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Abstract. The paper deals with a mathematical model for the electric activity of the heart

at macroscopic level. The membrane model used to describe the ionic currents is a generalization

of the phase-I Luo-Rudy, a model widely used in 2-D and 3-D simulations of the action potential

propagation. From the mathematical viewpoint the model is made up of a degenerate parabolic

reaction diffusion system coupled with an ODE system. We derive existence, uniqueness and

some regularity results.

1 Introduction and main result

The aim of this paper is to study the reaction-diffusion systems arising from the math-

ematical models of the electric activity of cardiac ventricular cells, at macroscopic level.

The models we analyze are widely used in medical and bioengineering studies, in numer-

ical simulations, and they constitute the bases for present research and more and more

accurate and complex modelizations. Moreover, computational studies and numerical

simulations have played an important role in electrocardiology and many experimental

studies have been coupled with numerical investigations, due to the difficulty of direct

measurements. The anisotropic Bidomain model is the most complete model used in

numerical simulations of the bioelectric activity of the heart, see Colli Franzone et al.

[9, 11, 12, 13], Roth [44], Hooke et al. [25], Henriquez et al. [22, 23], Muzikant et al.

[37].

In this paper we prove existence and uniqueness for a solution of a wide class of

models, including the classical Hodgkin-Huxley model [24], the first membrane model

for ionic currents in an axon, and the Phase-I Luo-Rudy (LR1) model [36], which is one

of the most widely used models in two-dimensional and three-dimensional simulations of

the cardiac action potential propagation, and laid the basis for the modern dynamical

models. We remark that the well posedness for the Bidomain model with FitzHugh-

Nagumo simplification for the ionic currents, was exhaustively studied by Colli Franzone
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and Savaré [14], while the existence of a solution for a microscopic cellular model with

LR1-type currents was studied in [53].

The contraction of the heart muscle is initiated by an electric signal starting in the

sinoatrial node, see e.g. [28, ch. 11], [29]. The electrical signal then travels along a special

type of cells known as Purkinje fibres, through the atria and the ventricula. When

the muscle cells are stimulated electrically, they rapidly depolarize, i.e., the electrical

potential inside the cell is changed. The depolarization causes the contraction of the

cells and the electrical signal is also passed on to the neighbouring cells. This reaction

causes an electric field to be created in the heart and the body. The measurement of

this field on the body surface is called the electrocardiogram (ECG). In order to achieve

realistic simulations of these measurements, it is important to study how the electric

signal is created in the heart and how it is conducted through the heart and body tissue.

The conduction in the body tissue and, more generally, in biological systems, is a vast

field of present research, see e.g. [28], [19], [27], [2, 3, 5, 4].

The dynamics inside the heart are much complex, mainly, due to the different ani-

sotropy of the intracellular and the extracellular tissue, to the excitability of the heart

muscle cells and to the great variety of different cell and ionic channels types. The elec-

tric behaviour of the membrane of excitable cells has been widely investigated in the last

fifty years, and the modelling of the ionic currents in the ventricular myocardium, in par-

ticular, has undergone a continuous development from the paper by Beeler and Reuter

[6], in 1977, to nowadays: [36, 35, 18], for example, study guinea pigs, [55, 20, 26] focus

on canine cells, [50, 42] concentrate on the human myocardium, while [40] is a review

of the development of cardiac ventricular models (we cite only a few examples, but we

remark that the literature concerning the modellization of the cardiac action potential,

in different species and with different pathologies, is impressively rich).

From the mathematical viewpoint, the problem consists of a system of two degenerate

parabolic reaction-diffusion equations, coupled with a system of ODEs. We remark that

standard techniques and results on reaction diffusion systems (see e.g. [49, 1]), cannot

be directly exploited in the case of microscopic models of the cardiac electric field, due

to their degenerate structure and to the lack of a maximum principle. We will give more

details about the mathematical difficulties after the description of the model.

The macroscopic model of the cardiac tissue. At a microscopic level the cardiac

structure is composed of a collection of elongated cardiac cells, endowed with special

electric (mainly end-to-end) connections, named gap junctions, embedded in the extra-

cellular fluid. The gap junctions form the long fiber structure of the cardiac muscle,

whereas the presence of lateral junctions establishes a connection between the elongated

fibers. Since the interconnection between cells has resistance comparable to that of the

intra-cellular volume, we can consider the cardiac tissue as a single isotropic intramural

connected domain Ωi separated from the extra-cellular fluid Ωe by a membrane surface

Γ.
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At a macroscopic level, in spite of the discrete cellular structure, the cardiac tissue can

be represented by a continuous model, called bidomain model (see e.g. [22, 11, 45] and

also [28]), which attempts to describe the averaged electric potentials and current flows

inside and outside the cardiac cells. It is possible to derive a macroscopic model from

the microscopic one, for a periodic assembling, by a homogenization process (see [38, 41]

for a formal and a rigorous derivation and modelling details). The resulting macroscopic

Bidomain model describes the averaged intra- and extra-cellular electric potentials and

currents by a reaction-diffusion system of degenerate parabolic type and it represents

the cardiac tissue as the superimposition of two anisotropic continuous media: the intra-

and extra-cellular media, coexisting at every point of the tissue and connected by a

distributed continuous cellular membrane, i.e.

Ω ≡ Ωi ≡ Ωe ≡ Γm ⊂ R
3 is the physical region occupied by the heart,

ui, ue : Ω → R are the intra- and extra-cellular electric potentials and

v := ui − ue : Ω → R is the transmembrane potential.

Basic equations. The anisotropy of the two media depends on the fiber structure of

the myocardium. At the macroscopic level the fibers are regular curves, whose unit

tangent vector at the point x is denoted by
→
a =

→
a (x). Denoting by σl

i,e(x), σt
i,e(x)

the conductivity coefficients along and across the fiber direction at point x and always

assuming axial symmetry for σt
i,e(x), the conductivity tensors Mi,e in the two media can

be expressed by

Mi,e(x) = σt
i,e(x)I + (σl

i,e(x) − σt
i,e(x))

→
a (x)⊗

→
a (x),

and they are symmetric, positive definite, continuous tensors Mi,e : Ω → M3×3. To

the potentials ui, ue are associated the current densities Ji,e := −Mi,e∇ui,e; since induc-

tion effects are negligible, the current field can be considered quasi-static. The current

densities are related to the membrane current per unit volume Im and to the injected

stimulating currents Is
i,e by the conservation laws

−div(Mi∇ui) = −Im + Is
i , −div(Me∇ue) = Im + Is

e , in Ω. (1.1)

On the other hand the membrane current per unit volume Im is the sum of a capacitance

and ionic term

Im = χ(Cm∂tv + Iion), in Ω, (1.2)

where χ is the ratio of membrane area per unit of tissue volume (for simplicity, from now

on we shall suppose χ = 1, Cm = 1).

In the following, we assume that the cardiac tissue is insulated, therefore homogeneous

Neumann boundary conditions are assigned on ∂Ω × (0, T )

Mi∇ui · ν = 0, Me∇ue · ν = 0. (1.3)
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In order to complete the model, we need a description of the ionic current Iion which

appears in (1.2).

The ionic current. In this work we assume that the ionic current

Iion : R × R
k × (0,+∞)m → R,

(v,w, z) → Iion(v,w, z)

has the general form:

Iion(v,w, z) :=

m
∑

i=1

(Ji(v,w, log zi)) + H̃(v,w, z), (1.4)

where, ∀ i = 1, . . . ,m,

Ji ∈ C1
(

R × R
k × R

)

, (1.5a)

0 < G(w) ≤
∂

∂ζ
Ji(v,w, ζ) ≤ G(w), (1.5b)

∣

∣

∣

∣

∂

∂v
Ji(v,w, 0)

∣

∣

∣

∣

≤ Lv(w), (1.5c)

G,G,Lv belong to C0(Rk, R+), and

H̃ ∈ C0(R × R
k × (0,+∞)m) ∩ Lip(R × [0, 1]k × (0,+∞)m). (1.6)

The dynamics of the gating variables are described by the system of ODE’s

∂wj

∂t
= Fj(v, wj), j = 1, ..., k. (1.7)

We assume that

Fj : R
2 → R is locally Lipschitz continuous; (1.8a)

Fj(v, 0) ≥ 0, ∀ v ∈ R; (1.8b)

Fj(v, 1) ≤ 0, ∀ v ∈ R, (1.8c)

∀ j = 1, ..., k.

In the models considered Fj has the particular form

Fj(v, wj) := αj(v)(1 − wj) − βj(v)wj , j = 1, ..., k,

where αj and βj are positive rational functions of exponentials in v. A general expression

for both αj and βj is given by

C1e
v−vn

C2 + C3(v − vn)

1 + C4e
v−vn

C5

,
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where C1, C3, C4, vn are non-negative constants and C2, C5 are positive constants.

The dynamics of the ionic concentrations are described by the system of ODE’s

∂zi

∂t
= Gi(v,w, z) := −Ji(v,w, zi) + Hi(v,w, z) i = 1, ...,m, (1.9)

where Ji is the function described in (1.5a, 1.5b, 1.5c) and

Hi ∈ C0(R×R
k × (0,+∞)m)∩ Lip(R× [0, 1]k × (0,+∞)m), i = 1, . . . ,m. (1.10)

We refer to (1.1)-(1.4), (1.7), (1.9) as the equations of the macroscopic bidomain

model. We complete this reaction diffusion system by assigning the (degenerate with

respect to v) initial Cauchy condition

v(x, 0) = v0(x), w(x, 0) = w0(x), z(x, 0) = z0(x), on Ω.

Adding the two equations (1.1) we have −div(Mi∇ui)−div(Me∇ue) = Is
i +Is

e . Integrat-

ing on Ω and applying the divergence theorem and the Neumann boundary conditions,

we have the following compatibility condition for the system to be solvable:

∫

Ω
(Is

i + Is
e) dx = 0. (1.11)

We recall that electric potentials in bounded domains are defined up to an additive

constant; in our case ui and ue are determined up to the same additive time-dependent

constant, while v is uniquely determined. This common constant is related to the choice

of a reference potential. A usual choice consists in selecting this constant so that ue has

zero average on Ω, i.e.
∫

Ω
ue dx = 0. (1.12)

Remark 1. When Mi = λMe, with λ constant, the macroscopic system in the variables

(ui, ue,w, z) is equivalent to a parabolic reaction-diffusion equation in v = ui−ue coupled

with the dynamics of the assistant variables w, z. This case is called in literature equal

anisotropic ratio and this assumption is often used in modelling cardiac tissue, see e.g.

[43], [21]. Nevertheless, it is not an adequate cardiac model since it is unable to reproduce

some patterns and morphology of the experimentally observed extracellular potential

maps and electrograms, see [10], [23] and [37]. Moreover unequal anisotropic ratio makes

possible more complex phenomena (see [54], [51]) and can play an important role for the

re-entrant excitation (see [56], [46]).

The complete formulation. In order to give the formal statement of the problem, we

shall suppose that Ω ⊂ R
3 is a Lipschitz bounded domain, Γ := ∂Ω, ν is the unitary
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exterior normal to Γ. We define the related space-time domains following the usual

notation of [33]

Q := Ω×]0, T [, Σ := Γ×]0, T [.

We also suppose that Mi(x),Me(x), are measurable and satisfy the uniform ellipticity

condition

∃ α,m > 0 : α|ξ|2 ≤ Mi,e(x)ξ · ξ ≤ m|ξ|2, ∀ ξ ∈ R
3, x ∈ Ω. (1.13)

We denote the vectors by boldface letters (so that F = (F1, ..., Fk), G = (G1, ..., Gm),

and so on). The formal statement of the macroscopic model is then:

Problem (M). Given

Is
i : Q → R, Is

e : Q → R,

v0 : Ω → R, w0 : Ω → R
k, z0 : Ω → (0,+∞)m,

we seek

ui,e : Q → R, w = (w1, ..., wk) : Q → R
k,

v := ui − ue : Q → R, z = (z1, ..., zm) : Q → (0,+∞)m,

satisfying the reaction-diffusion system

∂tv + Iion(v,w, z) = div(Mi∇ui) + Is
i on Q, (1.14a)

∂tv + Iion(v,w, z) = −div(Me∇ue) − Is
e on Q, (1.14b)

Mi∇ui · ν = 0 on Σ, (1.14c)

Me∇ue · ν = 0 on Σ, (1.14d)

v(x, 0) = v0(x) on Ω, (1.14e)

and the ODE system

∂tw = F(v,w) on Q, (1.15a)

∂tz = G(v,w, z) on Q, (1.15b)

w(x, 0) = w0(x) on Ω, (1.15c)

z(x, 0) = z0(x) on Ω. (1.15d)

The condition on the initial datum. In view of the result of continuity for

the solution v of the macroscopic model, we must ask for the initial datum v0 to be

compatible, in a sense that we shall make precise, with the Neumann homogeneous

conditions (1.14c) and (1.14d). Intuitively, if v0 = u0
i − u0

e, then we should have

Mi∇u0
i · ν = 0 = Me∇u0

e · ν, on ∂Ω,

6



but fixing both ui(x, 0) and ue(x, 0), as initial data, may render the problem unsolvable,

since the time derivative involves only the difference ui − ue. The correct assumption

may seem abstract at present, but will be clarified in Section 3: let v ∈ H 1(Ω) be given,

then the following minimization problem has a unique solution:

min







∑

i,e

∫

Ω
Mi,e∇ūi,e · ∇ūi,e dx : ūi,e ∈ H1(Ω),

∫

Ω
ūe dx = 0, ūi − ūe = v







.

(1.16)

Now, if Is
i (0) + Is

e (0) ∈ L2(Ω), then the following elliptic problem has a unique solution

u0
b ∈ H2(Ω):















−div((Mi + Me)∇u0
b) = Is

i (0) + Is
e (0) on Ω,

((Mi + Me)∇u0
b) · ν = 0 on ∂Ω,

∫

Ω
u0

b dx = 0.

(1.17)

Finally, we say that an initial datum v0 satisfies the admissibility property if

{

the couple (ūi, ūe) solution of (1.16) w.r.t. v0, satisfies

Mi(∇ūi + u0
b) · ν = Me∇(ūe + u0

b) · ν = 0 on ∂Ω.
(1.18)

Remark 2. From the modellistic point of view, it is not restrictive to suppose that the

myocardial fibers are tangent to ∂Ω, i.e. that

Miν and Meν have the same direction on ∂Ω.

In this case, the admissibility property (1.18) has a considerably simpler formulation,

since it is equivalent to

Mi∇v0 · ν = 0, (or Me∇v0 · ν = 0, ) on ∂Ω. (1.19)

For sake of generality, we shall state the main result and carry on the proofs only with

the choice (1.18).

In the following part, the expression ’ log z’ stands for the vector (log z1, ..., log zm)

and ’z log z’ is not a scalar product, but represents the vector (z1 log z1, ..., zm log zm).

We can now state our main result concerning the existence of a variational solution for

Problem (M).
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Theorem 1.1. Assume that

Ω is of class C1,1, Mi,e are Lipschitz in Ω.

Let be given the data

v0 ∈ H2(Ω), satisfying the admissibility property (1.18),

w0 : Ω → [0, 1]k, measurable,

z0 ∈ (L2(Ω))m, with log z0 ∈ (L2(Ω))m,

Is
i,e ∈ Lp(0, T ;L2(Ω)), for p > 4, satisfying (1.11) and

Is
i + Is

e ∈ H1(0, T ;L2(Ω)).

Let be given the ionic currents satisfying (1.4–1.6), the dynamics of the gating vari-

ables F(v,w), satisfying (1.7–1.8c), the dynamics of the ionic concentrations G(v,w, z),

satisfying (1.9), (1.10).

Then, there exists a unique solution of Problem (M), given by k + m + 2 functions

w1, ..., wk, z1, ..., zm, ui, ue, satisfying

ui,e ∈ Lp(0, T ;H2(Ω)),

v := ui − ue ∈ W 1,p(0, T ;L2(Ω)) ∩ Lp(0, T ;H2(Ω)) ∩ C0([0, T ];C0(Ω)),

w : Q → [0, 1]k measurable, z : Q → (0,+∞)m measurable,

wj(x, ·) ∈ C1(0, T ) ∩ C0([0, T ]) for a.e. x ∈ Ω, j = 1, ..., k,

zi(x, ·) ∈ C1(0, T ) ∩ C0([0, T ]) for a.e. x ∈ Ω, i = 1, ...,m,

z ∈ H1(0, T ;L2(Ω))m ∩ L∞(Q)m, log z ∈ L∞(Q)m.

Steps of the proof and plan of the paper. The proof of Theorem 1.1 is divided

into three parts. In a first step we fix v and solve the ODE systems of the gating (1.15a,

1.15c) and concentration (1.15b, 1.15d) variables, obtaining suitable a priori estimates

and qualitative properties of the solution (Section 2).

In the second step we use a reduction technique in order to split the degenerate

parabolic system (1.14a)-(1.14e) into an elliptic equation coupled with a non degener-

ate parabolic equation in L2(Ω), governed by the generator of an analytic semigroup.

Considering Iion(v,w, z) as a known function, we apply a result of maximal regularity

in Lp, obtaining existence, uniqueness and estimates for the potentials ui, ue (and thus

for v = ui − ue) in Lp(0, T ;H2(Ω)) ∩ W 1,p(0, T ;L2(Ω)). (Section 3).

These estimates, owing to classical interpolation techniques, provide a crucial bound

for v in L∞(Q). Then, by choosing the correct functional spaces for w, z and v, it is

possible to find existence and uniqueness for a solution (v,w, z) of Problem (M), using

Banach’s Fixed Point Theorem (Section 4).

8



The main difficulties in the parabolic equation reside in its degenerate structure,

which reflects the differences in the anisotropy of the intra- and extra-cellular tissues,

and in the lack of a maximum principle. Moreover, the concentration variables zi appear

as argument of a logarithm, both in the dynamics of the concentrations and in the ionic

currents, and therefore it is necessary to bound z far from zero.

For a description of the structure of the ionic currents and of the relation between

the mathematical hypothesis in this work and the explicit equations in the considered

models, we refer to [53], where the same membrane models are studied in the context of

a microscopic cellular model for the propagation of the cardiac electric potential.

Acknowledgments. I would like to thank Piero Colli Franzone and Giuseppe Savaré,

the advisor of my Ph.D. thesis, for having proposed me the problem and for the inspiring

conversations.

2 The ODE systems

We recall here some results proved in [53] for the ODE systems of the gating and con-

centration variables.

2.1 The gating variables

Our first step will be to show that, for every v ∈ H 1(0, T ;L2(Ω)), there exists a unique

w = (w1, . . . , wk), measurable, which solves the gating variables equations in system

(1.15a, 1.15c)






∂w

∂t
= F(v,w), on Q,

w(x, 0) = w0(x), on Ω,
(2.1)

in a sense which we will make precise; moreover we will also obtain the universal bounds

0 ≤ wj ≤ 1, a.e. in Σ, ∀ j = 1, . . . , k. (2.2)

Proposition 2.1. Let v ∈ H1(0, T ; Ω), w0(x) : Ω → [0, 1]k, measurable. Then

∃! w : Q → [0, 1]k, measurable, such that for a.e. x ∈ Ω, w(x, ·) ∈ (C 1(0, T ))k, and







∂w

∂t
(x, t) = F(v(x, t),w(x, t)), for a.e. x ∈ Ω, ∀ t ∈ (0, T ],

w(x, 0) = w0(x), for a.e. x ∈ Ω.
(2.3)
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2.2 The concentration variables

Now we turn to the system of ODEs of the concentration variables in (1.15b, 1.15d).

We follow the same idea as for the gating variables, that is, we show that for every

v ∈ H1(0, T ;L2(Ω)) and for every vector function w given by Proposition 2.1, we can

solve an ordinary Cauchy Problem in time, for a.e. x ∈ Ω.

Proposition 2.2. Let v ∈ H1(0, T ;L2(Ω)), w as in Proposition 2.1, and

z0 : Ω → (0,+∞)m, such that

z0 ∈ (L2(Ω))m, log z0 ∈ (L2(Ω))m.

Then ∃! z : Q → (0,+∞)m, measurable, such that for a.e. x ∈ Ω:

z(x, ·) ∈ (C1(0, T ))k, and







∂z

∂t
(x, t) = G(v(x, t),w(x, t), z(x, t)), for a.e. x ∈ Ω, ∀ t ∈ (0, T ],

z(x, 0) = z0(x), for a.e. x ∈ Ω.
(2.4)

Moreover, z, log z, ∂z/∂t belong to (L2(Q))m and there exists a constant C > 0, inde-

pendent of v,w, z0, such that

|z(x, t)| ≤ C
(

1 + |z0(x)| + ‖v(x)‖L2(0,t)

)

, (2.5)

| log z(x, t)| +

∣

∣

∣

∣

∂z

∂t
(x, t)

∣

∣

∣

∣

≤ C
(

1 + |z0(x)| + ‖v(x)‖C0(0,t)

)

, (2.6)

∫ t

0
| log z(x, s)|2+

∣

∣

∣

∣

∂z

∂s
(x, s)

∣

∣

∣

∣

2

ds ≤ C
(

1 + |z0(x) log z0(x)| + |z0(x)|2+ ‖v(x)‖2
L2(0,t)

)

,

(2.7)

∀ t ∈ [0, T ], for a.e. x ∈ Ω.

The difficulty, in this case, lies in the lack of a priori conditions such as (1.8b)

and (1.8c), which, in (2.1) guaranteed the boundedness for w. We used instead the

monotonicity of Ji in the variable zi, combined with the linear growth of Hi. Moreover,

functions Ji contain a logarithmic term, so we also need to bound z far from zero.
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3 The Parabolic equation

Our next step will be to solve system (1.14a–1.14e), considering the ionic current Iion

as a known function. In order to choose the correct assumptions on Iion, we look at the

estimates just stated: let w, z be known functions, satisfying the thesis of Propositions

2.1 and 2.2, with v̄ ∈ H1(0, T ;L2(Ω)) given, and set

Īion(x, t) := Iion(v̄(x, t),w(x, t), z(x, t)). (3.1)

Then, by the definition of Iion (1.4), using estimates (1.5b), (1.5c) and (2.2) we obtain

|J(v,w, log z)| ≤ |J(0,w, 0)| + Lv|v| + G| log z| ≤ C(1 + |v| + | log z|),

and thus, owing to (2.7), we have that Īion ∈ L2(Q), and

‖Īion‖
2
L2(0,t;L2(Ω)) ≤ C

(

1 + ‖v̄‖2
L2(0,t;L2(Ω))

)

, ∀ t ∈ [0, T ]. (3.2)

On the other hand, by using estimate (2.6), we get

∣

∣Īion(x, t)
∣

∣ ≤ C
(

1 + ‖v̄(x)‖H1(0,T )

)

, a.e. in Q.

Then, ∀ p ∈ (1,+∞) we have Īion ∈ Lp(0, T ;L2(Ω)):

‖Īion‖Lp(0,T ;L2(Ω)) ≤ C
(

1 + ‖v̄‖L2(Ω,H1(0,T ))

)

, (3.3)

where C is a constant, independent of v̄,w, z.

We state the main result of this section

Proposition 3.1. Assume that

Ω is of class C1,1, Mi,e are Lipschitz in Ω.

Let p ∈ (4,+∞). Given v0, satisfying the admissibility property (1.18), with

v0 ∈ H2(Ω), Īion ∈ Lp(0, T ;L2(Ω)),

Is
i,e ∈ Lp(0, T ;L2(Ω)) : Is

i + Is
e ∈ H1(0, T ;L2(Ω)),

satisfying the compatibility condition
∫

Ω
Is
i + Is

e dx = 0, ∀ t ∈ [0, T ].

There exists a unique couple (ui, ue), (v = ui − ue) with
∫

Ωue dx = 0,

ui,e ∈ Lp(0, T ;H2(Ω)),
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v ∈ W 1,p(0, T ;L2(Ω)) ∩ Lp(0, T ;H2(Ω)),

which satisfies

∂tv + Īion − div(Mi∇ui) − Is
i = 0 on Q, (3.4a)

∂tv + Īion + div(Me∇ue) + Is
e = 0 on Q, (3.4b)

Me∇ue · ν = 0 on Σ, (3.4c)

Mi∇ui · ν = 0 on Σ, (3.4d)

v(x, 0) = v0(x) on Ω. (3.4e)

We have the a priori estimates

‖ui,e‖Lp(0,T ;H2(Ω)) + ‖v‖W 1,p(0,T ;L2(Ω)) ≤ C
(

‖v0‖H2(Ω)+

+‖Īion‖Lp(0,T ;L2(Ω)) + ‖Is
i,e‖Lp(0,T ;L2(Ω))

+ ‖Is
i + Is

e‖H1(0,T ;L2(Ω))

)

,
(3.5)

and, if v(1), v(2) are the solutions corresponding to data Ī
(1)
ion, Ī

(2)
ion, it holds:

‖v(2)(t) − v(1)(t)‖
2

L2(Ω) ≤ C‖Ī
(1)
ion − Ī

(2)
ion‖

2

L2(0,t;L2(Ω)), ∀ t ∈ [0, T ]. (3.6)

In system (3.4a)–(3.4e) the time derivative involves only the difference of the po-

tentials ui, ue (it is a parabolic degenerate evolution system). Owing to the unequal

anisotropy ratio of the diffusion tensors Mi,Me, we cannot reduce the system directly to

a single equation in v, see Remark 1. We will use a particular reduction technique, in

order to separate the system into an elliptic equation and a parabolic (nondegenerate)

equation.

Subtracting equation (3.4b) from (3.4a) and summing Neumann conditions (3.4c)

and (3.4d) we find

{

−div(Mi∇ui) − div(Me∇ue) = Is
i + Is

e on Q,

(Mi∇ui + Me∇ue) · ν = 0 on Σ.
(3.7)

Summing equations (3.4a) and (3.4b) and subtracting equation (3.4c) from (3.4d), we

have















∂tv + Īion −
div(Mi∇ui) − div(Me∇ue)

2
=

Is
i − Is

e

2
on Q,

(Mi∇ui − Me∇ue) · ν = 0 on Σ,

v(x, 0) = v0(x) on Ω.

(3.8)

The reduction technique. We can now use a reduction technique (see e.g. [48, 14]) in

order to exploit the particular form of systems (3.7) and (3.8). We recall just the basic
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definitions, referring to the bibliography for details. We denote by boldface letters u and

û the couples of functions (ui, ue), (ûi, ûe) and we introduce the Hilbert spaces

V := H1(Ω) × H1
∗ (Ω), H1

∗ (Ω) :=

{

u ∈ H1(Ω) :

∫

Ω
u(x) dx = 0

}

,

and the symmetric, nonnegative bilinear forms

b(u, û) :=

∫

Ω
(ui − ue)(ûi − ûe) dx,

a(u, û) :=

∫

Ω
(Mi∇ui) · ∇ûi + (Me∇ue) · ∇ûe dx

defined ∀ u, û ∈ V. We remark that the kernel of b has infinite dimension, however, by

(1.13) and Poincaré inequality, the sum of the quadratic forms associated to a and b is

coercive on V, i.e.

∃α > 0 : a(u,u) + b(u,u) ≥ α‖u‖2
V

, ∀u ∈ V. (3.9)

Denoting by V′ the dual space of V, we can associate to the bilinear forms a, b the linear

continuous operators A,B : V → V′ defined by

〈Au, û〉 := a (u, û), 〈Bu, û〉 := b (u, û), ∀ u, û ∈ V.

Let us denote by Kb ⊂ V the kernel of b(·, ·), which is given by

Kb := {u ∈ V : ui ≡ ue, a.e. in Ω} = {u ∈ V : b(u,u) = 0},

and by Ka ⊂ V the subspace of V which is a-orthogonal to Kb:

Ka := {u ∈V : a(u,k) = 0, ∀k ∈ Kb}.

Remark 3. If u ∈ Ka, and ui, ue ∈ H2(Ω), then (ui, ue) is a solution of

{

div(Mi∇ui + Me∇ue) = 0, on Ω,

(Mi∇ui + Me∇ue) · ν = 0, on ∂Ω.

We denote by R : H1(Ω) → V a right inverse of B, defined by

Rv = u ⇔ Bu = v, and u ∈ Ka. (3.10)

Moreover, observe that since a(·, ·) is symmetric, (3.10) is equivalent to the minimization

problem

Bu = v, and a(u,u) = min {a(y,y) : y ∈ V, By = v}. (3.11)
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By (3.9) we have that a(·, ·) is coercive on Kb, then Riesz Fréchet Theorem ensures that

R : H1(Ω) → Ka ⊂ V is a linear isomorphism. Observe that V ' Ka ⊕ Kb and each

u ∈ V admits the linear decomposition

u = Rv + ub : v = Bu, Rv ∈ Ka, ub ∈ Kb. (3.12)

The reduced equations. If we denote (Riv,Rev) = Rv, and (ub, ub) = ub, owing to

decomposition (3.12) and to Remark 3, we can rewrite system (3.7) as

{

−div((Mi + Me)∇ub) = Is
i + Is

e on Q,

((Mi + Me)∇ub) · ν = 0 on Σ,
(3.13)

and system (3.8) as















∂tv + Īion − div β (Rv + ub) =
Is
i − Is

e

2
on Q,

β(Rv + ub) · ν = 0 on Σ,

v(x, 0) = v0(x) on Ω,

(3.14)

where β : H1(Ω) × H1(Ω) → L2(Ω)3, is the linear continuous operator defined by

βu :=
Mi∇ui − Me∇ue

2
, ∀u = (ui, ue) ∈ H1(Ω) × H1(Ω). (3.15)

In order to univocally solve (3.13), we impose the condition

∫

Ω
ub dx = 0,

which is the analogous of the usual condition (1.12) in Section 1.

Proof of Proposition 3.1. The proof is structured as follows: first we solve the

elliptic equation (depending from the time parameter) (3.13), which is independent

of v, and we derive the estimates on ub (Lemma 3.1). Then, considering ub as a

known function, we give a variational formulation of (3.14) in the classical Hilbert triple

(H1(Ω), L2(Ω),H1(Ω)′). In order to obtain the best regularity for the solution of equa-

tion (3.14), we separate in two different equations the term Īion + (Is
i − Is

e )/2 (Lemma

3.2) and the term −divβ(ub) (Lemma 3.3).

Lemma 3.1. Assume that

Ω is of class C1,1, Mi,e are Lipschitz in Ω. (3.16)
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Given

Is
i,e ∈ L2(0, T ;L2(Ω)) : Is

i + Is
e ∈ H1(0, T ;L2(Ω)), (3.17)

satisfying the compatibility condition

∫

Ω
Is
i + Is

e dx = 0, ∀ t ∈ [0, T ],

there exists a unique ub ∈ H1(0, T ;H2(Ω)) which solves















−div((Mi + Me)∇ub) = Is
i + Is

e on Q,

((Mi + Me)∇ub) · ν = 0 on Σ,
∫

Ω
ub dx = 0 ∀ t ∈ [0, T ],

(3.18)

and

‖ub‖H1(0,T ;H2(Ω)) ≤ C‖Is
i + Is

e‖H1(0,T ;L2(Ω)). (3.19)

Proof. By hypothesis (1.13), Mi +Me is uniformly elliptic, therefore, owing to (3.16),

(3.17), the result of Lemma 3.1 follows directly by standard regularity estimates for

elliptic problems depending on the time parameter t (see e.g. [17]).

Our next step will be to write a variational formulation for system (3.14), in the

classical Hilbert triple (H1(Ω), L2(Ω),H1(Ω)′), considering ub as a known function. We

denote by 〈·, ·〉 the duality between H1(Ω)′ and H1(Ω).

We choose a test function ϕ ∈ H1(Ω), multiply the first equation in (3.14) by ϕ, inte-

grate on Ω and use Green formula and the boundary condition in (3.14), thus obtaining:

∫

Ω
∂tv(t)ϕ dx +

∫

Ω
β(Rv(t) + ub(t))∇ϕ dx =

∫

Ω

(

Is
i (t) − Is

e (t)

2
− Īion(t)

)

ϕ dx. (3.20)

We denote by R∗a : H1(Ω) × H1(Ω) → R the pullback form of a through R:

(R∗a) (v, w) = a(Rv,Rw) =

∫

Ω
Mi∇(Riv)∇(Riw) + Me∇(Rev)∇(Rew) dx, (3.21)

for every v, w ∈ H1(Ω). Since R is a linear isomorphism, R∗a is a continuous, symmetric

bilinear form, and it is weakly elliptic, that is

∃α > 0 : R∗a(v, v) + (v, v)L2(Ω) ≥ α‖v‖H1(Ω), ∀ v ∈ H1(Ω).

By definition of R, we have that Rv ∈ Ka, and therefore we can write R∗a as

(R∗a) (v, w) =
1

2

∫

Ω
(Mi∇Riv −Me∇Rev)(∇Riw −∇Rew)dx =

∫

Ω
β(Rv)∇w dx, (3.22)
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moreover, we can associate to the bilinear form R∗a the linear continuous operator

AR : H1(Ω) → H1(Ω)′

〈ARv, ϕ〉 := R∗a(v, ϕ), ∀ϕ ∈ H1(Ω). (3.23)

We shall also consider the realization of AR on the domain

DL2(Ω)(AR) :=
{

v ∈ H1(Ω) : ARv ∈ L2(Ω)
}

=
{

v ∈ H2(Ω) : β(Rv) · ν = 0, on ∂Ω
}

.
(3.24)

We define the function

L1(t) :=
Is
i (t) − Is

e (t)

2
− Īion(t), (3.25)

and the family of linear operators {L2(t)}t∈[0,t] : H1(Ω) → H1(Ω)′

〈L2(t), ϕ〉 := −

∫

Ω
β(ub(t))∇ϕ dx, ∀ϕ ∈ H1(Ω). (3.26)

Owing to definitions (3.22)–(3.26), and linearity of R∗a, in order to study equation (3.20),

we can examine the separate problems






d

dt
v1(t) + ARv1(t) = L1(t), in L2(Ω), for a.e. t ∈ (0, T ),

v1(0) = 0,

with boundary conditions included in the definition of the domain DL2(Ω)(AR), and







d

dt
v2(t) + ARv2(t) = L2(t), in H1(Ω)′, for a.e. t ∈ (0, T ),

v2(0) = v0.

Lemma 3.2. Assume that (3.16) holds, let p ∈ (4,+∞). Given R, β, AR, DL2(Ω)(AR),

L1 defined in (3.10), (3.15), (3.23), (3.24), (3.25).

Īion ∈ Lp(0, T ;L2(Ω)),

Is
i , Is

e ∈ Lp(0, T ;L2(Ω)). (3.27)

There exists a unique

v1 ∈ W 1,p(0, T ;L2(Ω)) ∩ Lp(0, T ;H2(Ω)),

which solves v1(0) = 0, v1(t) ∈ DL2(Ω)(AR), a.e. in (0, T ),

d

dt
v1(t) + ARv1(t) = L1(t), in L2(Ω), for a.e. t ∈ (0, T ), (3.28)
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and we have the a priori estimates

‖v1‖W 1,p(0,T ;L2(Ω)) ≤ C
(

‖Īion‖Lp(0,T ;L2(Ω)) + ‖Is
i,e‖Lp(0,T ;L2(Ω))

)

, (3.29)

‖v1‖Lp(0,T ;H2(Ω)) ≤ C
(

‖Īion‖Lp(0,T ;L2(Ω)) + ‖Is
i,e‖Lp(0,T ;L2(Ω))

)

. (3.30)

Lemma 3.3. Assume that (3.16) holds. Let be given

v0 ∈ H2(Ω), satisfying (1.18), (3.31)

Is
i,e ∈ L2(0, T ;L2(Ω)) : Is

i + Is
e ∈ H1(0, T ;L2(Ω)), (3.32)

ub as in Lemma 3.1, thus satisfying ub ∈ H1(0, T ;H2(Ω)), and R, β, AR, L2 as defined

in (3.10), (3.15), (3.23), (3.26). There exists a unique function

v2 ∈ W 1,∞(0, T ;L2(Ω)) ∩ H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω))

which solves v2(0) = v0,

d

dt
v2(t) + ARv2(t) = L2(t), in H1(Ω)′, for a.e. t ∈ (0, T ), (3.33)

and we have the a priori estimates

‖v2‖W 1,∞(0,T ;L2(Ω)) ≤ C
(

‖v0‖H2(Ω) + ‖Is
i + Is

e‖H1(0,T ;L2(Ω))

)

,

‖v2‖H1(0,T ;H1(Ω)) ≤ C
(

‖v0‖H2(Ω) + ‖Is
i + Is

e‖H1(0,T ;L2(Ω))

)

,

‖v2‖L∞(0,T ;H2(Ω)) ≤ C
(

‖v0‖H2(Ω) + ‖Is
i + Is

e‖H1(0,T ;L2(Ω))

)

.

Proof of Lemma 3.2. We recall a result by L. de Simon on maximal regularity in Lp

(see [16])

Theorem 3.1. Let H be a Hilbert space, p ∈ (1,+∞),

A : D(A) → H be the generator of an analytic semigroup on H,

f ∈ Lp(0, T ;H).

Then, there exists a unique

u ∈ Lp(0, T ;D(A)) ∩ W 1,p(0, T ;H),

satisfying the system
{

u′(t) + Au(t) = f(t), in H, for a.e. t ∈]0, T [,

u(0) = 0.

and there exist C > 0 such that

‖u′‖Lp(0,T ;H) + ‖u‖Lp(0,T ;D(A)) ≤ C‖f‖Lp(0,T ;H).
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Remark 4. De Simon’s result can be generalized, since, for every p ∈ (1,+∞), it holds

(H,D(A))1− 1

p
,p =

{

x = u(0) : u ∈ Lp(0,+∞;D(A)) ∩ W 1,p(0,+∞;H)
}

,

then it is possible to choose u(0) ∈ (H,D(A))1− 1

p
,p, moreover, under suitable assump-

tions, the space H can be a Banach space (see e.g. [30], [7], [8]).

By standard results about the generation of analytic semigroups, (see [15], [34]), the

operator

AR : DL2(Ω)(AR) → L2(Ω)

is sectorial. This can be easily verified, owing to the properties of the associated bilinear

form R∗a (3.21). It may also be observed that AR is symmetric self-adjoint on a Hilbert

space ([15]). See, in particular, [34, Theorem 3.1.2–(iii)] for the resolvent estimates in

the case of second order elliptic operators with first order boundary conditions.

Estimate (3.3) and hypothesis (3.27) yield L1 ∈ Lp(0, T ;L2(Ω)). Then, we can then

apply Theorem 3.1, which provides existence, uniqueness and estimates (3.29) and (3.30)

for v1, solution of (3.14).

2

Proof of Lemma 3.3. We recall a classical result by J. L. Lions for linear parabolic

partial differential equations in a Hilbert triple (V,H, V ′) [32, 31]. Let A ∈ L(V, V ′) be

a weakly elliptic operator, let be given u0 ∈ H, f ∈ L2(0, T ;V ′), there exists a unique

function u which satisfies

u ∈ L2(0, T ;V ), u′ ∈ L2(0, T ;V ′), (3.34a)

u′(t) + Au(t) = f(t) in V ′, u(0) = u0, (3.34b)

‖u‖L2(0,T ;V ) + ‖u′‖L2(0,T ;V ′) ≤ C1(‖u0‖H + ‖f‖L2(0,T ;V ′)). (3.34c)

Moreover, if

df/dt ∈ L2(0, T ;V ′) and Au0 − f(0) ∈ H, (3.35)

owing to the linearity of equation (3.34b), it can be seen that

u ∈ H1(0, T ;V ) ∩ W 1,∞(0, T ;H),

Au(t) − f(t) ∈ L∞(0, T ;H), (3.36)

‖u‖H1(0,T ;V ) + ‖u‖W 1,∞(0,T ;H) ≤ C2(‖u0‖H + ‖Au0 − f(0)‖H + ‖f‖H1(0,T ;V ′)),

‖Au(t) − f(t)‖L∞(0,T ;H) ≤ C2(‖u0‖H + ‖Au0 − f(0)‖H + ‖f‖H1(0,T ;V ′)).

By hypothesis (3.32) we have L2 ∈ H1(0, T ;H1(Ω)′), then, in order to meet condition

(3.35) we have to ask that

ARv2(0) − L2(0) ∈ L2(Ω).
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For every v,ϕ ∈ H1(Ω), ∀ t ∈ [0, T ] we have that

〈ARv − L2(t), ϕ〉 =

∫

Ω
β(Rv + ub(t))∇ϕ dx.

Therefore ARv − L2(t) ∈ L2(Ω) if and only if

∫

Ω
β(Rv + ub(t))∇ϕ dx = −

∫

Ω
div β(Rv + ub(t))ϕ dx.

Since, by Lemma 3.1, ub(t) ∈ H2(Ω) ∀ t ∈ [0, T ], ARv − L2(t) ∈ L2(Ω) if and only if

−div β(Rv) = −div
Mi∇Riv − Me∇Rev

2
∈ L2(Ω),

and β(Rv + ub(t)) · ν = 0 on ∂Ω, that is

(Mi∇Riv − Me∇Rev) · ν = −(Mi − Me)∇ub(t) · ν, on ∂Ω. (3.37)

Since, by (3.18) and Remark 3

((Mi + Me)∇ub(t)) · ν = (Mi∇Riv + Me∇Rev) · ν = 0 on ∂Ω,

then (3.37) is equivalent to

Mi∇(Riv + ub(t) · ν = Me∇(Rev + ub(t) · ν = 0, on ∂Ω. (3.38)

Then, since v0 satisfies (1.18) by hypothesis (and therefore (3.38)), we have that

β(Rv0 + ub(0)) · ν = 0, on ∂Ω,

and (3.36) and Lemma 3.1 imply

{

−div β(Rv2) ∈ L∞(0, T ;L2(Ω)),

β(Rv2 + ub) · ν = 0, on ∂Ω × [0, T ],

then standard regularity estimates for elliptic problems yield

v2 ∈ L∞(0, T ;H2(Ω)),

‖v2‖L∞(0,T ;H2(Ω)) ≤ C2

(

‖v0‖H2(Ω) + ‖ub‖H1(0,T ;H2(Ω))

)

≤ C3

(

‖v0‖H2(Ω) + ‖Is
i + Is

e‖H1(0,T ;L2(Ω))

)

.

2
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In order to conclude the proof of Proposition 3.1, let v0 ∈ H2(Ω), satisfying (1.18) as

in the hypothesis of Proposition 3.1, let ub, v1, v2 be the solutions of equations (3.18),

(3.28), (3.33) as in Lemma 3.1, 3.2, 3.3 and define

ui := Ri(v1 + v2) + ub −
1

|Ω|

∫

Ω
Re(v1 + v2) + ub dx

ue := Re(v1 + v2) + ub −
1

|Ω|

∫

Ω
Re(v1 + v2) + ub dx

v := v1 + v2

Then v = ui − ue, the triple (v, ui, ue) is the unique solution of system (3.4a)–(3.4e),

and ue satisfies
∫

Ωue dx = 0, ∀ t ∈ [0, T ]. At last, the stability estimate (3.6) follows

from the linearity of equation (3.28), and estimate (3.29), p = 2.
2

4 Existence and uniqueness

Let us denote by T the operator that maps a function v̄ into the solution of (3.4a)–(3.4e).

We shall now introduce a suitable closed subset K of L2(Q) satisfying the following two

properties:

P1) T (K) ⊂ (K)

P2) T is a contraction with respect to a norm inducing the L2(Q) topology

Thus, Banach’s Fixed Point Theorem provides existence and uniqueness for (v,w, z),

solution of Problem (M).

Notation: If H is a Hilbert space and λ ∈ R, denote by |‖ · |‖λ,H the norm on L2(0, T ;H):

|‖v|‖λ,H :=

(
∫ T

0
e−λt‖v(t)‖2

H dt

)1/2

.

It is immediate to check that |‖ · |‖λ,H and ‖ · ‖ are equivalent norms on L2(0, T ;H).

Proposition 4.1. Let v0 ∈ H2(Ω), satisfying (1.18), Is
i,e ∈ Lp(0, T ;L2(Ω)), for p > 4.

There exist M0,M1,M∞, λ > 0 such that the set

K :=
{

v ∈ L2(0, T ;H2(Ω)) ∩ H1(0, T ;L2(Ω)) ∩ L∞((0, T ) × Ω) : v(x, 0) = v0,

|‖v|‖λ,L2(Ω) ≤ M0, |‖v′|‖λ,L2(Ω) ≤ M1, |‖v|‖λ,H2(Ω) ≤ M1, ‖v‖L∞(Q)) ≤ M∞

}

,

satisfies the previous conditions (P1)-(P2) with respect to the norm |‖ · |‖λ,L2(Ω).

Our first step will be to show that T (K) ⊆ K. This forces the solution (v,w, z) into

a compact set of R
1+k+m. In a second step, owing to the local Lipschitz continuity of

the functions F,G, Iion, we can prove a contraction estimate for operator T .

P1) T (K) ⊆ K.
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Lemma 4.1. Let v̄ ∈ H1(0, T ;L2(Ω)), let w, z be the unique solutions of systems (2.3)

and (2.4), given as in Propositions 2.1 and 2.2, and let Īion be given as in (3.1), thus

satisfying (3.2) and (3.3). Then there exists λ > 0 such that the solution v of system

(3.4a)–(3.4e) satisfies

|‖v|‖2
λ,L2(Ω) ≤ max

{

1, |‖v̄|‖2
λ,L2(Ω)

}

, ∀ v̄ ∈ H1(0, T ;L2(Ω)).

Proof. Since

‖v‖L∞(0,T ;L2(Ω)) ≤ C1‖v‖H1(0,T ;L2(Ω)),

by estimate (3.5) (p = 2) we have

‖v(t)‖2
L2(Ω) ≤ C2

(

‖v0‖
2
H1(Ω) + ‖Is

i ‖
2
L2(Q) + ‖Is

e‖
2
L2(Q) + ‖Īion‖

2
L2(0,t;L2(Ω))

)

. (4.1)

Let ϕ(t) := ‖v(t)‖2
L2(Ω), and ϕ̄(t) := ‖v̄(t)‖2

L2(Ω); owing to estimates (3.2) and (4.1) we

find

ϕ(t) ≤ C3 + C4

∫ t

0
ϕ̄(s) ds, (4.2)

where C3 may depend on T , ‖v0‖
2
H1(Ω), ‖I

s
i,e‖L2(Q)

, ‖z0‖
2
L2(Ω),

‖z0 log z0‖L2(Ω), |Ω|, and

C4 = C4 (T, |Ω |) .

Now we multiply (4.2) by e−λt, (λ > 0), and we integrate between 0 and T :

∫ T

0
e−λtϕ(t) dt ≤ C3

∫ T

0
e−λt dt + C4

∫ T

0
e−λt

(
∫ t

0
ϕ̄(s) ds

)

dt,

and integrating by parts

∫ T

0
e−λtϕ(t) dt ≤

1

λ

[

C3

(

1 − e−λT
)

+ C4

∫ T

0
e−λtϕ̄(t) dt − C4e

−λT

∫ T

0
ϕ̄(t) dt

]

≤
1

λ

[

C3 + C4

∫ T

0
e−λtϕ̄(t) dt

]

.

If

∫ T

0
e−λtϕ̄(t) dt ≥ 1, we have that

∫ T

0
e−λtϕ(t) dt ≤

C3 + C4

λ

∫ T

0
e−λtϕ̄(t) dt.

Hence, if λ ≥ C3 + C4, then

|‖v|‖2
λ,L2(Ω) =

∫ T

0
e−λtϕ(t) dt ≤ max

{

1,

∫ T

0
e−λtϕ̄(t) dt

}

= max
{

1, |‖v̄|‖2
λ,L2(Ω)

}

.
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2

Owing to estimates (3.5), p = 2 and (3.2), we immediately obtain

Corollary 4.1. Let M0 ≥ 1, let v̄,w, z, be as in the statement of Lemma 4.1, such that

|‖v̄|‖λ,L2(Ω) ≤ M0,

then there exist M1 > 0, depending only on M0 and the data of the problem, such that

|‖v|‖λ,H2(Ω) ≤ M1, (4.3)

|‖∂tv|‖λ,L2(Ω) ≤ M1. (4.4)

Lemma 4.2. Let M0, M1, be as in Corollary 4.1, Īion be given as in (3.1), and v̄ ∈

H1(0, T ;L2(Ω)) such that

|‖v̄|‖λ,L2(Ω) ≤ M0, |‖∂tv̄|‖λ,L2(Ω) ≤ M1.

Let p = 4 + ε > 4, Is
i,e ∈ Lp(0, T ;L2(Ω)) and v0 ∈ H2(Ω), satisfying (1.18). There exists

M∞ > 0, depending only on M1, p and the data of the problem, such that:

sup {|v(x, t)| : (x, t) ∈ Q} ≤ M∞.

We recall some classical results on real interpolation (see [52], [7], [30]). Let (X,Y )

be a real interpolation couple of Banach spaces. From now on, by Y ⊂ X we mean that

Y is continuously embedded in X.

i) Let p ∈ [1,+∞], if u ∈ Lp(0, T ;X) and du
dt ∈ Lp(0, T ;Y ), then there exists a

continuous extension

u ∈ C0
(

[0, T ]; (X,Y )1−1/p,p

)

,

and

‖u(t)‖(X,Y )1−1/p,p
≤ ‖u‖Lp(0,T ;X) +

∥

∥

∥

∥

du

dt

∥

∥

∥

∥

Lp(0,T ;Y )

, ∀ t ∈ [0, T ].

ii) For 0 < θ < 1, 1 ≤ p, q < +∞, m ∈ N,

(Lp(Ω),W m,p(Ω))θ,q = Bmθ
p,q (Ω).

By classical inclusions we have:

iii) If 1 ≤ p < ∞, Ω ⊂ R
3 is bounded, then

B
2−2/p
2,p (Ω) ⊂ C0(Ω) if 2 − 2/p > 3/2.

Proof of Lemma 4.2. By property ii) we have Vp := (L2(Ω),H2(Ω))1−1/p,p =B
2−2/p
2,p (Ω).

By (3.5) and i) we have that

v ∈ C0 ([0, T ];Vp) , ∀ p ≥ 1,
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and

‖u(t)‖Vp
≤ 2C

(

‖v0‖Vp
+ ‖Īion‖Lp(0,T ;L2(Ω))+ ‖Is

i,e‖Lp(0,T ;L2(Ω))
+ ‖Is

i + Is
e‖H1(0,T ;L2(Ω))

)

.

(4.5)

By estimate (3.3) there exists C5 > 0 such that, ∀ p ∈ (1,+∞)

‖Īion‖Lp(0,T ;L2(Ω)) ≤ C5

(

1 + ‖v̄‖L2(Ω,H1(0,T ))

)

≤ C6(1 + M1). (4.6)

By ii) and iii), if 2 − 2/p > 3/2, (i.e. p > 4) then

Vp ⊂ C0(Ω),

and therefore (v admits a continuous representative)

v ∈ C0([0, T ];C0(Ω)),

and by estimates (4.5) and (4.6) there exists M∞ > 0, depending only on M1, p and the

data of the problem, such that

sup {|v(x, t)|, (x, t) ∈ Q} ≤ M∞. (4.7)

2

P2) T is a contraction. Now we want to show that T : K → K is a contraction in

L2(0, T ;L2(Ω)), endowed with the norm |‖ · |‖λ,L2(Ω).

Let p > 4, v0 ∈ H2(Ω), w0(x) : Ω → [0, 1]k, measurable, and z0 : Ω → (0,+∞)m,

such that

z0 ∈ (L2(Ω))m, log z0 ∈ (L2(Ω))m.

Let v̄i ∈ K, i = 1, 2. Let wi be the solutions of system (2.1), as in the thesis of

Proposition 2.1, corresponding to v̄i:







∂wi

∂t
= F(v̄i,wi), on Q,

wi(x, 0) = w0(x), on Ω,

and let zi, as in the thesis of Proposition 2.2, be the corresponding solutions of system

(2.4)






∂zi

∂t
= G(v̄i,wi, zi), on Q,

zi(x, 0) = z0(x), on Ω.

By estimates (2.2), (2.6), (4.7), there exists a compact set C̃ = C̃(T ) ⊆ R×R
k ×R

m such

that

(v̄i(x, t),wi(x, t), log zi(x, t)) ∈ C̃, ∀ (x, t) ∈ Q, i = 1, 2,
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and therefore, there exists a compact set C = C(T ) ⊆ R × R
k × (0,+∞)m such that

(v̄i(x, t),wi(x, t), zi(x, t)) ∈ C, ∀ (x, t) ∈ Q, i = 1, 2.

By hypothesis (1.8a), F is locally Lipschitz continuous, therefore, there exists L1 > 0,

depending on C such that

|w1(x, t) −w2(x, t)| ≤ L1

∫ t

0
|v̄1(x, s) − v̄2(x, s)| + |w1(x, s) −w2(x, s)| ds, ∀ (x, t) ∈ Q.

Thus, by Jensen inequality, integrating on Ω we obtain

‖w1(t) −w2(t)‖
2
L2(Ω) ≤ 2L1

∫ t

0
‖v̄1(s) − v̄2(s)‖

2
L2(Ω)+‖w1(s) −w2(s)‖

2
L2(Ω)ds, ∀t ∈(0, T ),

and by Gronwall’s Lemma

‖w1(t) −w2(t)‖
2
L2(Ω) ≤ 2L1e

2L1T

∫ t

0
‖v̄1(s) − v̄2(s)‖

2
L2(Ω)ds, ∀ t ∈(0, T ). (4.8)

By hypothesis (1.5a) we have Ji ∈ C1
(

R × R
k × R

)

, thus

Ji(·, ·, log(·)) ∈ C1
(

R × R
k × (0,+∞)

)

,

so G = J + H is locally Lipschitz continuous on (R × R
k × (0,+∞)m), and therefore

there exists L2 > 0, depending on C such that ∀ (x, t) ∈ Q we have

|z1(x, t)−z2(x, t)| ≤ L2

∫ t

0
|v̄1(x, s)−v̄2(x, s)|+|w1(x, s)−w2(x, s)|+|z1(x, s)−z2(x, s)|ds,

and, as above, using Jensen’s inequality, Gronwall’s Lemma and (4.8), we find a constant

L3 = L3(L1, L2, T ) such that

‖z1(t) − z2(t)‖
2
L2(Ω) ≤ L3

∫ t

0
‖v̄1(s) − v̄2(s)‖

2
L2(Ω), ∀ t ∈ (0, T ) (4.9)

We recall system (3.4a)–(3.4e) and estimate (3.6)

∂tv + Īion − div(Mi∇ui) − Is
i = 0 on Q,

∂tv + Īion + div(Me∇ue) + Is
e = 0 on Q,

Mi,e∇ui,e · ν = 0 on Σ,

v(x, 0) = v0(x) on Ω.

‖v1(t) − v2(t)‖
2
L2(Ω) ≤ C‖Īion,1 − Īion,2‖

2
L2(0,t;L2(Ω)).
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Since Īion is locally Lipschitz continuous, we can find L4 > 0, depending on C such that

∀ t ∈ (0, T ) it holds

‖v1(t) − v2(t)‖
2
L2(Ω) ≤ L4

∫ t

0

(

‖v̄1(s) − v̄2(s)‖
2
L2(Ω) + ‖w1(s) −w2(s)‖

2
L2(Ω)+

+‖z1(s) − z2(s)‖
2
L2(Ω)

)

ds, (4.10)

and using (4.8), (4.9), we find a constant L = L(L1, L2, L3, L4, T ) such that

‖v1(t) − v2(t)‖
2
L2(Ω) ≤ L

∫ t

0
‖v̄1(s) − v̄2(s)‖

2
L2(Ω)ds. (4.11)

Now we define

ϕ(t) := ‖v1(t) − v2(t)‖
2
L2(Ω),

ϕ̄(t) := ‖v̄1(t) − v̄2(t)‖
2
L2(Ω).

By (4.11) we have

0 ≤ ϕ(t) ≤ L

∫ t

0
ϕ̄(s) ds, ∀ t ∈ (0, T ). (4.12)

Now we multiply (4.12) by e−λt, (λ > 0), and we integrate between 0 and T :

∫ T

0
e−λtϕ(t) dt ≤ L

∫ T

0
e−λt

(
∫ t

0
ϕ̄(s) ds

)

dt,

and integrating by parts

∫ T

0
e−λtϕ(t) dt ≤

L

λ

[
∫ T

0
e−λtϕ̄(t) dt − C4e

−λT

∫ T

0
ϕ̄(t) dt

]

≤
L

λ

∫ T

0
e−λtϕ̄(t) dt.

We conclude that

|‖T v̄1 − T v̄2|‖λ,L2(Ω) ≤
L

λ
|‖v̄1 − v̄2|‖λ,L2(Ω),

and thus, if λ > L, then T is a contraction and we have proved existence and uniqueness

for a solution of Problem (M).
2
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