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1 Introduction and main result

The aim of this paper is to study the reaction-diffusion systems arising from the math-

ematical models of the electric activity of cardiac ventricular cells, at microscopic level.

The models we analyze are widely used in medical and bioengineering works, in numer-

ical simulations, and they constitute the bases for present research and more and more

accurate and complex modelizations. Nevertheless, up to now, a rigorous mathemati-

cal analysis regarding the well posedness of these models is still lacking. In this paper

we prove the existence for a solution of a wide class of models, including the classical

Hodgkin-Huxley model [16], the first membrane model for ionic currents in an axon, and

the Phase-I Luo-Rudy (LR1) model [28], which is one of the most widely used mod-

els in two-dimensional and three-dimensional simulations of the cardiac action potential

propagation, and laid the basis for the modern dynamical models.

The contraction of the heart muscle is initiated by an electric signal starting in the

sinoatrial node, see e.g. [22, ch. 11], [23]. The electrical signal then travels along a special

type of cells known as Purkinje fibres, through the atria and the ventricula. When

the muscle cells are stimulated electrically, they rapidly depolarize, i.e., the electrical

potential inside the cell is changed. The depolarization causes the contraction of the

cells and the electrical signal is also passed on to the neighbouring cells. This reaction

causes an electric field to be created in the heart and the body. The measurement of

this field on the body surface is called the electrocardiogram (ECG). In order to achieve
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realistic simulations of these measurements, it is important to study how the electric

signal is created in the heart and how it is conducted through the heart and body tissue.

The conduction in the body tissue and, more generally, in biological systems, is a vast

field of present research, see e.g. [22, 13, 19, 2, 3, 5, 4].

The dynamics inside the heart are much complex, mainly, due to the different ani-

sotropy of the intracellular and the extracellular tissue, to the excitability of the heart

muscle cells and to the great variety of different cell and ionic channels types. The elec-

tric behaviour of the membrane of excitable cells has been widely investigated in the last

fifty years, and the modeling of the ionic currents in the ventricular myocardium, in par-

ticular, has undergone a continuous development from the paper by Beeler and Reuter

[7], in 1977, to nowadays: [28, 27, 12], for example, study guinea pigs, [38, 14, 17] focus

on canine cells, [37, 32] concentrate on the human myocardium, while [30] is a review

of the development of cardiac ventricular models (we cite only a few examples, but we

remark that the literature concerning the modelization of the cardiac action potential,

in different species and with different pathologies, is impressively rich).

Moreover, recent theoretical and computational advanced studies in electrocardiology

investigating the electrical behaviour of the anisotropic cardiac tissue are based on the

macroscopic bidomain model [33, 15, 8, 9, 23]. A rigorous mathematical derivation of

the bidomain model can be obtained [31] directly from the microscopic properties of

the tissue. We defer the treatment of the well posedness problem in the macroscopic

bidomain model to a forthcoming paper.

From the mathematical viewpoint, the problem consists of a Poisson equation on

two adjoining domains, coupled with a dynamic condition, involving a system of ODEs,

on the intersection of the boundaries. We remark that standard techniques and results

on reaction diffusion systems (see e.g. [36, 1]), cannot be directly exploited in the case

of microscopic models of the cardiac electric field, due to their degenerate structure,

to the unusual coupling of PDEs and ODEs on the boundary and to the lack of a

maximum principle. We will give more details about the mathematical difficulties after

the description of the model.

The microscopic structure of the cardiac tissue. At a microscopic level the cardiac

structure is composed of a collection of elongated cardiac cells, endowed with special

electric (mainly end-to-end) connections, named gap junctions, embedded in the extra-

cellular fluid. The gap junctions form the long fiber structure of the cardiac muscle,

whereas the presence of lateral junctions establishes a connection between the elongated

fibers. Since the interconnection between cells has resistance comparable to that of the

intra-cellular volume, we can consider the cardiac tissue as a single isotropic intramural

connected domainΩi separated from the extra-cellular fluid Ωe by a membrane surfaceΓ.

The geometry and the main physical quantities and variables. We call

Ωi the intra-cellular domain,

Ωe the extra-cellular domain,

Γ = ∂Ωi ∩ ∂Ωe the cellular membrane,

Ω := Ωi ∪ Ωe ∪ Γ ∈ R
3 the physical region occupied by the heart.
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We denote by

ui,e : Ωi,e → R, the intra- and extra-cellular electric potentials,

v := ui − ue : Γ → R, the transmembrane potential,

w : Γ → R
k, the vector of the gating variables,

z : Γ → R
m, the vector of the intracellular ionic concentrations,

σi,e : Ωi,e → M
3×3, the intra- and extra-cellular conductivities,

which are symmetric, positive definite, continuous tensors, and satisfy the uniform

ellipticity condition:

∃σ, σ > 0 : σ|ξ|2 ≤ σi,e(x)ξ · ξ ≤ σ|ξ|2, ∀ ξ ∈ R
3, ∀x ∈ Ωi,e. (1.1)

Basic equations. (See e.g. [22, ch. 11.3], [20, 21]) Imposing the conservation of

currents, we have that the normal current flux through the membrane is continuous:

if νi, νe denote the unit exterior normals to the boundary of Ωi and Ωe respectively,

satisfying νi = −νe on Γ, we have

σi∇ui · νi + σe∇ue · νe = 0, on Γ. (1.2)

Denoting by Is
i , Is

e the (given) stimulation currents applied to the intra- and extra-cellular

space, we have

−div(σi∇ui) = Is
i , in Ωi, −div(σe∇ue) = Is

e , in Ωe. (1.3)

On the other hand, since the only active source elements lie on the membrane Γ, each

flux equals the membrane current per unit area Im, which consists of a capacitive and a

ionic term (see [22, ch. 2],[18])

σe∇ue · νe + Im = −σi∇ui · νi + Im = 0, (1.4)

where Im, modeling the membrane as an RC circuit, may be expressed as

Im := Cm∂tv + Iion(v, t), on Γ, (1.5)

where Cm is the surface capacitance of the membrane and Iion is the ionic current. We

remark that Γ is a discontinuity surface for the potential. In order to complete the

model, we need a description of the ionic current Iion which appears in (1.5). We defer

to the end of this section an explanation of the structure of the ionic current and the

consequent motivation of the following mathematical hypothesis upon Iion.

The ionic current. In this work we assume that the ionic current

Iion : R × R
k × (0,+∞)m → R,

(v,w, z) → Iion(v,w, z)

has the general form:

Iion(v,w, z) :=

m∑

i=1

(Ji(v,w, log zi)) + H̃(v,w, z), (1.6)
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where, ∀ i = 1, . . . ,m,

Ji ∈ C1
(

R × R
k × R

)

, (1.7a)

0 < G(w) ≤ ∂

∂ζ
Ji(v,w, ζ) ≤ G(w), (1.7b)

∣
∣
∣
∣

∂

∂v
Ji(v,w, 0)

∣
∣
∣
∣
≤ Lv(w), (1.7c)

G,G,Lv belong to C0(Rk, R+), and

H̃ ∈ C0(R × R
k × (0,+∞)m) ∩ Lip(R × [0, 1]k × (0,+∞)m). (1.8)

The dynamics of the gating variables are described by the system of ODE’s

∂wj

∂t
= Fj(v, wj), j = 1, . . . , k. (1.9)

We assume that

Fj : R
2 → R is locally Lipschitz continuous; (1.10a)

Fj(v, 0) ≥ 0, ∀ v ∈ R; (1.10b)

Fj(v, 1) ≤ 0, ∀ v ∈ R, (1.10c)

∀ j = 1, . . . , k.

In the models considered Fj has the particular form

Fj(v, wj) := αj(v)(1 − wj) − βj(v)wj , j = 1, . . . , k,

where αj and βj are positive rational functions of exponentials in v. A general expression

for both αj and βj is given by

C1e
v−vn

C2 + C3(v − vn)

1 + C4e
v−vn

C5

,

where C1, C3, C4, vn are non-negative constants and C2, C5 are positive constants.

The dynamics of the ionic concentrations are described by the system of ODE’s

∂zi

∂t
= Gi(v,w, z) := −Ji(v,w, log zi) + Hi(v,w, z), i = 1, . . . ,m, (1.11)

where Ji is the function described in (1.7a, 1.7b, 1.7c) and

Hi ∈ C0(R×R
k × (0,+∞)m)∩ Lip(R× [0, 1]k × (0,+∞)m), i = 1, . . . ,m. (1.12)
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We refer to (1.2)-(1.6), (1.9), (1.11) as the equations of the microscopic model, to-

gether with Neumann boundary conditions imposed on ui, ue on the remaining part of

the boundaries Γi,e := ∂Ωi,e\Γ

σi∇ui · νi = gi, on Γi, σe∇ue · νe = ge, on Γe,

or with Dirichlet boundary conditions

ui = 0 on Γi, ue = 0 on Γe,

and with the (degenerate with respect to v) initial Cauchy condition

v(x, 0) = v0(x), w(x, 0) = w0(x), z(x, 0) = z0(x), on Γ.

Thus our problem is made up of two adjoining open domains with their boundaries partly

intersecting, of a Poisson equation in each of them and, on the common boundary, of a

system of equations connecting the fluxes and the difference of potentials. In contrast

to classical problems for the Poisson equation with a jump discontinuity for normal

derivatives across some surface, here Γ is a discontinuity surface for the potential and

the related conditions are dynamic and involve the assistant variables wj , zi in a nonlinear

way.

The complete formulation. In order to give a complete formulation of the problem,

let us suppose that Ωi,e are bounded, Lipschitz domains, that Ωi is connected (since we

are going to put Neumann boundary conditions on Ωi), that Γ is a Lipschitz surface and

that σi, σe are measurable. We fix ]0, T [ as the evolution time interval, and we define the

associated space-time domains following the usual notation of [26]

Qi,e := Ωi,e×]0, T [, Σ := Γ×]0, T [, Σi,e := Γi,e×]0, T [.

We denote the vectors by boldface letters (so that F = (F1, . . . , Fk), G = (G1, . . . , Gm),

and so on). Moreover, for sake of simplicity, we choose Neumann boundary conditions

on Γi and homogeneous Dirichlet boundary conditions on Γe. We also define the space

H1
Γ0

e
(Ωe) :=

{
u ∈ H1(Ωe) : u(x)|Γe

= 0, a.e.
}

.

Remark 1. The result stated in Theorem 1.1 would be identical if we made the widely

used choice of Neumann conditions on both boundaries Γi and Γe. In this case, we should

ask for both domains to be connected and the potentials ui, ue would result defined up

to an additive constant.

The formal statement of the microscopic model is then:

Problem (m). Given

Is
i,e : Qi,e → R, gi : Σi → R,

v0 : Γ → R, w0 : Γ → R
k, z0 : Γ → (0,+∞)m,
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we seek

ui,e : Qi,e → R, w = (w1, . . . , wk) : Σ → R
k,

v := ui − ue : Σ → R, z = (z1, . . . , zm) : Σ → (0,+∞)m,

satisfying the equations on Qi,e and Σi,e

−div(σi,e∇ui,e) = Is
i,e on Qi,e,

σi∇ui · νi = gi on Σi,

ue = 0 on Σe,

(1.13)

and the evolution system on the surface Σ

Cm∂tv + Iion(v,w, z) = −σi∇ui · νi on Σ, (1.14a)

Cm∂tv + Iion(v,w, z) = σe∇ue · νe on Σ, (1.14b)

∂tw = F(v,w) on Σ, (1.14c)

∂tz = G(v,w, z) on Σ, (1.14d)

with initial data

v(x, 0) = v0(x) on Γ, (1.15a)

w(x, 0) = w0(x) on Γ, (1.15b)

z(x, 0) = z0(x) on Γ. (1.15c)

In the following part, the expression ‘ log z’ stands for the vector (log z1, . . . , log zm)

and ‘z log z’ is not a scalar product, but represents the vector (z1 log z1, . . . , zm log zm).

We can now state our main result concerning the existence of a variational solution of

Problem m.

Theorem 1.1. Let be given the data

v0 ∈ H1/2(Γ), w0 : Γ → [0, 1]k measurable,

z0 ∈ (L2(Γ))m, with log z0 ∈ (L2(Γ))m,

Is
i,e ∈ H1(0, T ;L2(Ωi,e)), gi ∈ H1(0, T ;H−1/2(Γi)),

the ionic currents Iion(v,w, z), satisfying (1.6–1.8), the dynamics of the gating variables

F(v,w), satisfying (1.9–1.10c), the dynamics of the ionic concentrations G(v,w, z), sat-

isfying (1.11), (1.12).

Then, there exist k + m + 2 functions w1, . . . , wk, z1, . . . , zm, ui, ue,

ui ∈ L2(0, T ;H1(Ωi)), ue ∈ L2(0, T ;H1
Γ0

e
(Ωe)),

v := ui|Γ − ue|Γ ∈ H1(0, T ;L2(Γ)) ∩ L2(0, T ;H1/2(Γ)),

w : Σ → [0, 1]k measurable, z : Σ → (0,+∞)m measurable,
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wj(x, ·) ∈ C1(0, T ) ∩ C0([0, T ]) for a.e. x ∈ Γ, j = 1, . . . , k,

zi(x, ·) ∈ C1(0, T ) ∩ C0([0, T ]) for a.e. x ∈ Γ, i = 1, . . . ,m,

w ∈ L2(Γ;C0([0, T ]))k, z ∈ H1(0, T ;L2(Γ))m, log(z) ∈ L2(Γ;C0([0, T ])m,

which solve Problem m.

Steps of the proof and plan of the paper. The proof of the existence is divided into

three parts. In a first step we consider v as an assigned function on Σ and we solve the

ODE system of the gating variables (1.14c) and the ODE system of the concentration

variables (1.14d), obtaining suitable a priori estimates and qualitative properties of the

solution (Section 2).

In the second step we write a variational formulation for the remaining part of the

model, which leads to a reaction-diffusion equation of degenerate parabolic type in a

classical Hilbert triple, and we solve the parabolic equation considering Iion(v,w, z) as a

known function (Section 3).

Then, by choosing the correct functional spaces for w, z and v, it is possible to

find existence for a solution (v,w, z) using Schauder Fixed Point Theorem (Section 4).

Continuity of the fixed point operator is obtained by means of a classical interpolation

inequality combined with an infinite dimensional version of a theorem on the continuity

of Nemitski operators.

The main difficulties in the parabolic equation reside in its degenerate structure,

which reflects the differences in the anisotropy of the intra- and extra-cellular tissues,

and in the lack of a maximum principle. The latter, in addition, forbids a distributional

formulation for the gating variables ODEs, because v appears as argument for exponen-

tial functions in Fj (equation 1.14c) and since v /∈ L∞, we do not know if Fj(v) ∈ L1
loc and

the equation cannot be taken in the sense of distributions. Moreover, the concentration

variables zi appear as argument of a logarithm, both in the dynamics of the concentra-

tions and in the ionic currents, and therefore it is necessary to bound z far from zero.

Again, the task of finding an estimate for log z in L∞, is complicated by the absence

of an estimate for v in L∞, due to the lack of a maximum principle in the degenerate

parabolic equation.

We conclude this section with a description of the structure of the ionic currents.

Membrane models and ionic currents. The first membrane model for ionic currents

was given in the celebrated work on nerve action potential by Alan Hodgkin and Andrew

Huxley [16], work that earned them the Nobel prize in Medicine in 1963. Models of

Hodgkin-Huxley type have been later developed for the cardiac action potential. In

these models, (see, for example, [29, 7, 28, 27, 38, 37]) the ionic current through channels

of the membrane depends on

• the transmembrane potential v;

• k gating variables (introduced by Hodgkin and Huxley), (w1, . . . , wk) =: w;

• m intracellular ionic concentrations, (z1, . . . , zm) =: z.

7



In general, Iion may be expressed as the sum of several contributions. The simplest

expression for the ionic current that satisfies the Nernst principle (see e.g. [22, ch. 2.6]),

is a linear model, giving the current as

Iion =
∑

S

IS , IS = IS(v) = ḠS(v − ES),

where S = Na+,K+, Ca2+, . . . are the different ionic species and ḠS is the constant

membrane conductivity of the specific channel. ES is the related equilibrium (Nernst)

potential and is given by

ES = C̄S log
[S]e
[S]i

, (1.16)

where C̄S is a constant and [S]i,e are the intracellular and extracellular concentrations

for the ion S.

In the original model for nerve cells by Hodgkin and Huxley, the conductivities are

not constant anymore, but depend on the gating variables w. Each contribution has the

form

I
(1)
S = I

(1)
S (v,w) = GS(w)(v − ES),

GS(w) := ḠS

k∏

j=1

w
pj,S

j

where ḠS is the (constant) maximum membrane conductivity, S = Na+,K+, L (L is a

non-specified leakage current) and the exponents pj,S are nonnegative integers.

In some models, the variation of [Ca2+]i is considered [7, 28], while other more recent

descriptions consider the variation of the internal concentration of all the ionic species

[27, 38, 37], so that [S]i becomes an unknown in the model, which we denote by zS , and

its dynamics are described by the system of ordinary differential equations:

d

dt
zS = −γS

∑

j

ISj , (1.17)

where γS is a constant depending on the geometry of the cell, and ISj are the currents

which carry the ion S. In these models, the contribution by the ion S to the w-gated,

time-dependent current, becomes

I
(2)
S = I

(2)
S (v,w, zS) = GS(w)(v − ES(zS)),

where ES is given by (1.16). To be precise, there are also currents like the Ca2+ and Na+

background currents [27, 38, 37], the (K+) background current [28] or the ATP-sensitive

K+ current [34], which are not gated by w, so that

I
(3)
S = I

(3)
S (v,w, zS) = GS(w)(v − ES(zS)) + GS(v − ES(zS)), (1.18)

GS constant.

Remark 2. The presence of these background currents, which may not be quantitatively

relevant in itself, prevents the term IS from disappearing when w becomes zero, and

henceforward protects equation (1.17) from the flaw of degeneracy.
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Remark 3. In the particular case of the phase–I Luo–Rudy model [28], the simple back-

ground current Ib does not take into account the variation in the internal Calcium con-

centration. We remark that any of the subsequent models involving Calcium dynamics

does include a Calcium background current with the needed shape (IbCa = G (v −E(z))),

and that the LR1 model, with this addition, satisfies all our assumptions.

In some cases, instead of the time-dependent gating GS(w), there is a gating function

KS depending directly on the membrane potential v:

I
(3bis)
S = I

(3bis)
S (v, zS) = KS(v)(v − ES(zS)). (1.19)

In the LR1 model, where the concentrations [K+]i and [Na+]i are constant, the time-

dependent Potassium current has the particular form

IK = IK(v,w) = X(w)Xi(v)(v − Ē), (1.20)

where X is a continuous function of w, Xi(v)v is a Lipschitz function and Ē = EK is a

constant. Owing to (1.18), (1.19) and (1.20) we will consider a current with the form

I
(4)
S = I

(4)
S (v,w, zS) = (GS(w) + GS + KS(v)) (v−ES(zS))+X(w)Xi(v)(v−Ē). (1.21)

In the mathematical analysis, we describe I
(4)
S by means of a general C1 function

JS = JS(v,w, log zS). The assumptions (1.7b,1.7c) on JS reflect

• the monotonicity of I
(4)
S (v,w, log zS), with respect to log zS ,

• the linear growth of the term (GS(w) + GS + KS(v) + X(w)Xi(v)) v, with respect

to v.

In fact, we remark that if KS , Xi are continuously differentiable, bounded, and their

derivatives decrease fast enough as |v| → +∞, then KS(v)v,Xi(v)v are Lipschitz func-

tions. This is, for example, the case of the K+ Plateau function in [27, 38, 37] and of all

the Potassium currents in [28].

Moreover, any model for the cardiac action potential takes into account (more or

less explicitly) the ionic exchanges due to other non–Hodgkin–Huxley–type dynamics,

such as: Ca2+ current through the L-type channel, Na+-Ca2+ exchanger, Na+-K+

pump, currents through the sarcolemma, and other. We assume that the remaining part

of the ionic current carrying the ion S may be approximated by a Lipschitz function

HS := HS(v,w, z), so that the structure of (1.21) becomes

I
(5)
S (v,w, zS) = JS(v,w, log zS) + HS(v,w, z), (1.22)

(this assumption is satisfied, for example, by the Na+-K+ pump and by the nonspecific

Ca-activated currents, but not by the Na+-Ca2+ exchanger, see e.g. [27]). The variation

of zS = [S]i is then completely described by (1.22). But not all these contributions flow

into the final Iion, because a part of HS may take place inside the cell (through the

sarcolemma) instead of between the intra- and extracellular medium [27, 37];

HS = H̃S + hS .
︷ ︸︸ ︷

intra-extracell. exchange
︷ ︸︸ ︷

internal flow
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In order to take into account this difference, we shall call H̃S the non-Hodgkin-Huxley-

type current in Iion and we shall suppose that H̃S enjoys the same structural properties

of HS .

Acknowledgements. I would like to thank Prof. Piero Colli Franzone for having

proposed me the problem and for the inspiring conversations and Prof. Giuseppe Savaré

for the valuable advice.

2 The ODE systems

2.1 The gating variables

Our first step will be to show that, for every v ∈ H 1(0, T ;L2(Γ)), there exists a unique

w = (w1, . . . , wk), measurable, which solves equations (1.14c), (1.15b)






∂w

∂t
= F(v,w), on Σ,

w(x, 0) = w0(x), on Γ.
(2.1)

in a sense which we will make precise, moreover we will also show the universal bounds

0 ≤ wj ≤ 1, a.e. in Σ, ∀ j = 1, . . . , k.

Remark 4. In Section 3. we will show that v ∈ H1(0, T ;L2(Γ))∩L2(0, T ;H1/2(Γ)); since

the dimension of Γ is 2, we cannot deduce from this regularity and standard Sobolev em-

beddings that v ∈ L∞(Σ), moreover, no maximum principle seems to apply to equations

(1.13),(1.14a),(1.14b). So, we do not know if Fj(v) ∈ L1
loc(Σ) and therefore system (2.1)

cannot be taken in the sense of distributions.

Proposition 2.1. Let v ∈ H1(0, T ;L2(Γ)), w0(x) : Γ → [0, 1]k, measurable. Then

∃! w : Γ × [0, T ] → [0, 1]k, measurable, such that for a.e. x ∈ Γ, w(x, ·) ∈ (C 1(0, T ))k,

and 





∂w

∂t
(x, t) = F(v(x, t),w(x, t)), for a.e. x ∈ Γ, ∀ t ∈ (0, T ],

w(x, 0) = w0(x), for a.e. x ∈ Γ.
(2.2)

If we consider v ∈ C0([0, T ]), and therefore we drop the dependence on x ∈ Γ, then

we can prove the continuous dependence on v, precisely:

Lemma 2.1. The operator which maps a function v ∈ C 0([0, T ]) into the solution w of

the ODE system






d

dt
w(t) = F(v(t),w(t)), ∀ t ∈ (0, T ],

w(0) = w0 ∈ [0, 1]k,

(2.3)

is continuous.

Proof of Proposition 2.1. We denote by H 2 the usual bidimensional Haussdorff

measure. We will make use of the following standard lemma:
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Lemma 2.2. Let v ∈ L2(Γ×(0, T )); the map t 7→ vt(·) = v(·, t) belongs to H1(0, T, L2(Γ))

if and only if for a.e. x ∈ Γ

t 7→ vt(x) ∈ H1(0, T ) and

∫

Γ
‖vt(x)‖2

H1(0,T )dH
2 < +∞.

Therefore, for a.e. x ∈ Γ, the map t 7→ vt(·) = v(·, t) admits a unique representative

in C0([0, T ]), and then, by continuity of Fj (1.10a), the map t 7→ Fj(vt(x), w) admits a

representative in C0([0, T ]), for a.e. x ∈ Γ, ∀w ∈ R. Owing to (1.10a), (1.10b), (1.10c)

and standard results for ordinary differential equations, for a.e. x ∈ Γ there exists a

unique classical solution wt(x) = w(x, t) of the Cauchy problem (2.2) and

0 ≤ wj(x, t) ≤ 1, for a.e. (x, t) ∈ Σ, ∀ j = 1, . . . , k. (2.4)

Moreover, w is measurable. In fact, the map

F ◦ v : Γ × [0, T ] × [0, 1]k → R
k,

(x, t,w) 7→ F(v(x, t),w),

is a Carathéodory function (it is measurable in x and continuous in t and w), therefore,

by Scorza–Dragoni theorem (see e.g. [11]), ∀ ε > 0 there exists a compact set Kε ⊂ Γ,

such that H 2(Kε) ≤ ε, and

(F ◦ v)|(Γ\Kε)×[0,T ]×[0,1]k is continuous.

Thus, we have that

w|(Γ\Kε)×[0,T ] is continuous,

and therefore measurable. Since this is true ∀ ε > 0, we conclude that w is measurable

on Γ × [0, T ]. 2

Proof of Lemma 2.1. For sake of simplicity we shall suppress index j from calculations,

and we carry on this part of the proof for the generic w,F , instead of wj , Fj .

Let v, vn ∈ C0([0, T ]), w0 ∈ [0, 1]. The correspondent solutions w,wn of system (2.3)

satisfy

w(t) = w0 +

∫ t

0
F (v(s), w(s))ds,

wn(t) = w0 +

∫ t

0
F (vn(s), wn(s))ds.

We make the difference and we sum and subtract F (v(s), wn(s))

|wn(t) − w(t)| =

∣
∣
∣
∣

∫ t

0
F (vn(s), wn(s))−F (v(s), wn(s))+F (v(s), wn(s))−F (v(s), w(s))ds

∣
∣
∣
∣
.

Owing to the local Lipschitz continuity of F (hypothesis (1.10a)), there exists a nonneg-

ative function µ ∈ C0(R2) such that

|F (ν1, ω1) − F (ν2, ω2)| ≤ µ(ν1, ν2)(|ν1 − ν2| + |ω1 − ω2|), ∀ ν1, ν2 ∈ R, ∀ω1, ω2 ∈ [0, 1].
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Then, the map s 7→ µ(v(s), vn(s)) is continuous in [0, T ], and we have that

∣
∣
∣
∣

∫ T

0
F (vn(t), wn(t)) − F (v(t), wn(t)) dt

∣
∣
∣
∣
≤
∫ T

0
µ(vn(t), v(t))|vn(t) − v(t)| dt =: Mn, (2.5)

and
∣
∣
∣
∣

∫ t

0
F (v(s), wn(s)) − F (v(s), w(s)) ds

∣
∣
∣
∣
≤
∫ t

0
µ(v(s), v(s))|wn(s) − w(s)| ds.

We define

L := max
s∈[0,T ]

µ(v(s), v(s)) < +∞, (2.6)

so that

|wn(t) − w(t)| ≤ Mn + L

∫ t

0
|wn(s) − w(s)| ds,

and owing to Gronwall Lemma, we conclude that

|wn(t) − w(t)| ≤ MneLT , ∀ t ∈ [0, T ]. (2.7)

Now let {vn}n∈N, v be such that vn → v in C0([0, T ]). Then, there exists a compact

set K ⊂ R
2 such that

(vn(t), v(t)) ∈ K, ∀ t ∈ [0, T ], ∀n ∈ N,

and by estimates (2.5), (2.6) and (2.7) we have

|wn(t) − w(t)| ≤ eLT

∫ T

0
µ(vn(s), v(s)) |vn(s) − v(s)| ds, ∀ t ∈ [0, T ], ∀n ∈ N.

Let µ̄ := max{µ(ν1, ν2) : (ν1, ν2) ∈ K} < +∞. Hence

max
t∈[0,T ]

|wn(t) − w(t)| ≤ eLT µ̄

∫ T

0
|vn(s) − v(s)| ds, ∀n ∈ N,

and

wn → w, strongly in C0([0, T ]). (2.8)

2

2.2 The concentration variables

Now we turn to the system of ODEs (1.14d), with initial data (1.15c), which describes

the dynamics of the m concentration variables. We follow the same idea as for the

gating variables, that is, we show that for every v ∈ H 1(0, T ;L2(Γ)) and for every vector

function w given by Proposition 2.1, we can solve an ordinary Cauchy Problem in time,

for a.e. x ∈ Γ. The difficulty, now, lies in the lack of a priori conditions such as (1.10b)

and (1.10c), which, in (2.1) guaranteed the boundedness for w. We use instead the

monotonicity of Ji in the variable zi, combined with the linear growth of Hi. Moreover,

functions Ji contain a logarithmic term, so we also need to bound z far from zero.
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Proposition 2.2. Let v ∈ H1(0, T ;L2(Γ)), w as in Proposition 2.1, and

z0 : Γ → (0,+∞)m, such that

z0 ∈ (L2(Γ))m, log z0 ∈ (L2(Γ))m.

Then ∃! z : Γ × [0, T ] → (0,+∞)m, measurable, such that for a.e. x ∈ Γ:

z(x, ·) ∈ (C1(0, T ))k, and







∂z

∂t
(x, t) = G(v(x, t),w(x, t), z(x, t)), for a.e. x ∈ Γ, ∀ t ∈ (0, T ],

z(x, 0) = z0(x), for a.e. x ∈ Γ.
(2.9)

Moreover, z, log z, ∂z/∂t belong to (L2(Σ))m and there exists a constant C > 0, inde-

pendent of v,w, z0, such that

|z(x, t)| ≤ C
(

1 + |z0(x)| + ‖v(x)‖L2(0,t)

)

, (2.10)

| log z(x, t)| +
∣
∣
∣
∣

∂z

∂t
(x, t)

∣
∣
∣
∣
≤ C

(

1 + |z0(x)| + ‖v(x)‖C0(0,t)

)

, (2.11)

∫ t

0
| log z(x, s)|2+

∣
∣
∣
∣

∂z

∂s
(x, s)

∣
∣
∣
∣

2

ds ≤ C
(

1 + |z0(x) log z0(x)| + |z0(x)|2+ ‖v(x)‖2
L2(0,t)

)

,

(2.12)

∀ t ∈ [0, T ], for a.e. x ∈ Γ.

Like in Lemma 2.1, we let v ∈ C0([0, T ]), that is, we suppress the dependence on

x ∈ Γ, and we state the continuous dependence on v,w of the correspondent solution.

Lemma 2.3. The operator which maps the functions (v,w) ∈ C 0([0, T ]) × C0([0, T ])k

into the solution z of the ODE system







d

dt
z(t) = G(v(t),w(t), z(t)), ∀ t ∈ (0, T ],

z(0) = z0 ∈ (0,+∞)m,

(2.13)

is continuous.

Proof of Proposition 2.2. We note that, for i = 1, . . . ,m, we can write

Ji(v,w, log zi) = Ji(v,w, 0) +
Ji(v,w, log zi) − J(v,w, 0)

log zi
log zi. (2.14)

Owing to (1.7c), there exists a constant L̄ > 0, depending on Lv, such that

|Ji(v,w, 0)| ≤
∣
∣
∣
∣

Ji(v,w, 0) − Ji(0,w, 0)

v
v

∣
∣
∣
∣
+ |Ji(0,w, 0)| ≤ L̄(1+ |v|), ∀ (v,w) ∈ R×[0, 1]k,

(2.15)

by (1.7b) there exist constants G,G > 0 such that

G ≤ Ji(v,w, log zi) − J(v,w, 0)

log zi
≤ G, ∀ (v,w, zi) ∈ R × [0, 1]k × (0,+∞), (2.16)
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and by hypothesis (1.12) there exists a constant Λ > 0 such that

|H(v,w, z)| ≤ Λ(1 + |v| + |z|), ∀ (v,w, z) ∈ R × [0, 1]k × (0,+∞)m. (2.17)

By Lemma 2.2, there exists N ⊂ Γ such that H 2(N ) = 0, and ∀x ∈ Γ\N , v(x, ·), w(x, ·)
have a representative in C0([0, T ]). Thus, we can simplify the following calculations,

considering x fixed in Γ\N . Our estimates will then hold only for a.e. x ∈ Γ. Since

G is locally Lipschitz continuous in (0,+∞), local existence and uniqueness for the

maximal solution are straightforward. In order to get existence and uniqueness on the

whole interval [0, T ], we must find an estimate for log zi in L∞(0, T ) (estimate II). The

measurability of z follows from the Carathéodory property of G, like in the previous

subsection. The proof of Proposition 2.2 relies on four estimates.

Estimate I. We now prove:

|z(t)| ≤ C
(

1 + |z0| + ‖v‖L2(0,t)

)

.

We get a first a priori estimate by multiplying equation (2.9) (scalarly in R
m) by z(t):

dz

dt
(t) · z(t) = −J(v,w, log z)(t) · z(t) + H(v,w, z)(t) · z(t),

and using (2.17), we get

1

2

d

dt
|z(t)|2 ≤ −

m∑

i=1

Ji(v(t),w(t), log zi(t))zi(t) + Λ(1 + |v(t)| + |z(t)|)|z(t)|,

using decomposition (2.14) and the following estimates (2.15), (2.16), (2.17), we find

1

2

d

dt
|z(t)|2 ≤

m∑

i=1

(
L̄(1 + |v(t)|)|zi(t)| + G[log zi(t)zi(t)]

−
)

+ Λ(1 + |v(t)| + |z(t)|)|z(t)|,

Since z log z ≥ −e−1, ∀ z > 0, by Cauchy’s inequality we get

1

2

d

dt
|z(t)|2 ≤ mG

e
+

1

2
L̄2(1 + |v(t)|)2 +

1

2
|z(t)|2+

+
Λ2

2
(1 + |v(t)|)2 +

1

2
|z(t)|2 + Λ|z(t)|2.

By Gronwall’s Lemma we obtain

|z(t)|2 ≤ eC1t

[

|z(0)|2 + C2

∫ t

0
(1 + |v(s)|)2ds

]

, ∀ t ∈ [0, T ],

where C1 := 2(Λ + 1), and C2 depends on m, L̄,G,Λ. We conclude that there exists a

constant C3 > 0, dependent on m, L̄,G,Λ, and T such that

|z(t)| ≤ C3

(

1 + |z0| + ‖v‖L2(0,t)

)

, ∀ t ∈ [0, T ]. (2.18)
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Estimate II. Now we can show that each zi is far from zero, or, more precisely, that

z(t) ≥ exp
[

−C(1 + |z0| + ‖v‖C0(0,t))
]

> 0, ∀ t ∈ [0, T ]. (2.19)

For sake of simplicity we shall suppress index i from calculations and carry on this part

of the proof for the generic z instead of zi, moreover, since we now want to show (2.19)

and exp[−C(1 + |z0| + ‖v‖C0(0,t))] < 1, we can limit the study to z < 1.

We consider the equation

dz

dt
= −J(v,w, log z) + H(v,w, z),

Again, by (2.14, . . ., 2.17) we find

dz

dt
≥ −L̄(1 + |v|) − G log z − Λ(1 + |v| + |z|). (2.20)

Owing to estimate (2.18), if

G log z(t) ≤ −L̄
(

1 + ‖v‖C0(0,t)

)

− Λ
(

1 + ‖v‖C0(0,t) + C3(1 + |z0| + ‖v‖L2(0,t))
)

then
dz

dt
(t) ≥ 0.

Since

‖v‖L2(0,t) ≤
√

T‖v‖C0(0,t), ∀ t ∈ [0, T ]

there exist a constant C4 > 0, depending on m, L̄,G,G,Λ, T such that

z(t) ≥ exp
[

−C4

(

1 + |z0| + ‖v‖C0(0,t)

)]

> 0, ∀ t ∈ [0, T ].

We need two more estimates.

Estimate III. We are going to show that

∥
∥
∥
∥

dz

dt

∥
∥
∥
∥

L2(0,t)

≤ C
(

1 + C(z0) + ‖v‖L2(0,t)

)

, ∀ t ∈ [0, T ].

We multiply the i-th equation of (2.9) by dzi/dt, (and we suppress index i), obtaining

(
dz

dt
(t)

)2

= −J(v(t),w(t), log z(t))
dz

dt
(t) + H(v(t),w(t), z(t))

dz

dt
(t) =

= −
[
J(v(t),w(t), log z(t)) − J(v(t),w(t), 0)

log z(t)

]

log z(t)
dz

dt
(t)+

+[J(v(t),w(t), 0) + H(v(t),w(t), z(t))]
dz

dt
(t). (2.21)

Let

Φ(t) :=

[
J(v(t),w(t), log z(t)) − J(v(t),w(t), 0)

log z(t)

]

,
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by (2.16), we have that

G ≤ Φ(t) ≤ G, ∀ t ∈ [0, T ]. (2.22)

We note that
d

dt
[z(t) log z(t) − z(t)] =

dz

dt
(t) log z(t).

We divide equation (2.21) by Φ(t) and we integrate between 0 and t

∫ t

0

1

Φ(s)

(
dz

ds
(s)

)2

ds = −[z(t) log z(t) − z(t) − z(0) log z(0) + z(0)]+

+

∫ t

0

(
J(v(s),w(s), 0) + H(v(s),w(s), z(s))

Φ(s)

)
dz

ds
(s) ds.

Since z log z − z ≥ −1, ∀ z > 0, using (2.22), we get

1

G

∫ t

0

(
dz

ds
(s)

)2

ds ≤ z(0) log z(0) − z(0) + 1+

+

∫ t

0
G−1(|J(v(s),w(s), 0)| + |H(v(s),w(s), z(s))|)

∣
∣
∣
∣

dz

ds
(s)

∣
∣
∣
∣
ds.

By (2.15) and (2.17) we get

1

G

∫ t

0

(
dz

ds
(s)

)2

ds ≤ z(0) log z(0) − z(0) + 1 +
L̄+Λ

G

∫ t

0
(1 + |v(s)| + |z(s)|)

∣
∣
∣
∣

dz

ds
(s)

∣
∣
∣
∣
ds,

and by Cauchy inequality and estimate I (2.18) we find

∫ t

0

(
dz

ds
(s)

)2

ds ≤ C5

(

1 + z(0) log z(0) − z(0) +

∫ t

0

(

1 + |v(s)| + |z0| + ‖v‖L2(0,t)

)2
ds,

)

and we conclude that there exists C6 > 0 such that

∫ t

0

(
dz

ds
(s)

)2

ds ≤ C6

(

1 + |z(0) log z(0) − z(0)| + |z0|2 + ‖v‖2
L2(0,t)

)

, ∀ t ∈ [0, T ].

(2.23)

This estimate can be immediately used to get an equivalent estimate for log z(t).

Estimate IV.

We have

J(v,w, log z) = H(v,w, z) − dz

dt
,

(
J(v,w, log z) − J(v,w, 0)

log z

)

log z = H(v,w, z) − dz

dt
− J(v,w, 0),

(
J(v,w, log z) − J(v,w, 0)

log z

)2

(log z)2 ≤ 3

(

H2(v,w, z) +

(
dz

dt

)2

+ J(v,w, 0)2

)

,

G2(log z)2 ≤ 3

(

H2(v,w, z) +

(
dz

dt

)2

+ J(v,w, 0)2

)

,
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∫ t

0
G2(log z)2 ds ≤ 3

∫ t

0

(

H2(v,w, z) +

(
dz

dt

)2

+ J(v,w, 0)2

)

ds,

therefore, by (2.17) and (2.18), (2.23), (2.15), we find

∫ t

0
(log z(s))2 ds ≤ C

(

1 + |z(0) log z(0) − z(0)| + |z0|2 + ‖v‖2
L2(0,t)

)

.

2

Proof of Lemma 2.3. Let v, vn ∈ C0([0, T ]), w,wn ∈ C0([0, T ])k . We denote by z, zn

the corresponding solutions of system (2.13). We take the difference between the two

equations

dzn

dt
− dz

dt
= −[J(vn,wn, log zn) − J(v,w, log z)] + H(vn,wn, zn) − H(v,w, z),

we sum and subtract J(vn,wn, log z)

dzn

dt
− dz

dt
= −[J(vn,wn, log zn) − J(vn,wn, log z)] + (2.24a)

−[J(vn,wn, log z) − J(v,w, log z)] + (2.24b)

+H(vn,wn, zn) − H(v,w, z), (2.24c)

we multiply by zn−z and, since log is monotone increasing and the incremental quotient

is positive by (1.7b), for the term (2.24a) we have

J(vn,wn, log zn) − J(vn,wn, log z)

log zn − log z
(log zn − log z)(zn − z) ≥ 0. (2.25)

In order to deal with (2.24b), we remark that since J is locally Lipschitz continuous

(1.7a), there exists a nonnegative function

η ∈ C0(R2 × (0,+∞)) such that

|J(ν2, ωω2, ζ) − J(ν1, ωω1, ζ)| ≤ η(ν1, ν2, ζ)(|ν2 − ν1| + |ωω2 − ωω1|),

∀ ν1, ν2 ∈ R, ∀ ωω1, ωω2 ∈ [0, 1]k , ∀ ζ ∈ R. Hence, using (2.25) and (2.17), we obtain

1

2

d

dt
|zn − z|2 ≤ η(v, vn, log z)(|vn − v| + |wn −w|)|zn − z|+

+Λ(|vn − v| + |wn −w| + |zn − z|)|zn − z|.
Summing up the contributions of the m components of z and integrating between 0 and

t we obtain

1

2
|zn(t) − z(t)|2 ≤

∫ t

0
|ηη(v, vn, log z)|(|vn − v| + |wn −w|)|zn − z| ds+

+
√

mΛ

∫ t

0
(|vn − v| + |wn −w| + |zn − z|)|zn − z| ds,
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where ηη(v, vn, log z) denotes the vector of components ηi(v, vn, log zi), and by Cauchy’s

inequality

|zn(t) − z(t)|2 ≤ M + L

∫ t

0
|zn(s) − z(s)|2 ds, (2.26)

where

M :=

∫ T

0

(
|ηη(v, vn, log z)|2 + mΛ2

)
(|vn − v| + |wn −w|)2ds, (2.27)

and L = 2(
√

mΛ + 1).

Therefore, applying Gronwall Lemma to equation (2.26), we get

|zn(t) − z(t)|2 ≤ MeLT , ∀ t ∈ [0, T ]. (2.28)

Now let {vn}n∈N, v, {wn}n∈N, w, be such that

vn → v in C0([0, T ]), wn → w in C0([0, T ])m.

We remark that z is continuous by Proposition 2.2, and log(z) is continuous and bounded

owing to estimate (2.11), moreover, since vn → v in C0([0, T ]), there exists a compact

set K ⊂ R
2+m such that

(v(t), vn(t), log z(t)) ∈ K, ∀ t ∈ [0, T ], ∀n ∈ N.

Let

η̄ := max
(ν1,ν2,ζ)∈K

|ηη(ν1, ν2, ζ)|2 < +∞.

By estimates (2.27), (2.28), we obtain

max
t∈[0,T ]

|zn(t) − z(t)|2 ≤ (η̄ + mΛ2)

∫ T

0
(|vn(s) − v(s)| + |wn(s) −w(s)|)2ds, ∀n ∈ N,

and therefore

zn → z in C0([0, T ])m.

2

3 The Parabolic equation

Our next step will be to write a variational formulation for system (1.13) and equations

(1.14a), (1.14b), (1.15a), considering the ionic current Īion as a known function. In order

to choose the correct assumptions on Īion, we look at the estimates just obtained: let

w, z, be known functions, satisfying the thesis of Propositions 2.1 and 2.2, let

v̄ ∈ H1(0, T ;L2(Γ)) given, and set

Īion(x, t) := Iion(v̄(x, t),w(x, t), z(x, t)). (3.1)

Then, by the definition of Iion (1.6), using estimates (1.7b), (1.7c) and (2.4) we obtain

|J(v,w, log z)| ≤ |J(0,w, 0)| + Lv|v| + G| log z| ≤ C(1 + |v| + | log z|),
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and thus, owing to (2.12), we have that Īion ∈ L2(Σ), and

‖Īion‖2
L2(0,t;L2(Γ)) ≤ C

(

1 + ‖v̄‖2
L2(0,t;L2(Γ))

)

, ∀ t ∈ [0, T ], (3.2)

where C is a constant, independent of v̄,w, z.

In the following section we will find a unique solution (ui, ue) for (1.13), (1.14a),

(1.14b), (1.15a), which we recall and renumber







−div(σi,e∇ui,e) = Is
i,e on Qi,e,

σi∇ui · νi = gi on Σi,

ue = 0 on Σe,

(3.3)

Cm∂tv + Īion = −σi∇ui · νi on Σ, (3.4a)

Cm∂tv + Īion = σe∇ue · νe on Σ, (3.4b)

v(x, 0) = v0(x) on Γ, (3.4c)

Variational formulation

The variational formulation and the well posedness for the resulting problem follow

directly from [10, Theorem 1]. In particular, here, we have that the ionic current Īion is

a given function in L2(Σ), so that it does not depend on v and w as in [10]. In order

to provide the reader with a handier explanation, we report the complete variational

formulation and we collect the adapted results in Proposition 3.1, while we refer to [10]

for the proof and the derivation of the main estimates.

Now we need to choose the functional spaces in which we will set the equations and

seek a solution. For simplicity, we set constant Cm = 1. Let us assume that for a.e.

t ∈]0, T [

Is
i,e(·, t) ∈ L2(Ωi,e), gi(·, t) ∈ H−1/2(Γi), (3.5)

ue(·, t) ∈ H1
Γ0

e
(Ωe), ui(·, t) ∈ H1(Ωi), ∂tui,e(·, t) ∈ H1(Ωi,e),

so that the trace operator ui,e 7→ ui,e|Γ is well defined and continuous from H1(Ωi,e)

in H1/2(Γ) (see e.g. [26]). The space

H1
Γ0

e
(Ωe) :=

{
u ∈ H1(Ωe) : u(x)|Γe

= 0, a.e.
}

includes the Dirichlet boundary condition. From now on we shall use the simplified

notation v := ui − ue instead of ui|Γ − ue|Γ. We choose the test functions

ûe ∈ H1
Γ0

e
(Ωe), ûi ∈ H1(Ωi), denote v̂ := ûi − ûe ∈ H1/2(Γ),

and multiply equations (3.4a), (3.4b) by the trace of ûi and −ûe respectively. We denote

by H 2 the usual bidimensional Haussdorff measure. Integrating on Γ and adding the

two equations we get
∫

Γ
(∂tv)v̂ dH

2+

∫

Γ
(σi∇ui · νi)ûi dH

2+

∫

Γ
(σe∇ue · νe)ûe dH

2 +

∫

Γ
Īionv̂ dH

2 = 0. (3.6)
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The third integral can be written as
∫

Γ
(σi∇ui · νi)ûi dH

2 = H−1/2(Γ)〈σi∇ui · νi , ûi〉H1/2(Γ) .

Using the Green formula we get
∫

Γ
(σi∇ui · νi)ûi dH

2 =

∫

Ωi

(σi∇ui · ∇ûi + div(σi∇ui)ûi)dx−

− H−1/2(Γi)
〈σi∇ui · νi , ûi〉H1/2(Γi)

,

and, using ûe ∈ H1
Γ0

e
(Ωe),

∫

Γ
(σe∇ue · νe)ûe dH

2 =

∫

Ωe

(σe∇ue · ∇ûe + div(σe∇ue)ûe)dx,

which are justified by the usual arguments of [26]. We now write (3.6) using the previous

calculations and (3.3)

∫

Γ
(∂tv)v̂ dH

2 +
∑

i,e

∫

Ωi,e

σi,e∇ui,e · ∇ûi,edx +

∫

Γ
Īionv̂ dH

2 =

=
∑

i,e

∫

Ωi,e

Is
i,eûi,e dx + H−1/2(Γi)

〈gi , ûi〉H1/2(Γi)
.

(3.7)

Let us analyze the particular structure of equation (3.7).

We denote by boldface letters u and û the couples of functions (ui, ue), (ûi, ûe) and we

introduce the product space

V := H1(Ωi) × H1
Γ0

e
(Ωe),

endowed with the norm

‖u‖
V

= (‖ui‖2
H1(Ωi)

+ ‖ue‖2
H1(Ωe))

1

2 ,

and the bilinear forms

b(u, û) :=

∫

Γ
(ui − ue)(ûi − ûe) dH

2,

a(u, û) :=
∑

i,e

∫

Ωi,e

σi,e∇ui,e · ∇ûi,e dx,

defined ∀ u, û ∈ V. Denoting by V′ the dual space of V, we can associate to the bilinear

forms a, b the linear continuous operators A,B : V → V′ defined by

〈Au, û〉 := a(u, û), 〈Bu, û〉 := b(u, û), ∀ u, û ∈ V. (3.8)

We introduce the family of linear functionals {Iion(t)}t∈]0,T [ ∈ V′

〈Iion(t), û〉 :=

∫

Γ
Īion(x, t)(ûi(x) − ûe(x)) dH

2, (3.9)
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Assuming (3.5) and v0 ∈ H1/2(Γ) we can associate to the remaining part of the right

side member in (3.7) the family of linear functionals {L(t)}t∈]0,T [ ∈ V′, and to the initial

data the linear functional `0 ∈ V′ defined by

〈L(t), û〉 :=
∑

i,e

∫

Ωi,e

Is
i,eûi,edx + H−1/2(Γi)

〈gi , ûi〉H1/2(Γi)
, (3.10)

〈
`0, û

〉
:=

∫

Γ
v0(ûi − ûe) dH

2. (3.11)

Now we have all the elements to give a precise statement of the problem.

Problem (m2). Given

Is
i,e ∈ L2(0, T ;L2(Ωi,e)), gi ∈ L2(0, T ;H−1/2(Γi)),

A,B, Iion(t),L(t), `0, defined in (3.8),. . . ,(3.11), we look for

u ∈ L2(0, T ;V), with Bu ∈ H1(0, T ;V′),

which solves the evolution system

{
(Bu(t))′ + Au(t) = −Iion(t) + L(t), in V′ a.e. in ]0, T [,

Bu(0) = `0 in V′.
(3.12)

We can now state the result concerning this section

Proposition 3.1. If

Is
i,e ∈ H1(0, T ;L2(Ωi,e)), gi ∈ H1(0, T ;H−1/2(Γi)),

Īion ∈ L2(Σ), v0 ∈ H1/2(Γ),

there exists a unique solution u of Problem (m2),

u ∈ L2(0, T ;V),

Bu = v ∈ H1(0, T ;L2(Γ)) ∩ L2(0, T ;H1/2(Γ)),

we have the a priori estimates

‖u‖L2(0,T ;V)≤C
(

‖v0‖L2(Γ)+‖Īion‖L2(Σ)+‖Is
i,e‖L2(Qi,e)

+‖gi‖L2(0,T ;H−1/2(Γi))

)

, (3.13)

‖v‖L∞(0,T ;L2(Γ))≤C
(

‖v0‖L2(Γ)+‖Īion‖L2(Σ)+‖Is
i,e‖L2(Qi,e)

+‖gi‖L2(0,T ;H−1/2(Γi))

)

, (3.14)

‖∂tv‖L2(0,T ;L2(Γ))≤C
(

‖v0‖H1/2(Γ)+‖Īion‖L2(Σ)+‖Is
i,e‖H1(0,T ;L2(Ωi,e)

+‖gi‖H1(0,T ;H−1/2(Γi))

)

(3.15)

and, if v(1), v(2) are the solutions corresponding to data Ī
(1)
ion, Ī

(2)
ion, it holds:

‖v(2)(t) − v(1)(t)‖2

L2(Γ) ≤ C‖Ī(1)
ion − Ī

(2)
ion‖

2

L2(0,t;L2(Γ)). (3.16)
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Remark 5. These estimates may be derived by means of standard techniques for mo-

notone, coercive operators (see e.g. [25]), paying attention to the particular structure

shared by B and Iion(t) (see [10, 31]).

Up to now we have found an estimate on v, which depends, through Īion (see (3.2)),

upon the choice of v̄ ∈ H1(0, T ;L2(Γ)). Now, let H be a Hilbert space, for every λ > 0,

we can define a new norm on L2(0, T ;H) as

|‖v|‖λ,H :=

(∫ T

0
e−λt‖v(t)‖2

H dt

)1/2

, (3.17)

and we have that |‖ · |‖λ,H and ‖ · ‖ are equivalent norms on L2(0, T ;H).

Corollary 1. Let v̄ ∈ H1(0, T ;L2(Γ)), let w, z be the unique solutions of systems (2.2)

and (2.9), given as in Propositions 2.1 and 2.2, and let Īion be given as in (3.1), thus

satisfying (3.2). Then there exists λ > 0 such that the solution v of Problem (m2)

satisfies

|‖v|‖2
λ,L2(Γ) ≤ max

{

1, |‖v̄|‖2
λ,L2(Γ)

}

, ∀ v̄ ∈ H1(0, T ;L2(Γ)).

Proof. By estimate (3.14) we have

‖v(t)‖2
L2(Γ) ≤C2

(

‖v0‖2
L2(Γ)+ ‖Is

i,e‖2
L2(Qi,e)

+ ‖gi‖2
L2(0,T ;H−1/2(Γi))

+ ‖Īion‖2
L2(0,t;L2(Γ))

)

.

(3.18)

Let ϕ(t) := ‖v(t)‖2
L2(Γ), and ϕ̄(t) := ‖v̄(t)‖2

L2(Γ); owing to estimates (3.2) and (3.18) we

find

ϕ(t) ≤ C3 + C4

∫ t

0
ϕ̄(s) ds, (3.19)

where C3 may depend on T , ‖v0‖2
L2(Γ), ‖Is

i,e‖L2(Qi,e)
, ‖gi‖L2(0,T ;H−1/2(Γi))

, ‖z0‖2
L2(Γ),

‖z0 log z0‖L2(Γ), H 2(Γ), and

C4 = C4

(
T, H

2(Γ)
)
.

Now we multiply (3.19) by e−λt, (λ > 0), and we integrate between 0 and T :

∫ T

0
e−λtϕ(t) dt ≤ C3

∫ T

0
e−λt dt + C4

∫ T

0
e−λt

(∫ t

0
ϕ̄(s) ds

)

dt,

and integrating by parts

∫ T

0
e−λtϕ(t) dt ≤ 1

λ

[

C3

(

1 − e−λT
)

+ C4

∫ T

0
e−λtϕ̄(t) dt − C4e

−λT

∫ T

0
ϕ̄(t) dt

]

≤ 1

λ

[

C3 + C4

∫ T

0
e−λtϕ̄(t) dt

]

.

If

∫ T

0
e−λtϕ̄(t) dt ≥ 1, we have that

∫ T

0
e−λtϕ(t) dt ≤ C3 + C4

λ

∫ T

0
e−λtϕ̄(t) dt.
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Hence, if λ ≥ C3 + C4, then

|‖v|‖2
λ,L2(Γ) =

∫ T

0
e−λtϕ(t) dt ≤ max

{

1,

∫ T

0
e−λtϕ̄(t) dt

}

= max
{

1, |‖v̄|‖2
λ,L2(Γ)

}

.

2

Using estimates (3.13) and (3.15), Corollary 1 and the continuity of the trace operator,

we easily obtain:

Corollary 2. Let M0 ≥ 1, let v̄,w, z, be as in the statement of Corollary 1, such that

|‖v̄|‖λ,L2(Γ) ≤ M0,

then there exist M1 > 0, depending only on M0 and the data of the problem, such that

|‖u|‖λ,V ≤ M1,

|‖v|‖λ,H1/2(Γ) ≤ M1,

|‖∂tv|‖λ,L2(Γ) ≤ M1.

4 The fixed point argument

Let us recall Schauder’s fixed point theorem, (see e.g. [39, p. 56]).

Schauder’s Theorem Let M be a nonempty, compact, convex subset of a Banach space

X. Let T : M → M be a continuous operator. Then T has a fixed point.

We denote by Kλ, W and Z the following sets

Kλ := { v ∈ H1(0, T ;L2(Γ)) ∩ L2(0, T ;H1/2(Γ)), s.t. |‖v|‖λ,L2(Γ) ≤ M0,

|‖∂tv|‖λ,L2(Γ), |‖v|‖λ,H1/2(Γ) ≤ M1, and v(x, 0) = v0(x) a.e },

endowed with the topology of (L2(0, T ;L2(Γ)), |‖·|‖λ,L2(Γ)), (the norm |‖·|‖λ,H was defined

in (3.17));

W :=
{

w ∈
(
L2(Σ)

)k
s.t. w(x, t) ∈ [0, 1]k, for a.e. (x, t) ∈ Σ

}

,

endowed with the topology of
(
L2(Σ)

)k
;

Z := { z ∈
(
L2(Σ)

)m
s.t. z(x, t) ∈ (0,+∞)k, for a.e. (x, t) ∈ Σ,

log(z) ∈
(
L2(Σ)

)m
and ‖z‖(L2(Σ))m + ‖ log(z)‖(L2(Σ))m ≤ Z },

endowed with the topology induced by the metric

dZ(z1, z2) := ‖z1 − z2‖(L2(Σ))m + ‖ log(z1) − log(z2)‖(L2(Σ))m ,
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where the constants M0,M1 were established in Section 3-Corollary 2, and the constant

Z derives from estimates (2.10), (2.12) and M0.

We define operators F1, F2, T

F1 : Kλ −→ Kλ ×W ×Z
v̄ 7−→ v̄,w, z

(4.1)

where w is the solution of (2.1), as in Proposition 2.1, and z is the solution of (2.9), as

in Proposition 2.2, and
F2 : Kλ ×W ×Z −→ Kλ

v̄,w, z 7−→ v,

where v is the solution of Problem (m2), as in Proposition 3.1, and

T := F2 ◦ F1 : Kλ −→ Kλ.

In order to apply Schauder’s Theorem to Kλ and T , (being Kλ convex and nonempty),

we need to check the compactness of Kλ and the continuity of T with respect to the

strong topology of (L2(0, T ;L2(Γ)), |‖ · |‖λ,L2(Γ)).

Compactness for Kλ. In order to obtain compactness for Kλ we apply Lions-Aubin

Theorem (see e.g. [35, p. 106]).

Lions–Aubin Theorem Let B0, B,B1 be Banach spaces with B0 ⊂ B ⊂ B1; assume

B0 ↪→ B is compact and B ↪→ B1 is continuous. Let 1 < p < ∞, 1 < q < ∞, let B0 and

B1 be reflexive, and define

W ≡
{
u ∈ Lp(0, T ;B0) : u′ ∈ Lq(0, T ;B1)

}
.

Then the inclusion W ↪→ Lp(0, T ;B) is compact.

We choose B0 = H1/2(Γ), B = B1 = L2(Γ), p = q = 2. Owing to Rellich Theorem

the inclusion H1/2(Γ) ↪→ L2(Γ) is compact. Then, by Lions-Aubin theorem we obtain

that the inclusion

L2(0, T ;H1/2(Γ)) ∩ H1
(
0, T ;L2(Γ)

)
↪→ L2

(
0, T ;L2(Γ)

)

is compact; since the norms ‖ · ‖ and |‖ · |‖λ are equivalent, in particular we have that

Kλ is compact in
(

L2
(
0, T ;L2(Γ)

)
, |‖ · |‖λ,L2(Γ)

)

.

Continuity of operator T = F2 ◦ F1

Theorem 4.1. The operator T is continuous with the topology of

(

L2(0, T ;L2(Γ)), |‖ · |‖λ,L2(Γ)

)

.
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Remark 6. Since the norms ‖ · ‖ and |‖ · |‖λ are equivalent, in order to simplify the

notation, we shall check instead the continuity of T in

K := { v ∈ H1(0, T ;L2(Γ)) ∩ L2(0, T ;H1/2(Γ)), s.t. ‖v‖L2(0,T ;L2(Γ)) ≤ M0,

‖∂tv‖L2(0,T ;L2(Γ)), ‖v‖L2(0,T ;H1/2(Γ)) ≤ M1, and v(x, 0) = v0(x) a.e }, (4.2)

endowed with the topology of
(
L2(0, T ;L2(Γ)), ‖ · ‖

)
.

The proof is divided into two steps: 1) the continuity of operator F1, which is divided

into Propositions 4.1 and 4.2, and: 2) the continuity of operator F2.

1) Continuity of operator F1. The proof is based on:

• the estimates on the ODE systems established in Propositions 2.1 and 2.2,

• Theorem 4.2, on the continuity of infinite dimentional Nemitski operators,

• a classical interpolation inequality (Lemma 4.1 and Lemma 4.2).

Let us recall the necessary tools.

Theorem 4.2. Let X be a measure space, let B,C be separable Banach spaces and

A : B → C be a (nonlinear) continuous operator satisfying

‖A u‖C ≤ c1 + c2‖u‖B , ∀ u ∈ B. (4.3)

Let p ∈ [1,+∞), then the operator

Ã : Lp(X;B) → Lp(X;C),

(Ã u)(x) := A u(x), ∀ x ∈ X,

is continuous.

See [6] for a finite dimensional proof, which is almost identical in the case of continuous

operators between Banach spaces.

We will make use of the following interpolation inequalities (see e.g. [26, 24]).

Lemma 4.1. There exists c > 0 such that

‖v‖C0(0,T ) ≤ c‖v‖1/2
H1(0,T )

‖v‖1/2
L2(0,T )

, ∀ v ∈ H1(0, T ).

Lemma 4.2. Let X be a measure space, A,B,C Banach spaces such that

(i) A ⊂ B ⊂ C, with continuous inclusions;

(ii) ‖v‖B ≤ c‖v‖1/2
A ‖v‖1/2

C , ∀ v ∈ A.

Then

‖v‖L2(X,B) ≤ c‖v‖1/2
L2(X,A)

‖v‖1/2
L2(X,C)

.

In particular, let M > 0, {un}n∈N
∈ L2(X,A) such that un → u in L2(X,C) and

‖un‖L2(X,A) ≤ M . Then un → u in L2(X,B).
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The following Propositions 4.1 and 4.2 are based on the same idea. We shall detail

4.1, while 4.2 follows likewise.

Proposition 4.1. Let {vn} ∈ K, v such that vn → v in L2(0, T ;L2(Γ)) (K is compact,

so v ∈ K). We denote by wn,w the solutions (for a.e. x, ∀ t) of the Cauchy problems

{
w′

n = F(vn,wn), on Σ,

wn(0) = w0, on Γ,

{
w′ = F(v,w), on Σ,

w(0) = w0, on Γ.

Then

wn → w in L2(Γ;C0([0, T ])k. (4.4)

Proof. By Lemma 2.1 we know that the operator

A : C0([0, T ]) → C0([0, T ])k ,

v 7→ w,

which maps v ∈ C0([0, T ]) into the solution w of the system of ODE (2.3), is continuous.

Moreover, estimate (2.4) ensures that A satisfies condition (4.3):

‖A v‖C0([0,T ])k = ‖w‖C0([0,T ])k ≤ c1.

Therefore we can apply Theorem 4.2 with B = C = C0([0, T ]), X = Γ, and we find that

the operator

Ã : L2(Γ;C0([0, T ])) → L2(Γ;C0([0, T ])),

(Ã v)(x) := A v(x) = w(x),

is continuous.

Now, let {vn}n∈N and v belong to K, thus satisfying

‖vn‖L2(Γ;H1(0,T )), ‖v‖L2(Γ;H1(0,T ))≤
√

M2
0 + 4M2

1 ,

(see the definition of K (4.2) and Lemma 2.2), and suppose that

vn → v, in L2(0, T ;L2(Γ)) ∼= L2(Γ;L2(0, T )).

Then, by Lemma 4.2,

vn → v in L2(Γ;C0([0, T ])), (4.5)

and finally, by continuity of Ã , we obtain

wn → w in L2(Γ;C0([0, T ]))k . (4.6)

2
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Proposition 4.2. Let {vn}, v ∈ K, {wn},w ∈ W, satisfy (4.5) and (4.6), that is

i) vn → v, in L2(Γ;C0([0, T ])),

ii) wn,→ w in L2(Γ, C0([0, T ]))k ,

We denote by zn, z the solutions of the Cauchy problems

{
z′n = −J(vn,wn, log (zn)) + H(vn,wn, zn), on Σ,

zn(0) = z0, on Γ,

{
z′ = −J(v,w, log (z)) + H(v,w, z), on Σ,

z(0) = z0, on Γ.

Then

zn → z, log(zn) → log(z), in L2(Γ;C0([0, T ]))m.

Proof. Now we consider the operator

A : C0([0, T ]) × C0([0, T ])k → (C0([0, T ]))m × (C0([0, T ]))m,

(v,w) 7→ (z, log(z)),

where z is the solution of (2.9). Hence, let {vn}n∈N, v, {wn}n∈N, w be as in the

hypothesis of Proposition 4.2. Then, by Lemma 2.3

A (vn,wn) = zn → z = A (v,w) in C0([0, T ])m. (4.7)

Moreover, convergence (4.7) and estimate (2.11) imply that there exists a compact set

K2 ⊂ (0,+∞)m such that zn(t) ∈ K, ∀ t ∈ [0, T ], ∀n ∈ N, and therefore we obtain

log(zn) → log(z) in C0([0, T ])m, (4.8)

so that A is continuous. Moreover, operator A satisfies condition (4.3), in fact, owing

to estimate (2.10), there exist c1, c2 such that

‖z‖C0([0,T ])m ≤ c1 + c2‖v‖L2(0,T ), ∀ v ∈C0([0, T ]), w∈C0([0, T ]; [0, 1])k ,

and estimate (2.11) guarantees that

‖ log(z)‖C0([0,T ])m ≤ c1 + c2‖v‖C0([0,T ]), ∀ v ∈C0([0, T ]), w∈C0([0, T ]; [0, 1])k .

Hence, by Theorem 4.2, the operator

Ã : L2(Γ;C0([0, T ])) × L2(Γ;C0([0, T ]))k → L2(Γ;C0([0, T ]))m × L2(Γ;C0([0, T ]))m,

(Ã (v,w))(x) := A (v(x),w(x)) = (z(x), log z(x))

is continuous.

Arguing as in the proof of Proposition 4.1, we conclude that if {vn}n∈N belong to K
and vn → v in L2(0, T ;L2(Γ)), then

zn → z, log(zn) → log(z) in L2(Γ;C0([0, T ]))m. (4.9)
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2

2) Continuity of operator F2. Now we are going to use the convergences (4.5), (4.6)

and (4.9) in order to obtain continuity for F2.

Remark 7. Since L2(0, T ;L2(Γ)) ∼= L2(Γ;L2(0, T )), we remark that if

{fn}, f ∈ L2(Γ;C0([0, T ])), fn → f in L2(Γ;C0([0, T ])),

then

fn → f in L2(0, T ;L2(Γ)).

Proposition 4.3. Let {v̄n}, v̄ ∈ K, such that

v̄n → v̄ in L2(0, T ;L2(Γ)).

Let {wn}, w ∈ W, such that

wn → w in L2(0, T ;L2(Γ))k.

Let {zn}, z ∈ Z, such that

zn → z, log(zn) → log(z) in L2(0, T ;L2(Γ))m.

We denote by u,un the solutions of the systems

{
(Bu(t))′ + Au(t) = −Iion(t) + L(t), in V′ for a.e. t ∈]0, T [,

Bu(0) = `0 in V′,

{
(Bun(t))′ + Aun(t) = −In

ion(t) + L(t), in V′ for a.e. t ∈]0, T [,

Bun(0) = `0 in V′,

where Iion = Iion(v̄,w, z), In
ion = Iion(v̄n,wn, zn), u = (ui, ue), un = (ui,n, ue,n), v =

ui − ue, vn = ui,n − ue,n.

Then

vn → v in L2(0, T ;L2(Γ)).

Proof. By estimate 3.16 we have that

‖vn(t) − v(t)‖2
L2(Γ) ≤ C

∫ t

0
‖Īn

ion(s) − Īion(s)‖2
L2(Γ) ds. (4.10)

By definition (1.6), the right hand side is

‖Īn
ion − Īion‖2

L2(Σ) =

∫ T

0

∫

Γ

(
m∑

i=1

[Ji(v̄n,wn, log zi,n) − Ji(v̄,w, log zi)]+

+ H̃(v̄n,wn, zn) − H̃(v̄,w, z)
)2

dH
2dt,
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so we need to show that

i) Ji(v̄n,wn, log zi,n) → Ji(v̄,w, log zi), in L2(Σ),

and

ii) H̃(v̄n,wn, zn)) → H̃(v,w, z), in L2(Σ),

∀ i = 1, ...,m. We see that ii) comes immediately from the Lipschitz continuity of H̃ (see

(1.8)), and the hypothesis on v̄n, wn and zn. In order to prove i) we make use of the

finite–dimensional version of Theorem 4.2, with X = Σ, B = R × R
k × R

m, C = R.

For every i = 1, . . . ,m, we can decompose Ji into

Ji(v,w, log zi) = Ji(v,w, 0) +
Ji(v,w, log zi) − Ji(v,w, 0)

log zi
log zi =

= Ji(v,w, 0) − Ji(0,w, 0) + Ji(0,w, 0) +
Ji(v,w, log zi) − Ji(v,w, 0)

log zi
log zi.

By hypothesis (1.7b) and (1.7c), since w ∈ [0, 1]k we obtain

|Ji(v,w, log zi)| ≤ Ji(0,w, 0) + Lv|v| + G| log zi| ≤ C(1 + |v| + | log zi|).

Therefore, owing to Theorem 4.2 we conclude that

Ji(v̄n,wn, log zi,n) → Ji(v̄,w, log zi) in L2(0, T ;L2(Γ)), ∀ i = 1, . . . ,m.

2
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