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1. Weak convergence and compactness, review of basic theory ([3], [4])

1.1 Lebesgue and Sobolev spaces

1.2 Radon measures, reduced defect measures, a refinement of Fatou’s Lemma

2. Concentrated compactness ([4], [5, 6])

2.1 The critical case W 1,p
→֒ Lp∗, 2nd Concentration-compactness Lemma

2.2 Minimizers for critical Sobolev nonlinearities

2.3 Concentration-cancellation, an application to Euler equations

3. Compensated compactness ([4], [8])

3.1 Continuity for f(uj) w.r.t. weak∗ topology, Young measures

3.2 Generalized div-curl Lemma

3.3 An application to scalar conservation laws

4. Γ-convergence ([2] [1])

4.1 Definition, main properties, and examples on R

4.2 The Modica Mortola functional

5. Quasiconvexity ([4], [7])

5.1 A Variational model for microstructures, rank-1 connection, quasiconvexity

5.2 Gradient Young measures, semicontinuity and relaxation of energies
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