃
N EN , EN+1 ⊃ EN , and

|EN | ≤ C1/M , hence also |E| ≤ C1/M . Since M was arbitrary, this shows that E has

measure 0.

For triangles T ⊂ R2 with three typical segments as sides, we can now show the

main tool for the compensated compactness result.

Proposition 3.5 (Strongly convergent extensions in R2). Let Ω ⊂ R2 be a convex

domain, δk → 0 be fixed, and let (uk)k ⊂ H1(Ω) be a bounded sequence. Let T be

a triangle, given by a triple (x1, x2, x3), such that all segments [xl, xm], l 6= m, are

typical segments for uk, and let (kj)j be a good subsequence for the three segments.

Then there exists a family of functions vkj ∈ H1(T ) and a limit function v ∈ H1(T )

such that

vkj = ukj on ∂T, (3.11)

vkj → v strongly in H1(T ). (3.12)

Proof. In the proof, in order to avoid the subscript of kj, we assume that the whole

sequence k is a good subsequence for uk. Let T be a triangle as described, our aim is

to construct the extensions vk on the basis of the fact that (3.2), (3.3), and (3.10) are

satisfied for the nodes and the sides.

Without loss of generality, we can assume in the sequel that ckxl = cxl = 0 for all k

and l = 1, 2, 3, where ckxl and cxl are the averages around nodes xl as in (3.3). Indeed,

in the general case, we replace uk by ũk = uk − αk, where αk is the affine function

satisfying

ckxl = −
∫
Bδk (xl)

αk(z) dL2(z). (3.13)

Since the sequences ckxl converge in R, the functions αk converge strongly in H1(Ω).

If ṽk is the strongly converging sequence for ũk as in the thesis of Proposition 3.5, we

can set vk := ṽk + αk.

Let φk ∈ C∞(R2, [0, 1]) be a sequence of cut-off functions with

suppφk ⊂
3⋃
l=1

Bδk(xl), φk(ξ) ≡ 1 on
3⋃
l=1

Bδk/2(xl), ‖∇φk‖ ≤
3

δk
. (3.14)

We set ψk := 1−φk and write uk = ukφk+ukψk. The idea of the proof is to show that

ukψk admits a strongly convergent extension with the help of a compact extension

operator E : H1
0 ([xi, xl]) → H1(T ). Concerning an extension of (ukφk)|∂T , we will

show that the family ukφk itself vanishes strongly in H1(T ).
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Claim 1. We treat one of the sides, Γ = [xi, xl]. Our aim is to show that there

exists C > 0 such that

‖(ukψk)|Γ‖H1(Γ) ≤ C. (3.15)

For δ > 0, a set B ⊂ Rn, let Bδ := δB = {x ∈ Rn : x/δ ∈ B}. By a simple rescaling

argument applied to the classical trace and Poincaré inequalities, for all bounded open

sets B ⊂ Rn with Lipschitz boundary, there exists a constant K = K(B) such that

δ

∫
∂Bδ

|u|2 +

∫
Bδ

|u|2 ≤ δ2K

∫
Bδ

|∇u|2, (3.16)

for all δ > 0 and for all functions u ∈ H1(Bδ) such that
∫
Bδ
u = 0. The same estimate

holds when the boundary integral over ∂Bδ is replaced by an integral over another

(n− 1)-dimensional submanifold δS, S ⊂ B.

We now consider the left hand side in (3.15). Regarding the L2-norm we note

that ‖(ukψk)|Γ‖L2(Γ) ≤ ‖uk|Γ‖L2(Γ) ≤ C, holds by (3.10). Regarding the gradient, we

compute

∇τ (ukψk) = ψk∇τuk + uk∇τψk, (3.17)

and note that

‖ψk∇τuk‖L2(Γ) ≤ ‖∇τuk‖L2(Γ) ≤ C, (3.18)

again by (3.10). For the other term we find, using (3.14),

‖uk∇τψk‖2
L2(Γ) ≤

3∑
l=1

‖uk∇τψk‖2
L2(Bδk (xl)∩Γ) ≤

9

δ2
k

3∑
l=1

∫
Bδk (xl)∩Γ

|uk|2dH1 .

With (3.16), exploiting ckxl = 0, we can calculate

1

δ2
k

∫
Bδk (xl)∩Γ

|uk|2 ≤
K

δk

∫
Bδk (xl)

|∇uk|2 = δkK |B1(0)| −
∫
Bδk (xl)

|∇uk|2 ≤ CKδk,

where we used (3.2) in the last inequality, exploiting that xl is a point of typical

average. This concludes the proof of (3.15).

Claim 2. We now construct a strongly convergent extension of ukψk. Using affine

coordinate transformations, it is sufficient to show the following: Let Γ be the hor-

izontal segment Γ = [(0, 0), (π, 0)] ≡ [0, π] ⊂ R2, let ` > 0 be given and let R be

the rectangle (0, π) × (0, `). Let wk ∈ H1(Γ) be a bounded sequence with wk ≡ 0 in

δk/2-neighborhoods of the end-points of Γ. Then there exist extensions wk : R → R
with wk ≡ 0 on ∂R \ Γ and a limit function w such that

wk → w strongly in H1(R). (3.19)

We sketch a proof for this extension result with a Fourier expansion argument. In

order to take Fourier series, we extend the domain with Γ̃ = (0, 2π) to R̃ = Γ̃× (0, `)

and take the odd extension of wk|Γ to Γ̃, which is bounded in H1(Γ̃). Once we have

constructed a 2π-periodic, odd extension w̃k : R̃→ R, the restriction to wk = w̃k|R is

the desired function which vanishes on lateral boundaries.
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Performing all calculations on the original domains we write

wk|Γ(s) =
∑
m∈Z

akme
ims,

which satisfies, using an appropriate equivalent norm,

‖(ukψk)|Γ‖2
H1(Γ) =

∑
m∈Z

|akm|2 |m|2 ≤ C. (3.20)

The harmonic extension (wk)|Γ to R = Γ× (0, `) is then

wk(s, t) :=
∑
m∈Z

akme
imse−mt.

This sequence is bounded in H1(Γ×(0, `)), as can be shown by a direct calculation. We

choose a subsequence k →∞ such that all coefficients akm converge. The corresponding

formal limit function is w,

w(s, t) :=
∑
m∈Z

ame
imse−mt, where am = lim

k→∞
akm. (3.21)

We claim that the strong convergence wk → w in H1(Γ × (0, `)) holds. We compute

for an arbitrary N ∈ N∫ π

0

∫ `

0

|∇wk(s, t)−∇w(s, t)|2 ds dt ≤ C

∫ π

0

∫ `

0

∑
m∈Z

|akm − am|2|m|2e−2mtds dt

≤ C
∑
m∈Z

|akm − am|2|m|2
1

|m|
≤ C

∑
|m|≤N

|akm − am|2|m|+
C

N

(
‖wk‖2

H1 + ‖w‖2
H1

)
≤ C

∑
|m|≤N

|akm − am|2|m|+
C

N
.

Passing to the limit as k →∞, owing to (3.21), we find

lim
k→∞
‖∇wk −∇w‖2

L2(Γ×(0,`)) ≤
C

N
.

Since N ∈ N was arbitrary, this concludes the proof of (3.19). Multiplication of all

wk and of w with a cut-off function provides additionally vanishing boundary values

at the upper boundary (0, π)× {`}.
Claim 3. We finally claim that the extensions ukφk of (ukφk)|∂T converges strongly

to 0 in H1(T ). Indeed, we can compute

∇(ukφk) = φk∇uk + uk∇φk, (3.22)

and use (3.2) to find∫
Bδk (xl)

|∇uk|2|φk|2 dL2 ≤
∫
Bδk (xl)

|∇uk|2 dL2 ≤ CMlδ
2
k.

For the term uk∇φk we use (3.14), the Poincaré inequality (3.16), and (3.2),∫
Bδk (xl)

|uk|2|∇φk|2 ≤
9

δ2
k

∫
Bδk (xl)

|uk|2 ≤ 9K

∫
Bδk (xl)

|∇uk|2 ≤ CMlδ
2
k.

This yields the thesis of Claim 3 and concludes the proof of the proposition.
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We wish to emphasize that the extension of wk|Γ with a Fourier series exploits

that wk vanishes in the nodes. It was in order to cut out the corners in the above

proof that we introduced the notion of a point of typical average.

As a preparation for the three-dimensional case we make a remark on another

possible extension. We will use such an improved extension in the next subsection in

order to extend the two-dimensional extension further into the third dimension.

Lemma 3.6. The extensions vkj of Proposition 3.5 can be chosen such that all seg-

ments Γ = [xi, xl], i 6= l, are also typical segments for vkj , and such that vkj satisfies

additionally, for some number MΓ > 0

−
∫
Bδkj

(Γ)

|∇vkj(z)|2 dL2(z) ≤MΓ ∀j ∈ N. (3.23)

Proof. We analyze the construction of the last proof. One part of the extended func-

tion vk is ukφk. For these contributions, the boundedness (3.23) was actually shown

in Claim 3.

The extension of wk|(0,π) to functions wk on R = (0, π)× (0, `) was performed with

Fourier series. The construction can be altered by using the original function wk|(0,π)

in a δk-strip and then the extension of the above proof, i.e.

w̃k(s, t) =

{
wk(s, 0) if t < δk

wk(s, t− δk) else.

With this choice, in Bδk(Γ), the values |∇w̃k(x)| are bounded by multiples of corre-

sponding point-values of |∇τwk|Γ| and |wk|Γ|. These are bounded by (3.20).

One easily verifies that the segment Γ is a typical segment also for vk.

Definition 3.7 (Adapted grid for n = 2). Let Q ⊂ R2 be a bounded Lipschitz domain,

(uk)k a bounded sequence in H1(Q), h > 0 fixed and δk ↘ 0. We say that a family

Th = {Ti}i∈Λh of triangles is an adapted grid for (uk)k if the boundaries of all triangles

are typical segments according to Definition 3.3. We furthermore require that one

subsequence (kj)j is a good subsequence for all segments.

The above observations on points of typical average, on typical segments, and

on strongly convergent extensions allow to prove Theorem 1.3 in the two-dimensional

case. We remark that the proof for the three-dimensional case will be almost identical.

Proof of Theorem 1.3 for n = 2. Existence of adapted grids. Denoting the sequences

with a subscript k, we are given the family uk and want to construct an adapted grid

for uk. We fix the sequence δk = 1/k. The grid can be chosen by subsequently adding

grid-points and by subsequently passing to subsequences. Every node x is chosen as

a point of typical average and such that almost every segment with x as an end-point

is a typical segment. Since almost every x has both properties by Lemmas 3.2 and

3.4, we can construct a grid to prescribed h > 0 in this way.

Compensated compactness. Our aim is to verify the convergence (1.13). It suffices

to show this convergence for each single triangle. Let therefore T be one triangle of
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the grid and note that, by assumption, there holds

qk ⇀ q weakly in L2(T ), (3.24)

fk := ∇ · qk → f strongly in H−1(T ). (3.25)

Since T is a triangle with typical sides as described in Proposition 3.5, we can use the

strongly H1(T )-convergent extension vk of the boundary values of uk of Proposition

3.5, vk → v in H1(T ). The boundary values are always expressed through the trace

theorem, hence, by definition of identical traces, we have∫
T

qk · ∇uk +

∫
T

∇ · qkuk =

∫
T

qk · ∇vk +

∫
T

∇ · qkvk .

We can therefore calculate∫
T

qk · ∇uk =

∫
T

qk · ∇vk − 〈fk, uk − vk〉H−1,H1
0
→
∫
T

q · ∇v − 〈f, u− v〉H−1,H1
0
.

We use here the weak L2-convergence of qk and the strong L2-convergence of ∇vk.
In the term containing f , we use the weak H1

0 -convergence uk − vk → u− v and the

strong H−1-convergence fk → f .

Performing the above interpretation of identical boundary values again for u and

v instead of uk and vk provides∫
T

qk · ∇uk →
∫
T

q · ∇v − 〈f, u− v〉H−1,H1
0

=

∫
T

q · ∇u,

and thus

lim
k→∞

∫
T

qk · ∇uk dx =

∫
T

q · ∇u dx, (3.26)

which provides (1.13).

3.2 Adapted grids in three dimensions

We are again given a sequence uk ∈ H1(Ω), now with Ω ⊂ R3 an open domain. Our

aim is to show that almost all simplices S contained in Ω are “typical” in the sense

that uk|∂S has a strongly convergent extension for a subsequence (kj)j. Since objects

of different dimensions appear in the sequel, we find it convenient to indicate the

dimension with a superscript. We will typically use Γ1 for segments, E2 for planes,

and S3 for three-dimensional simplices.

In two space dimensions, we considered typical segments and points of typical aver-

age. Regarding segments we demanded boundedness of uk on the segment, regarding

points, we demanded more, namely a boundedness property in a neighborhood. Trans-

ferring these concepts to three space dimensions, we will demand that uk is bounded

on triangles T 2, and that averages of uk are bounded in neighborhood of segments

Γ1. We therefore introduce below segments of typical average, which have stronger

requirements than typical segments.
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Definition 3.8 (Segments of typical average and typical triangles). Let n = 3 and

Γ1 = [x, y] ⊂ Ω be a segment, contained in a two-dimensional plane E2 ⊂ R3. We

say that Γ1 is a segment of typical average for (uk)k, δk → 0 and E2, if, along a

subsequence (kj)j, the family ukj |E2 is an H1(E2 ∩ Ω)-bounded sequence and if

1. The segment Γ1 is a typical segment in E2 for ukj |E2 and δkj according to Defi-

nition 3.3.

2. For a constant M0 > 0, holds

−
∫
Bδkj

(Γ1)∩Ω

|ukj(z)|2 + |∇ukj(z)|2 dL3(z) ≤M0, (3.27)

−
∫
Bδkj

(Γ1)∩E2

|ukj(z)|2 + |∇ukj(z)|2 dL2(z) ≤M0. (3.28)

We say that a triangle T 2 ⊂ R3 is a typical triangle, if the three sides are segments

of typical average for the plane E2 containing T 2, for a single subsequence (kj)j.

We note that, by definition of a typical triangle, for some M0 > 0,

‖ukj |T 2‖2
L2(T 2) + ‖∇τukj |T 2‖2

L2(T 2) ≤M0. (3.29)

Lemma 3.9 (Many typical triangles). Let Ω ⊂ R3 be a convex domain, δk → 0 be

fixed, and (uk)k be an H1(Ω)-bounded sequence. Then, successively chosen, for almost

all x1 ∈ Ω, for almost all x2 ∈ Ω, for almost all x3 ∈ Ω, the triangle T 2 given by

(x1, x2, x3) is a typical triangle.

Sketch of proof. For almost every plane E2 defined by (x1, x2, x3), the family uk|E2 is

bounded in H1(E2). This follows from Fubini’s theorem, arguing as in Lemma 3.4.

Let E2 be such a plane. Then, by Lemma 3.4, applied with n = 2, almost all

segments in E2 are typical segments in E2. This provides the property of item 1.

It remains to check properties (3.27) and (3.28) of item 2 for almost every choice

of (x1, x2, x3). Let 0 6= γ ∈ R3 be an arbitrary vector such that Γx := [x, x+γ] defines

a segment in R3 for every x ∈ R3. With fixed γ, we now consider

fk : R3 → R, fk(x) =

∫
(x+Rγ)∩Ω

|uk|2 + |∇uk|2.

Let F 2 ⊂ R3 be an arbitrary plane orthogonal to γ. We consider the restriction

fk : F 2 → R, which is a bounded family in L1(F 2). Arguing as in the proof of Lemma

3.2, we conclude that for almost all x ∈ F 2, the δk-averages of fk are bounded. This

implies (3.27).

The estimate (3.28) follows in the same way when we choose a line F 1 ⊂ E2, which

is orthogonal to γ.

Lemma 3.10 (Strongly convergent extensions in R3). Let Ω ⊂ R3, δk ↘ 0, and let

(uk)k be a bounded sequence in H1(Ω). Let S3 ⊂ Ω be a simplex such that the four

sides T 2
m, m = 1, 2, 3, 4, are typical triangles. Then there exists a subsequence (kj)j



26 The needle problem approach to non-periodic homogenization

and extensions vkj ∈ H1(S3) of the boundary values ukj |∂S3 such that, for a limit

function v ∈ H1(S3),

vkj = ukj on ∂S3, (3.30)

vkj → v strongly in H1(S3). (3.31)

Proof. Once more, we assume that the original sequence is a good sequence and omit

in the proof the subscript of kj.

Step 1. Modification of uk to ũk with vanishing values along the edges. Our first

aim is to modify uk such that we only have to treat functions that vanish on the edges

Γ1
i , i = 1, ..., 6. To this end we note that, since every side T 2

m, m = 1, ..., 4, is a typical

triangle, we may use the two-dimensional result of Proposition 3.5 on each face. This

provides extensions wk : T 2
m → R with wk|Γ1

i
= uk|Γ1

i
that are strongly convergent

in H1(T 2
m). With a rotation of the functions wk around Γ1

i , using additionally linear

transformations and cut-off functions, we can construct extensions

w̃k : S3 → R, w̃k|T 2
m

= wk, w̃k strongly convergent in H1(S3).

The last property follows from the strong convergence of wk in H1(T 2
m). By Lemma

3.6, we can achieve that each edge Γ1
i is a segment with typical averages not only for

the sequence uk, but also for the sequence w̃k (compare Definition 3.8 and estimate

(3.23), which remains valid after the extension by rotation).

We now consider the modified sequence of functions ũk := uk− w̃k. This sequence

has vanishing values on all edges Γ1
i . Since the sequences w̃k converges strongly in

H1(S3), it is sufficient to show for ũk the existence of a strongly H1(S3)-convergent

subsequence. It is important to note that our construction guarantees that the edges

Γ1
i are segments of typical averages also for the sequence ũk.

Step 2. Extension of ũk. We treat one of the faces T 2, let Γ1 ⊂ ∂T 2 be one edge.

We use a family of smooth cut-off functions φk : R3 → [0, 1] with supp(φk) ⊂ Bδk(Γ
1)

and ‖∇φk‖∞ ≤ C/δk, such that φk ≡ 1 on Bδk/2(Γ1) ⊂ R3. Analogous to Proposition

3.5, we want to extend the trace [(1 − φk)ũk]|T 2 as a harmonic function to S3. We

calculate∫
T 2

|∇τ [(1− φk)ũk]|2 dL2 ≤ C
1

δ2
k

∫
Bδk (Γ1)∩T 2

|ũk|2 dL2 + C

∫
T 2

|∇τ ũk|2 dL2.

The last integral is bounded by (3.29). For the other integral on the right hand

side we use the boundedness of the gradient in Bδk(Γ
1)∩T 2 and Poincaré’s inequality,

exploiting ũk ≡ 0 on Γ1. We find that [(1−φk)ũk]|T 2 is a bounded sequence in H1(T 2),

which vanishes in a neighborhood of the boundary. This allows to extend the function

harmonically to S3 with vanishing values on ∂S3 \ T 2. As calculated for Proposition

3.5, the harmonic extension has a strongly H1(S3)-convergent subsequence.

It remains to verify the smallness in H1(S3) of the functions φkũk. We calculate∫
S3

|∇(φkũk)|2 dL3 ≤ C
1

δ2
k

∫
Bδk (Γ1)∩S3

|ũk|2 dL3 + C

∫
S3

|φk|2|∇ũk|2 dL3

≤ C−
∫
Bδk (Γ1)∩S3

|ũk|2 dL3 + Cδ2
k−
∫
Bδk (Γ1)∩S3

|∇ũk|2 dL3 → 0.
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The convergence to 0 of the second term is an immediate consequence of the bound-

edness of the integral, which follows from property (3.27) of segments with typical

averages. For the first term we use once more Poincaré’s inequality: the gradients are

bounded on planes and in space by (3.28) and (3.27), the vanishing values ũk ≡ 0 on

Γ1 imply smallness of averages in the neighborhood.

As in two space dimensions, Theorem 1.3 for three space dimensions is based on

the fact that, for every grid-size h > 0, we can choose an adapted grid to h and a

given sequence uk.

Definition 3.11 (Adapted grid in three dimensions). Let Q ⊂ R3 be a bounded

domain and let (uk)k be a bounded sequence in H1(Q). We say that a subdivision

Th = {Si}i∈Λh of Qh ⊂ Q in simplices Si is an adapted grid for (uk)k if all sides

T 2
m of the simplices are typical triangles with one single subsequence (kj)j according

to Definition 3.8.

Proof of Theorem 1.3 for n = 3. Existence of adapted grids. The three-dimensional

Lemmata on typical triangles imply that for a given family uk and given h > 0 an

adapted grid for uk can be constructed by subsequently adding grid-points.

Compensated compactness. The statement of the compensated compactness is

shown as in the two-dimensional case.

A Ergodic homogenization cell problem

In [18], a probability space setting is introduced to treat homogenization of stochastic

coefficients. The authors use dynamical systems Tx/ε : ω → Tx/ε(ω) on the probability

space (ΩP ,P) to construct stochastic coefficients aε(x) = ã(x/ε;ω). Under ergodicity

assumptions, they obtain the following result on solutions of cell problems.

Theorem A.1. Under ergodicity assumptions, for some matrix a∗ ∈ Rn×n, the

following holds. For P-almost every ω and coefficients ã(y) = ã(y;ω) there exists

ψk(.;ω) : Rn → Rn solving

∇y · (ã(y)ψk(y)) = 0 on Rn, (1.1)

curl ψk = 0 on Rn, (1.2)

such that the average of ψk is ek and the average of ã · ψk is a∗ · ek, in the following

sense: For every subset K ⊂ Rn holds

ψk(./ε;ω) ⇀ ek in L2(K), (1.3)

ã(./ε;ω)ψk(./ε;ω) ⇀ a∗ · ek in L2(K). (1.4)

From Theorem A.1 one easily deduces the property of Definition 1.1. In partic-

ular, stochastic coefficients as constructed in [18] allow averaging of the constitutive

relation.



28 The needle problem approach to non-periodic homogenization

Acknowledgement

The authors wish to thank the unknown referees for the careful reading of the manuscript

and many useful hints that helped to improve this contribution. The support by DFG-

grant SCHW 639/3-1 is gratefully acknowledged.

References

[1] G. Allaire. Homogenization of the Stokes flow in a connected porous medium.

Asymptotic Analysis, 2:203–222, 1989.

[2] G. Allaire. Homogenization and two-scale convergence. SIAM J. Math. Anal.,

23(6):1482–1518, 1992.

[3] G. Allaire. Dispersive limits in the homogenization of the wave equation. Ann.

Fac. Sci. Toulouse Math. (6), 12(4):415–431, 2003.

[4] G. Allaire and R. Brizzi. A multiscale finite element method for numerical ho-

mogenization. Multiscale Model. Simul., 4(3):790–812 (electronic), 2005.
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